1
|
Wu Z, Song Y, Wang Y, Zhou H, Chen L, Zhan Y, Li T, Xie G, Wu H. Biological role of mitochondrial TLR4-mediated NF-κB signaling pathway in central nervous system injury. Cell Biochem Funct 2024; 42:e4056. [PMID: 38812104 DOI: 10.1002/cbf.4056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Previous studies suggested that central nervous system injury is often accompanied by the activation of Toll-like receptor 4/NF-κB pathway, which leads to the upregulation of proapoptotic gene expression, causes mitochondrial oxidative stress, and further aggravates the inflammatory response to induce cell apoptosis. Subsequent studies have shown that NF-κB and IκBα can directly act on mitochondria. Therefore, elucidation of the specific mechanisms of NF-κB and IκBα in mitochondria may help to discover new therapeutic targets for central nervous system injury. Recent studies have suggested that NF-κB (especially RelA) in mitochondria can inhibit mitochondrial respiration or DNA expression, leading to mitochondrial dysfunction. IκBα silencing will cause reactive oxygen species storm and initiate the mitochondrial apoptosis pathway. Other research results suggest that RelA can regulate mitochondrial respiration and energy metabolism balance by interacting with p53 and STAT3, thus initiating the mitochondrial protection mechanism. IκBα can also inhibit apoptosis in mitochondria by interacting with VDAC1 and other molecules. Regulating the biological role of NF-κB signaling pathway in mitochondria by targeting key proteins such as p53, STAT3, and VDAC1 may help maintain the balance of mitochondrial respiration and energy metabolism, thereby protecting nerve cells and reducing inflammatory storms and death caused by ischemia and hypoxia.
Collapse
Affiliation(s)
- Zhuochao Wu
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, China
| | - Ying Wang
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hua Zhou
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Lingling Chen
- Department of Ultrasonic, Cixi Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang, China
| | - Yunyun Zhan
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ting Li
- Department of Pharmacy, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Center LiHuiLi Hospital, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Okyere SK, Wen J, Cui Y, Xie L, Gao P, Wang J, Wang S, Hu Y. Toxic mechanisms and pharmacological properties of euptox A, a toxic monomer from A. adenophora. Fitoterapia 2021; 155:105032. [PMID: 34517058 DOI: 10.1016/j.fitote.2021.105032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/07/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022]
Abstract
A. adenophora (Spreng.) R.M. King & H. Rob. is as invasive plant known to cause toxicity in humans and animals. The plant's toxic activities have been associated with some toxic phytochemicals present in the plant. One of the major phytochemicals that have been reported to induce toxicity in various organs is euptox A (9-oxo-10, 11-dehydroageraphorone). Previous studies have reported that the main target organs of euptox A are the liver and spleen. Although, many studies have reported on euptox A toxicity in rats and mice, the mechanism of action and the beneficial uses of this toxin as well as it potential uses have not been fully established in literatures. Therefore, this review firstly, aims at elaborating on the toxic effects and mechanism of action of euptox A to give basic knowledge to researchers to help in the development of strategies that will reduce its toxicity to the environment. Secondly, this paper will also report on some beneficial uses of euptox A in recent years as well as suggest some future potential applications of this toxin to help in the utilization of this plant resource.
Collapse
Affiliation(s)
- Samuel Kumi Okyere
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Juan Wen
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Yujing Cui
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Lei Xie
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Pei Gao
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Jianchen Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Shu Wang
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China
| | - Yanchun Hu
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan Province, China.
| |
Collapse
|
3
|
Chang Y, Cui H, Jiang X, Li M. Comparative assessment of neurotoxicity impacts induced by alkyl tri-n-butyl phosphate and aromatic tricresyl phosphate in PC12 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1326-1333. [PMID: 32662595 DOI: 10.1002/tox.22997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate flame retardants (OPFRs) have become a growing concern due to their potential environmental and health risk. However, limited studies have described the toxicity, particularly neurotoxicity of alkyl and aromatic OPFRs. This study investigated the neurotoxicity of alkyl tri-n-butyl phosphate (TnBP) and aromatic tricresyl phosphate (TCP) to rat adrenal pheochromocytoma (PC12) cells for 24 h. Viability detection showed dose-response toxicity effect of TCP and TnBP to PC12 cells. The half-maximal inhibitory concentration of 24 h (24 h-IC50 ) of TCP and TnBP were 2415.61 and 338.09 μM, respectively. Both TnBP and TCP significantly changed the acetylcholinesterase (AChE) activity, and TnBP is more likely to cause neurotoxicity to PC12 cells compared to TCP. Also, The results of LDH and caspase-3 activity detection as well as Hoechst staining suggested that cell apoptosis induced by TCP and TnBP may be the primary pathway. These findings provide a toxicity data of aromatic and alkyl-substituted OPFRs to PC12 cells, and a new insight into the toxicity of OPFRs on health risk assessment.
Collapse
Affiliation(s)
- Yeqian Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Haiyan Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Zhu H, Li Y, Wang MX, Wang JH, Du WX, Zhou F. Analysis of cardiovascular disease-related NF-κB-regulated genes and microRNAs in TNFα-treated primary mouse vascular endothelial cells. J Zhejiang Univ Sci B 2020; 20:803-815. [PMID: 31489800 DOI: 10.1631/jzus.b1800631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated nuclear factor-κB (NF-κB) plays an important role in the development of cardiovascular disease (CVD) through its regulated genes and microRNAs (miRNAs). However, the gene regulation profile remains unclear. In this study, primary mouse vascular endothelial cells (pMVECs) were employed to detect CVD-related NF-κB-regulated genes and miRNAs. Genechip assay identified 77 NF-κB-regulated genes, including 45 upregulated and 32 downregulated genes, in tumor necrosis factor α (TNFα)-treated pMVECs. Ten of these genes were also found to be regulated by NF-κB in TNFα-treated HeLa cells. Quantitative real-time PCR (qRT-PCR) assay confirmed the up-regulation of Egr1, Tnf, and Btg2 by NF-κB in the TNFα-treated pMVECs. The functional annotation revealed that many NF-κB-regulated genes identified in pMVECs were clustered into classical NF-κB-involved biological processes. Genechip assay also identified 26 NF-κB-regulated miRNAs, of which 21 were upregulated and 5 downregulated, in the TNFα-treated pMVECs. Further analysis showed that nine of the identified genes are regulated by seven of these miRNAs. Finally, among the identified NF-κB-regulated genes and miRNAs, 5 genes and 12 miRNAs were associated with CVD by miRWalk and genetic association database analysis. Taken together, these findings show an intricate gene regulation network raised by NF-κB in TNFα-treated pMVECs. The network provides new insights for understanding the molecular mechanism underlying the progression of CVD.
Collapse
Affiliation(s)
- Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Yun Li
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Mao-Xian Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Ju-Hong Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Wen-Xin Du
- Shandong Center for Drug and Food Evaluation & Certification, Jinan 250014, China
| | - Fei Zhou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
5
|
Sun W, Zeng CR, Yue D, Hu YC. Involvement of mitochondrial dysfunction in hepatotoxicity induced by Ageratina adenophora in mice. J Zhejiang Univ Sci B 2020; 20:693-698. [PMID: 31273967 DOI: 10.1631/jzus.b1800645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ageratina adenophora is a noxious plant and it is known to cause acute asthma, diarrhea, depilation, and even death in livestock (Zhu et al., 2007; Wang et al., 2017). A. adenophora grows near roadsides and degraded land worldwide (He et al., 2015b). In the areas where it grows, A. adenophora is an invasive species that inhibits the growth of local plants and causes poisoning in animals that come in contact with it (Nie et al., 2012). In China, these plants can be found in Yunnan, Sichuan, Guizhou, Chongqing, and other southwestern areas (He et al., 2015a) and they have become a dominant species in these local regions. It threatens the native biodiversity and ecosystem in the invaded areas and causes serious economic losses (Wang et al., 2017). It has been reported that A. adenophora can grow in the northeast direction at a speed of 20 km per year in China (Guo et al., 2009). Because of the damage caused by A. adenophora, it ranks among the earliest alien invasive plant species in China (Wang et al., 2017).
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Animal Disease and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.,Tongren Polytechnic College, Tongren 554300, China
| | - Chao-Rong Zeng
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu 611135, China
| | - Dong Yue
- Key Laboratory of Animal Disease and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Chun Hu
- Key Laboratory of Animal Disease and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|