1
|
Weiss-Tessbach M, Haider T, Gowran A, Schubert L, Mühlbacher J, Brankovic J, Wahrmann M, Jilma B, Boehm T. COVID-19 mRNA-1273 vaccination induced mast cell activation with strongly elevated Th 2 cytokines in a systemic mastocytosis patient. Inflamm Res 2025; 74:71. [PMID: 40299000 PMCID: PMC12041034 DOI: 10.1007/s00011-025-02032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025] Open
Abstract
OBJECTIVE AND DESIGN SARS-CoV-2 vaccines are recommended for mastocytosis patients. We describe clinical symptoms, chemokine, cytokine, metabolomic and lipidomic derangements in a systemic mastocytosis patient following mRNA-1273 booster vaccination. METHODS Twenty-eight chemokines and cytokines, 41 amino acids and 16 lipid classes were quantified with state-of-the-art methods. RESULTS Mast cell activation (MCA) symptoms started 24 h after the mRNA-1273 booster vaccination with significant metabolic, lipidomic and cytokine derangements. Histamine concentrations peaked at life-threatening 18 ng/ml concomitant with high tryptase. Peak plasma IL-1Ra, IL-5, IL-6, IL-10, IL-11, CXCL10 and GM-CSF concentrations were elevated 54-, 4.9-, 85-, 54-, 6.1-, 19- and 6.4-fold respectively. Tocilizumab, an IL-6 receptor antagonist, was administered 6 h after admission, because of the highly elevated IL-6 concentrations. More than one year later IL-6 was highly elevated during another MCA attack likely caused by a PCR-proven SARS-CoV-2 infection and tocilizumab was again used. Clinical symptoms improved during the following 12 h similar to the vaccine booster MCA attack. CONCLUSIONS A mRNA-1273 first booster vaccination likely caused a delayed severe MCA attack with highly elevated Th2-biased cytokines with metabolic and lipidomic derangements. Administration of an IL-6 receptor blocker during both MCA attacks might have shortened the duration of clinical symptoms.
Collapse
Affiliation(s)
- Matthias Weiss-Tessbach
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Teresa Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Aoife Gowran
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Lorenz Schubert
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University Vienna, Vienna, Austria
| | - Jakob Mühlbacher
- Department of Surgery, Division of Visceral Surgery, Medical University Vienna, Vienna, Austria
| | - Jelena Brankovic
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Markus Wahrmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University Vienna, Waehringer Guertel 18-20, Vienna, 1090, Austria.
| |
Collapse
|
2
|
Naymagon L, Roehrs P, Hermiston M, Connelly J, Bednarski J, Boelens JJ, Chandrakasan S, Dávila Saldaña B, Henry MM, Satwani P, Ray A, Walkovich K, Teachey D, Behrens EM, Canna SW, Kumar A. Perspectives on the current diagnostic and treatment paradigms in secondary hemophagocytic lymphohistiocytosis (HLH). Orphanet J Rare Dis 2025; 20:200. [PMID: 40287693 PMCID: PMC12032702 DOI: 10.1186/s13023-025-03698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Improved awareness of hemophagocytic lymphohistiocytosis (HLH) among clinicians has led to an increase in its diagnosis. Often diagnosis is made based on the HLH- 2004 criteria. While these criteria have considerable strengths, they lack specificity and may be fulfilled in the setting of many pro-inflammatory disorders. Genetic defects affecting cellular cytotoxicity cause familial (primary) HLH. On the other hand, secondary HLH is more a pathophysiologic process common to many conditions, rather than a singular disease entity. Improved genetic, immunologic, and functional testing have changed not only the way we diagnose HLH, but also how we treat it. In 2004, there were few active agents and regimens. In 2024, there are multiple safe and effective targeted therapies. We have begun to understand that routine and immediate use of etoposide-based therapy in secondary HLH is likely not appropriate, and emerging cytokine-directed therapies may be more rational interventions. Moreover, it is recognized that identifying and treating the driver of secondary HLH is at least as important as treating the cytokine storm and immune dysregulation. Unfortunately, over-reliance on, and narrow interpretation of, the HLH- 2004 criteria can lead to overdiagnosis, misdiagnosis, and unneeded exposure to drugs that can be harmful. It is important that clinicians understand the limitations of the current diagnostic paradigms for secondary HLH, and the shortcomings of reflexive use of etoposide-based therapy. Herein we will discuss the pros and cons of the current paradigm for the recognition, diagnosis, and treatment of secondary HLH.
Collapse
Affiliation(s)
- Leonard Naymagon
- Mount Sinai School of Medicine, Tisch Cancer Institute, 1470 Madison Avenue, New York, NY, 10029, USA.
| | - Philip Roehrs
- Stem Cell Transplant and Cellular Therapies, Division of Hematology and Oncology, Department of Pediatrics, University of Virginia, Charlottesville, VA, USA
| | - Michelle Hermiston
- Department of Pediatrics, UCSF Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - James Connelly
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey Bednarski
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jaap-Jan Boelens
- Department of Pediatrics, Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Blachy Dávila Saldaña
- Department of Pediatrics, George Washington University, Washington, DC, USA
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Michael M Henry
- Center for Cancer and Blood Disorders, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Prakash Satwani
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Anish Ray
- Cook Children's Medical Center, Fort Worth, TX, USA
| | - Kelly Walkovich
- Division of Hematology and Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - David Teachey
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Scott W Canna
- Division of Rheumatology, Children's Hospital of Philadelphia, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish Kumar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Raavi, Koehler AN, Vegas AJ. At The Interface: Small-Molecule Inhibitors of Soluble Cytokines. Chem Rev 2025. [PMID: 40233276 DOI: 10.1021/acs.chemrev.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Cytokines are crucial regulators of the immune system that orchestrate interactions between cells and, when dysregulated, contribute to the progression of chronic inflammation, cancer, and autoimmunity. Numerous biologic-based clinical agents, mostly monoclonal antibodies, have validated cytokines as important clinical targets and are now part of the standard of care for a number of diseases. These agents, while impactful, still suffer from limitations including a lack of oral bioavailability, high cost of production, and immunogenicity. Small-molecule cytokine inhibitors are attractive alternatives that can address these limitations. Although targeting cytokine-cytokine receptor complexes with small molecules has been a challenging research endeavor, multiple small-molecule inhibitors have now been identified, with a number of them undergoing clinical evaluation. In this review, we highlight the recent advancements in the discovery and development of small-molecule inhibitors targeting soluble cytokines. The strategies for identifying these novel ligands as well as the structural and mechanistic insights into their activity represent important milestones in tackling these challenging and clinically important protein-protein interactions.
Collapse
Affiliation(s)
- Raavi
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Angela N Koehler
- Koch Institute for Integrative Cancer Research, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo J Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02115, United States
| |
Collapse
|
4
|
Cosău DE, Costache Enache II, Costache AD, Tudorancea I, Ancuța C, Șerban DN, Bădescu CM, Loghin C, Șerban IL. From Joints to the Heart: An Integrated Perspective on Systemic Inflammation. Life (Basel) 2025; 15:629. [PMID: 40283183 PMCID: PMC12028888 DOI: 10.3390/life15040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammatory disease which predominantly affects joints, but it can also lead to significant extra-articular complications, particularly cardiovascular disease (CVD). Chronic systemic inflammation promotes endothelial dysfunction and accelerates atherosclerosis, increasing cardiovascular risk. METHODS Current data were analyzed to explore the mechanisms between RA and CVD, focusing on systemic inflammation, pro-inflammatory cytokine patways (IL-1, IL-6, TNF, and JAK-STAT), and their interactions with traditional cardiovascular risk factors. Recent studies and clinical guidelines were reviewed to highlight gaps and advances in risk assessment and management. RESULTS Persistent disease activity and the presence of autoantibodies significantly increase cardiovascular risk in RA contributing to atherosclerosis and major cardiovascular events. Data also suggest that anti-inflammatory treatments, including methotrexate and biologic agents, may lower this risk. CONCLUSION This review highlights the pathophysiological mechanisms between RA and CVD, and the need for early diagnosis and active monitoring to identify and assess cardiovascular risk. A multidisciplinary approach, involving rheumatologists and cardiologists is essential for optimizing cardiovascular risk management and improving patient outcomes. Optimization of cardiovascular risk management strategies in patients with RA should be an essential component of current medical practice, with the main goal of reducing morbidity and mortality from cardiovascular complications.
Collapse
Affiliation(s)
- Diana Elena Cosău
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina Iuliana Costache Enache
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandru Dan Costache
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ionuț Tudorancea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Codrina Ancuța
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Dragomir Nicolae Șerban
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
| | - Codruța Minerva Bădescu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
- “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Cătălin Loghin
- Department of Internal Medicine, Cardiology Division, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Ionela Lăcrămioara Șerban
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (D.E.C.); (I.I.C.E.); (I.T.); (C.A.); (D.N.Ș.); (C.M.B.); (I.L.Ș.)
| |
Collapse
|
5
|
Santurio DS, Barros LRC, Glauche I, Fassoni AC. Mathematical modeling unveils the timeline of CAR-T cell therapy and macrophage-mediated cytokine release syndrome. PLoS Comput Biol 2025; 21:e1012908. [PMID: 40203243 PMCID: PMC11981663 DOI: 10.1371/journal.pcbi.1012908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy holds significant potential for cancer treatment, although disease relapse and cytokine release syndrome (CRS) remain as frequent clinical challenges. To better understand the mechanisms underlying the temporal dynamics of CAR-T cell therapy response and CRS, we developed a novel multi-layer mathematical model incorporating antigen-mediated CAR-T cell expansion, antigen-negative resistance, and macrophage-associated cytokine release. Three key mechanisms of macrophage activation are considered: release of damage-associated molecular patterns, antigen-binding mediated activation, and CD40-CD40L contact. The model accurately describes 25 patient time courses with different responses and IL-6 cytokine kinetics. We successfully link the dynamic shape of the response to interpretable model parameters and investigate the influence of CAR-T cell dose and initial tumor burden on the occurrence of cytokine release and treatment outcome. By disentangling the timeline of macrophage activation, the model identified distinct contributions of each activation mechanism, suggesting the CD40-CD40L axis as a major driver of cytokine release and a clinically feasible target to control the activation process and modulate cytokine peak height. Our multi-layer model provides a comprehensive framework for understanding the complex interactions between CAR-T cells, tumor cells, and macrophages during therapy.
Collapse
Affiliation(s)
| | | | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Artur c Fassoni
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
- Instituto de Matemática e Computação, Universidade Federal de Itajubá, Itajubá, Brazil
| |
Collapse
|
6
|
Warrick KA, Vallez CN, Meibers HE, Pasare C. Bidirectional Communication Between the Innate and Adaptive Immune Systems. Annu Rev Immunol 2025; 43:489-514. [PMID: 40279312 DOI: 10.1146/annurev-immunol-083122-040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Effective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell-mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell-driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.
Collapse
Affiliation(s)
- Kathrynne A Warrick
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Charles N Vallez
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Hannah E Meibers
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| |
Collapse
|
7
|
Liu J, Li Y, Lian X, Zhang C, Feng J, Tao H, Wang Z. Potential target within the tumor microenvironment - MT1-MMP. Front Immunol 2025; 16:1517519. [PMID: 40196128 PMCID: PMC11973285 DOI: 10.3389/fimmu.2025.1517519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Matrix metalloproteinases are integral to the modification of the tumor microenvironment and facilitate tumor progression by degrading the extracellular matrix, releasing cytokines, and influencing the recruitment of immune cells. Among the matrix metalloproteinases, membrane-type matrix metalloproteinase 1 (MT1-MMP/MMP14) is the first identified membrane-type MMP and acts as an essential proteolytic enzyme that enables tumor infiltration and metastatic progression. Given the pivotal role of MT1-MMP in tumor progression and the correlation between its overexpression in tumors and unfavorable prognoses across multiple cancer types, a comprehensive understanding of the potential functional mechanisms of MT1-MMP is essential. This knowledge will aid in the advancement of diverse anti-tumor therapies aimed at targeting MT1-MMP. Although contemporary research has highlighted the considerable potential of MT1-MMP in targeted cancer therapy, studies pertaining to its application in cell therapy remain relatively limited. In this review, we delineate the structural characteristics and regulatory mechanisms of MT1-MMP expression, as well as its biological significance in tumorigenesis. Finally, we discussed the current status and prospects of anti-tumor therapies targeting MT1-MMP.
Collapse
Affiliation(s)
- Jinlong Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yijing Li
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueqi Lian
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chenglin Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianing Feng
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hongfei Tao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhimin Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Peter J, Toppeta F, Trubert A, Danhof S, Hudecek M, Däullary T. Multi-Targeting CAR-T Cell Strategies to Overcome Immune Evasion in Lymphoid and Myeloid Malignancies. Oncol Res Treat 2025:1-15. [PMID: 40090318 DOI: 10.1159/000543806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has become a groundbreaking treatment for hematological malignancies, particularly lymphomas and multiple myeloma, with high remission rates in refractory and relapsed patients. However, most CAR-T therapies target a single antigen, such as CD19, which can result in immune evasion through antigen escape. This mechanism describes the downregulation or complete loss of the targeted antigen by the tumor cells, eventually leading to relapse. To address this issue, multi-targeting strategies like logic-gated CARs, adapter CARs, or combination therapies can increase the potency of CAR-T cells. These approaches aim to minimize immune evasion by targeting multiple antigens simultaneously, thereby increasing treatment durability. Additionally, advanced tools such as next-generation sequencing (NGS), direct stochastic optical reconstruction microscopy (dSTORM), or multiparametric flow cytometry are helping to identify novel tumor-specific targets and improve therapy designs. SUMMARY This review explores the current landscape of CAR-T cell therapies in lymphoid and myeloid malignancies, highlights ongoing clinical trials, and discusses the future of these innovative multi-targeting approaches to improve patient outcome. KEY MESSAGES Antigen escape limits CAR-T cell therapy success, but multi-targeting strategies like logic gates and adapter CARs offer solutions. Optimizing antigen selection and CAR design, along with larger clinical trials, is essential for improving patient outcomes. Personalization using advanced technologies like CRISPR screening and single-cell RNA sequencing can enhance durability and effectiveness of treatments for heavily pretreated patients.
Collapse
Affiliation(s)
- Jessica Peter
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Fabio Toppeta
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Alexandre Trubert
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Sophia Danhof
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Michael Hudecek
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| | - Thomas Däullary
- Chair in Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- NCT WERA, National Center for Tumor Diseases (Würzburg, Erlangen, Regensburg and Augsburg), Würzburg, Germany
- BZKF, Bavarian Center for Cancer Research, Erlangen, Germany
| |
Collapse
|
9
|
Mulvey A, Trueb L, Coukos G, Arber C. Novel strategies to manage CAR-T cell toxicity. Nat Rev Drug Discov 2025:10.1038/s41573-024-01100-5. [PMID: 39901030 DOI: 10.1038/s41573-024-01100-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
The immune-related adverse events associated with chimeric antigen receptor (CAR)-T cell therapy result in substantial morbidity as well as considerable cost to the health-care system, and can limit the use of these treatments. Current therapeutic strategies to manage immune-related adverse events include interleukin-6 receptor (IL-6R) blockade and corticosteroids. However, because these interventions do not always address the side effects, nor prevent progression to higher grades of adverse events, new approaches are needed. A deeper understanding of the cell types involved, and their associated signalling pathways, cellular metabolism and differentiation states, should provide the basis for alternative strategies. To preserve treatment efficacy, cytokine-mediated toxicity needs to be uncoupled from CAR-T cell function, expansion, long-term persistence and memory formation. This may be achieved by targeting CAR or independent cytokine signalling axes transiently, and through novel T cell engineering strategies, such as low-affinity CAR-T cells, reversible on-off switches and versatile adaptor systems. We summarize the current management of cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, and review T cell- and myeloid cell-intrinsic druggable targets and cellular engineering strategies to develop safer CAR-T cells.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Lionel Trueb
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Service of Immuno-Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
- Departments of Oncology UNIL-CHUV and Laboratory Medicine and Pathology, Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
| |
Collapse
|
10
|
Panuccio G, Correale P, d'Apolito M, Mutti L, Giannicola R, Pirtoli L, Giordano A, Labate D, Macheda S, Carabetta N, Abdelwahed YS, Landmesser U, Tassone P, Tagliaferri P, De Rosa S, Torella D. Immuno-related cardio-vascular adverse events associated with immuno-oncological treatments: an under-estimated threat for cancer patients. Basic Res Cardiol 2025; 120:153-169. [PMID: 39225869 PMCID: PMC11790807 DOI: 10.1007/s00395-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy represents an emergent and heterogeneous group of anticancer treatments harnessing the human immune-surveillance system, including immune-checkpoint inhibitor monoclonal antibodies (mAbs), Chimeric Antigen Receptor T Cells (CAR-T) therapy, cancer vaccines and lymphocyte activation gene-3 (LAG-3) therapy. While remarkably effective against several malignancies, these therapies, often in combination with other cancer treatments, have showed unforeseen toxicity, including cardiovascular complications. The occurrence of immuno-mediated adverse (irAEs) events has been progressively reported in the last 10 years. These irAEs present an extended range of severity, from self-limiting to life-threatening conditions. Although recent guidelines in CardioOncology have provided important evidence in managing cancer treatments, they often encompass general approaches. However, a specific focus is required due to the particular etiology, unique risk factors, and associated side effects of immunotherapy. This review aims to deepen the understanding of the prevalence and nature of cardiovascular issues in patients undergoing immunotherapy, offering insights into strategies for risk stratification and management.
Collapse
Affiliation(s)
- Giuseppe Panuccio
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany.
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierpaolo Correale
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Maria d'Apolito
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università dell'Aquila, L'Aquila, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
- Department of Medical Biotechnology, University of Siena, 53100, Siena, Italy
| | - Demetrio Labate
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Sebastiano Macheda
- Unit of Intensive Care Medicine and Anesthesia, Grande Ospedale Metropolitano Bianchi Melacrino Morelli, 89124, Reggio Calabria, Italy
| | - Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Youssef S Abdelwahed
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), 10785, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
11
|
Ferraz-Amaro I, Santos-Concepción S, Castro-Hernández J, Hernández-Hernández MV, Tejera Segura B, Luna C, Delgado-Frias E, Díaz-González F. Tocilizumab modulates the activity of the classical and alternative complement pathways in rheumatoid arthritis patients. Front Immunol 2025; 16:1486588. [PMID: 39949771 PMCID: PMC11821478 DOI: 10.3389/fimmu.2025.1486588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
Background Tocilizumab (TCZ) is a monoclonal antibody that neutralizes interleukin (IL)-6 and is indicated for diseases characterized by markedly elevated inflammatory markers, such as rheumatoid arthritis (RA). The complement system has been implicated in the etiopathogenesis of RA. Objective To evaluate the effect of systemic IL-6 inhibition on complement pathways functional activity in RA patients treated with TCZ. Desing Prospective non-interventional study. Methods Twenty-seven RA patients included in the TOCRIVAR study who received TCZ (8mg/kg IV/q4w) were evaluated at baseline and at weeks 12, 24 and 52 of treatment. Disease activity, as assessed by composite indices, acute phase reactants, and new-generation functional assays of the three complement pathways, was evaluated at baseline and at each follow-up visit. Multivariable linear mixed models were used to determine changes in the complement system cascades over time. Results After adjustment for disease activity, basal levels of the classical and alternative pathways decreased significantly after TCZ treatment. The effect on the classical pathway remained significant after 52 weeks. The decrease in the alternative pathway was significant at weeks 12 and 24, but not at week 52 of TCZ treatment. TCZ had no effect on the lectin cascade throughout the follow-up. Conclusion TCZ reduces the activity of the classical and alternative pathways of the complement system in RA patients regardless of the improvement in disease activity. This finding may contribute to a better understanding of the mechanisms by which the IL-6 blockade reduces disease activity in RA patients.
Collapse
Affiliation(s)
- Iván Ferraz-Amaro
- Servicio de Reumatología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Sergio Santos-Concepción
- Departamento de Medicina Física y Farmacología, Área de Farmacología Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | - Javier Castro-Hernández
- Departamento de Medicina Física y Farmacología, Área de Farmacología Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
| | | | - Beatriz Tejera Segura
- Servicio de Reumatología, Hospital Universitario Insular-Materno infantil de Canarias, Las Palmas de Gran Canarias, Spain
| | - Cristina Luna
- Servicio de Reumatología, Hospital Nuestra Señora de la Candelaria, Santa Cruz de Tenerife, Spain
| | - Esmeralda Delgado-Frias
- Servicio de Reumatología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Federico Díaz-González
- Servicio de Reumatología, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Medicina Interna, Dermatología y Psiquiatría, Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Spain
- Instituto Universitario de Tecnología Biomédica (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
12
|
Berry CT, Frazee CS, Herman PJ, Chen S, Chen A, Kuo Y, Ellebrecht CT. Current advancements in cellular immunotherapy for autoimmune disease. Semin Immunopathol 2025; 47:7. [PMID: 39821376 PMCID: PMC11739237 DOI: 10.1007/s00281-024-01034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
The management of autoimmune diseases is currently limited by therapies that largely suppress the immune system, often resulting in partial and temporary remissions. Cellular immunotherapies offer a targeted approach by redirecting immune cells to correct the underlying autoimmunity. This review explores the latest advances in cellular immunotherapies for autoimmune diseases, focusing on various strategies, such as the use of chimeric antigen receptor (CAR) T cells, chimeric auto-antibody receptor (CAAR) T cells, regulatory T cells (Tregs), and tolerogenic dendritic cells (TolDCs). We review recent preclinical studies and results from clinical trials that demonstrate the potential for these therapies to either deplete autoreactive cells or promote immune tolerance through broad or selective targeting of immune cell populations. Key challenges such as ensuring specificity, preventing off-target effects, and improving the longevity of therapeutic effects are discussed. The evolving landscape of cellular immunotherapies holds promise for more durable treatment responses and increased specificity for autoimmune disease treatment.
Collapse
Affiliation(s)
- Corbett T Berry
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Caitlin S Frazee
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Herman
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sisi Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Chen
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvonne Kuo
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Bajwa A, Zhao Q, Geer M, Lin C, Westholder J, Maakaron J, Ghosh M, Frame D, Galal A, Tossey J, Ahmed N, Bezerra E, Denlinger N, de Lima M, Epperla N, Caimi P, Voorhees T. Siltuximab for chimeric antigen receptor T-cell therapy-related CRS and ICANS: a multicenter retrospective analysis. Blood Adv 2025; 9:170-175. [PMID: 39437770 PMCID: PMC11788129 DOI: 10.1182/bloodadvances.2024013688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT Chimeric antigen receptor T-cell (CAR-T) therapies are effective in many hematologic malignancies; however, adverse events including cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) can affect a significant number of patients. Those who develop refractory CRS or ICANS have few treatment options. Siltuximab, a monoclonal antibody binding circulating interleukin-6, has been proposed to have clinical activity in both CRS and ICANS. We conducted a multicenter retrospective analysis of siltuximab treatment for CRS and ICANS after CAR-T therapy in a real-world cohort from 6 academic centers. Fifty-four patients were evaluated. Sixteen patients had CRS previously treated with tocilizumab and 17 patients had ICANS previously treated with steroids. Of the patients with CRS at the time of siltuximab, 75% had improvement in CRS grade. Of the patients with ICANS at the time of siltuximab, 60% had improvement in ICANS grade. To our knowledge, this is the largest cohort of patients treated with siltuximab for CRS and/or ICANS after CAR-T therapies. Siltuximab appeared to be effective for both CRS and ICANS, including previously treated toxicities. These data support the use of siltuximab in CRS and ICANS as well as provide rationale for future prospective studies.
Collapse
Affiliation(s)
- Amneet Bajwa
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Qiuhong Zhao
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Marcus Geer
- Rogel Cancer Center, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Chenyu Lin
- Duke Cancer Center, Division of Hematology, Duke University, Durham, NC
| | - James Westholder
- Masonic Cancer Center, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN
| | - Joseph Maakaron
- Masonic Cancer Center, Division of Hematology and Oncology, University of Minnesota, Minneapolis, MN
| | - Monalisa Ghosh
- Rogel Cancer Center, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - David Frame
- Rogel Cancer Center, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI
| | - Ahmed Galal
- Duke Cancer Center, Division of Hematology, Duke University, Durham, NC
| | - Justin Tossey
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Nausheen Ahmed
- University of Kansas Cancer Center, Division of Hematologic Malignancies and Cellular Therapeutics, Overland Park, KS
| | - Evandro Bezerra
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Nathan Denlinger
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Marcos de Lima
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Narendranath Epperla
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| | - Paolo Caimi
- Taussig Cancer Institute, Division of Hematology and Medical Oncology, Cleveland Clinic Foundation, Cleveland, OH
| | - Timothy Voorhees
- The James Comprehensive Cancer Center, Division of Hematology, The Ohio State University, Columbus, OH
| |
Collapse
|
14
|
Yang J, Zhang J, Wan X, Cai J, Wang T, Yang X, Li W, Ding L, Song L, Miao Y, Wang X, Ma Y, Luo C, Tang J, Gu L, Chen J, Lu J, Tang Y, Li B. Impact of corticosteroids on the efficacy of CD19/22 CAR-T cell therapy in pediatric patients with B-ALL: a single-center study. Front Pediatr 2025; 12:1485402. [PMID: 39872915 PMCID: PMC11771322 DOI: 10.3389/fped.2024.1485402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/25/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Corticosteroids are used for toxicity management, raising concerns about whether they may affect the anti-leukemic effects of chimeric antigen receptor (CAR)-T cells. Methods and results In this study, we retrospectively analyzed patients (fined two subgroups based on disease burden. Of the 75 cases in the low disease burden (LDB) group (MRD < 5%, no extramedullary disease), there was no significant difference between the use of steroids and event-free survival (EFS) (p = 0.21) and overall survival (OS) (p = 0.26), and the same was found for the 119 cases in the high disease burden (HDB) group. After eliminating the effect of consolidative transplantation on the prognosis, the EFS of the patients who did not use steroids was better (p = 0.037) in the LDB group, but the difference was not significant in the HDB group. The median cumulative dexamethasone-equivalent dose was 0.56 mg/kg, and the EFS and OS were similar in the different cumulative dose groups. Furthermore, there was no difference in the recovery of B cells and the expansion of CAR-T cell copies. Conclusion and discussion In conclusion, under the guidance of current CRS prevention and control measures, the rational use of corticosteroids does not affect the clinical efficacy and overall survival of CAR-T cell therapy in patients with B-ALL and also does not affect the persistence of CAR-T cells in vivo, but the dosage threshold needs further clinical or experimental verification.
Collapse
Affiliation(s)
- Jing Yang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Wan
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaoyang Cai
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Child Health Advocacy Institute, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Tianyi Wang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin Yang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Li
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixia Ding
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Song
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Miao
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yani Ma
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjuan Luo
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyan Tang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longjun Gu
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Lu
- Department of Hematology/Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yanjing Tang
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benshang Li
- Department of Cell Immunotherapy, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Chen Y, Luo Y, Liu Y, Luo D, Liu A. Dual efficacy of tocilizumab in managing PD-1 inhibitors-induced myocardial inflammatory injury and suppressing tumor growth with PD-1 inhibitors: a preclinical study. Cancer Immunol Immunother 2025; 74:52. [PMID: 39752010 PMCID: PMC11699076 DOI: 10.1007/s00262-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/16/2024] [Indexed: 01/04/2025]
Abstract
The combined use of tocilizumab (TCZ) and immune checkpoint inhibitors (ICIs) in cancer treatment is gaining attention, but preclinical studies are lacking. Our study aims to investigate the synergistic anti-tumor effect of TCZ combined with ICIs and its role in treating immune-related adverse events (irAEs). The clinical significance of high interleukin-6 (IL-6) expression in tumor patients was analyzed from the Cancer Genome Atlas (TCGA) database. The expression levels of IL-6 were compared before and during the onset of ICIs-associated myocarditis patients. ICIs-related myocardial inflammatory injury and therapeutic lung cancer models were constructed in C57BL/6 J mice using murine-derived programmed death-1 (PD-1) inhibitors alone or in combination with TCZ. Possible inflammatory mechanisms were proposed and validated. The anti-tumor effects and mechanisms of both drugs in combination were assessed. Patients with high IL-6 expression had a poor prognosis, and those with ICIs-associated myocarditis exhibited elevated IL-6 from baseline. In the PD-1 inhibitors-associated myocardial inflammatory injury mouse model, the levels of IL-6 in the blood and cardiac tissues were significantly elevated. TCZ ameliorated immune myocardial inflammatory injury by inhibiting the IL-6/janus kinase 2 (JAK2)/signal transducer and activator of the transcription 3 (STAT3) pathway. The group treated with PD-1 inhibitors combined with TCZ showed significantly slower tumor growth than that treated with PD-1 inhibitors alone. TCZ resisted tumor growth by inhibiting the IL-6-JAK2-STAT3 pathway. By targeting the IL-6-JAK2-STAT3 pathway, TCZ can alleviate PD-1 inhibitors-associated myocardial inflammatory injury mediated by M1-polarized macrophages and plays a synergistic anti-tumor role by inhibiting lung cancer cell proliferation.
Collapse
Affiliation(s)
- Yanxin Chen
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yuxi Luo
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Yunwei Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
- Radiation Induced Heart Damage Institute, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
16
|
Takahata A, Akita K, Shimada T, Bando K, Toyota S. Utility of CSF IL-6 monitoring in managing ICANS associated with Epcoritamab treatment: a case report and literature review. J Clin Exp Hematop 2025; 65:68-71. [PMID: 40159285 DOI: 10.3960/jslrt.24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Immune effector cell-associated neurotoxicity syndrome (ICANS) is a serious complication observed in patients receiving advanced immunotherapies such as bispecific antibodies and CAR-T cell therapies. Although the Immune Effector Cell-Associated Encephalopathy (ICE) score is commonly used to assess ICANS severity, its diagnostic accuracy can be compromised by factors such as concomitant medications, underlying comorbidities, and other external influences. This case report discusses a patient with diffuse large B-cell lymphoma who developed ICANS while receiving Epcoritamab. Notably, elevated interleukin-6 (IL-6) levels in the cerebrospinal fluid (CSF) correlated with the patient's clinical course of neurotoxicity. In contrast to conventional scoring systems, which can be affected by unrelated factors, CSF IL-6 levels appeared to more directly reflect the severity and progression of ICANS. These findings are consistent with similar reports from patients treated with CAR-T cells, suggesting that CSF IL-6 may serve as a reliable marker for ICANS progression. Further research that systematically measures CSF IL-6 in diverse clinical contexts could help validate its role as a biomarker, enhancing diagnostic precision and guiding optimal management strategies for ICANS.
Collapse
MESH Headings
- Humans
- Interleukin-6/cerebrospinal fluid
- Neurotoxicity Syndromes/etiology
- Neurotoxicity Syndromes/cerebrospinal fluid
- Neurotoxicity Syndromes/diagnosis
- Lymphoma, Large B-Cell, Diffuse/cerebrospinal fluid
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Male
- Middle Aged
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
Collapse
Affiliation(s)
- Atsushi Takahata
- Department of Hematology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Kaori Akita
- Department of Hematology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Tomohito Shimada
- Department of Hematology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Kana Bando
- Department of Hematology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| | - Shigeo Toyota
- Department of Hematology, Yokosuka Kyosai Hospital, Kanagawa, Japan
| |
Collapse
|
17
|
Zhang X, You Y, Zhang P, Wang Y, Shen F. Cytokine release syndrome caused by immune checkpoint inhibitors: a case report and literature review. Future Sci OA 2024; 10:2422786. [PMID: 39575654 PMCID: PMC11587866 DOI: 10.1080/20565623.2024.2422786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have gained widespread application in the treatment of malignant tumors. Cytokine release syndrome (CRS) is a systemic inflammatory response triggered by various factors, including infections and immunotherapy. We present a case of CRS occurring in a gastric cancer patient after receiving combination therapy of tislelizumab, anlotinib and combination of capecitabine and oxaliplatin. Nineteen days after the third dose of tislelizumab, the patient experienced sudden unconsciousness, frothing at the mouth, convulsions and other clinical manifestations resembling epileptiform seizures. Elevated inflammatory markers, cytokine levels and ferritin were markedly increased. Given the absence of definite clinical evidence for metastasis and infection, the diagnosis of CRS was considered. Subsequent management with glucocorticoids and intravenous immunoglobulin resulted in the patient's improvement. However, antitumor therapy was halted, ultimately leading to death. The administration of ICIs can incite CRS, a severe, rapidly progressing condition with a poor prognosis, demanding clinical attention. Cytokines play a dual role in the pathophysiology of immune-related adverse events by mediating self-tolerance attenuation and enhancing the activation of cytotoxic T cells in the antitumor process of ICIs. The therapy of glucocorticoids combined with cytokine inhibitors may become an effective remedy.
Collapse
Affiliation(s)
- Xiuping Zhang
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yang You
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Shen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Munir M, Sayed A, Addison D, Epperla N. Cardiovascular toxicities associated with novel cellular immune therapies. Blood Adv 2024; 8:6282-6296. [PMID: 39418640 PMCID: PMC11698921 DOI: 10.1182/bloodadvances.2024013849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/26/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024] Open
Abstract
ABSTRACT Over the past decade, T-cell-directed therapies, including chimeric antigen receptor T-cell (CAR-T) and bispecific T-cell engager (BTE) therapies, have reshaped the treatment of an expanding number of hematologic malignancies, whereas tumor-infiltrating lymphocytes, a recently approved cellular therapy, targets solid tumor malignancies. Emerging data suggest that these therapies may be associated with a high incidence of serious cardiovascular toxicities, including atrial fibrillation, heart failure, ventricular arrhythmias, and other cardiovascular toxicities. The development of these events is a major limitation to long-term survival after these treatments. This review examines the current state of evidence, including reported incidence rates, risk factors, mechanisms, and management strategies of cardiovascular toxicities after treatment with these novel therapies. We specifically focus on CAR-T and BTE therapies and their relation to arrhythmia, heart failure, myocarditis, bleeding, and other major cardiovascular events. Beyond the relationship between cytokine release syndrome and cardiotoxicity, we describe other potential mechanisms and highlight key unanswered questions and future directions of research.
Collapse
Affiliation(s)
- Malak Munir
- Department of Medicine, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Ahmed Sayed
- Department of Medicine, Ain Shams University Faculty of Medicine, Cairo, Egypt
- Department of Cardiology, Houston Methodist DeBakey Heart & Vascular Center, Houston, TX
| | - Daniel Addison
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH
- Division of Epidemiology, College of Public Health, The Ohio State University, Columbus, OH
| | - Narendranath Epperla
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| |
Collapse
|
19
|
Rankin AW, Duncan BB, Allen C, Silbert SK, Shah NN. Evolving strategies for addressing CAR T-cell toxicities. Cancer Metastasis Rev 2024; 44:17. [PMID: 39674824 PMCID: PMC11646216 DOI: 10.1007/s10555-024-10227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/02/2024] [Indexed: 12/16/2024]
Abstract
The field of chimeric antigen receptor (CAR) T-cell therapy has grown from a fully experimental concept to now boasting a multitude of treatments including six FDA-approved products targeting various hematologic malignancies. Yet, along with their efficacy, these therapies come with side effects requiring timely and thoughtful interventions. In this review, we discuss the most common toxicities associated with CAR T-cells to date, highlighting risk factors, prognostication, implications for critical care management, patient experience optimization, and ongoing work in the field of toxicity mitigation. Understanding the current state of the field and standards of practice is critical in order to improve and manage potential toxicities of both current and novel CAR T-cell therapies as they are applied in the clinic.
Collapse
Affiliation(s)
- Alexander W Rankin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brynn B Duncan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cecily Allen
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Critical Care Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Sara K Silbert
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Brudno JN, Maus MV, Hinrichs CS. CAR T Cells and T-Cell Therapies for Cancer: A Translational Science Review. JAMA 2024; 332:1924-1935. [PMID: 39495525 PMCID: PMC11808657 DOI: 10.1001/jama.2024.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Importance Chimeric antigen receptor (CAR) T cells are T lymphocytes that are genetically engineered to express a synthetic receptor that recognizes a tumor cell surface antigen and causes the T cell to kill the tumor cell. CAR T treatments improve overall survival for patients with large B-cell lymphoma and progression-free survival for patients with multiple myeloma. Observations Six CAR T-cell products are approved by the US Food and Drug Administration (FDA) for 6 hematologic malignancies: B-cell acute lymphoblastic leukemia, large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia, and multiple myeloma. Compared with standard chemotherapy followed by stem cell transplant, CAR T cells improved 4-year overall survival in patients with large B-cell lymphoma (54.6% vs 46.0%). Patients with pediatric acute lymphoblastic leukemia achieved durable remission after CAR T-cell therapy. At 3-year follow-up, 48% of patients were alive and relapse free. In people with multiple myeloma treated previously with 1 to 4 types of non-CAR T-cell therapy, CAR T-cell therapy prolonged treatment-free remissions compared with standard treatments (in 1 trial, CAR T-cell therapy was associated with progression-free survival of 13.3 months compared with 4.4 months with standard therapy). CAR T-cell therapy is associated with reversible acute toxicities, such as cytokine release syndrome in approximately 40% to 95% of patients, and neurologic disorders in approximately 15% to 65%. New CAR T-cell therapies in development aim to increase efficacy, decrease adverse effects, and treat other types of cancer. No CAR T-cell therapies are FDA approved for solid tumors, but recently, 2 other T lymphocyte-based treatments gained approvals: 1 for melanoma and 1 for synovial cell sarcoma. Additional cellular therapies have attained responses for certain solid tumors, including pediatric neuroblastoma, synovial cell sarcoma, melanoma, and human papillomavirus-associated cancers. A common adverse effect occurring with these T lymphocyte-based therapies is capillary leak syndrome, which is characterized by fluid retention, pulmonary edema, and kidney dysfunction. Conclusions and Relevance CAR T-cell therapy is an FDA-approved therapy that has improved progression-free survival for multiple myeloma, improved overall survival for large B-cell lymphoma, and attained high rates of cancer remission for other hematologic malignancies such as acute lymphoblastic leukemia, follicular lymphoma, and mantle cell lymphoma. Recently approved T lymphocyte-based therapies demonstrated the potential for improved outcomes in solid tumor malignancies.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/therapeutic use
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/mortality
- Hematologic Neoplasms/therapy
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick
| |
Collapse
|
21
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
22
|
Zia K, Nur-E-Alam M, Ahmad A, Ul-Haq Z. Taming the cytokine storm: small molecule inhibitors targeting IL-6/IL-6α receptor. Mol Divers 2024; 28:4151-4165. [PMID: 38366102 DOI: 10.1007/s11030-023-10805-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/28/2023] [Indexed: 02/18/2024]
Abstract
Given the increasing effectiveness of immune-based therapies, management of their associated toxicities is of utmost importance. Cytokine release syndrome (CRS), characterized by elevated levels of cytokine, poses a significant challenge following the administration of antibodies and CAR-T cell therapies. CRS also contributes to multiple organ dysfunction in severe viral infections, notably in COVID-19. Given the pivotal role of IL-6 cytokine in initiating CRS, it has been considered a most potential therapeutic target to mitigate hyperactivated immune responses. While monoclonal antibodies of IL-6 show promise in mitigating cytokine storm, concerns about immunotoxicity persist, and small molecule IL-6 antagonists remain unavailable. The present study employed sophisticated computational techniques to identify potential hit compounds as IL-6 inhibitors, with the aim of inhibiting IL-6/IL-6R protein-protein interactions. Through ligand-based pharmacophore mapping and shape similarity in combination with docking-based screening, we identified nine hit compounds with diverse chemical scaffolds as potential binders of IL-6. Further, the MD simulation of 300 ns of five virtual hits in a complex with IL-6 was employed to study the dynamic behavior. To provide a more precise prediction, binding free energy was also estimated. The identified compounds persistently interacted with the residues lining the binding site of the IL-6 protein. These compounds displayed low binding energy during MMPBSA calculations, substantiating their strong association with IL-6. This study suggests promising scaffolds as potential inhibitors of IL-6/IL-6R protein-protein interactions and provides direction for lead optimization.
Collapse
Affiliation(s)
- Komal Zia
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Nur-E-Alam
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box. 2457, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Aftab Ahmad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, 92618, USA
| | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
23
|
Bazarbachi AH, Mapara MY. Cytokines in hematopoietic cell transplantation and related cellular therapies. Best Pract Res Clin Haematol 2024; 37:101600. [PMID: 40074514 DOI: 10.1016/j.beha.2025.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
Cytokines are pleiotropic molecules involved in hematopoiesis, immune responses, infections, and inflammation. They play critical roles in hematopoietic cell transplantation (HCT) and immune effector cell (IEC) therapies, mediating both therapeutic and adverse effects. Thus, cytokines contribute to the immunopathology of graft-versus-host disease (GVHD), cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS). This review examines cytokine functions in these contexts, their influence on engraftment and immune recovery post-transplantation, and their role in mediating toxicities. We focus on current and potential uses of cytokines to enhance engraftment and potentiate IEC therapies, as well as strategies to mitigate cytokine-mediated complications using cytokine blockers (e.g., tocilizumab, anakinra) and JAK inhibitors (e.g., ruxolitinib). We discuss new insights into GVHD physiology that have led to novel treatments, such as CSF1R blockade, which is effective in refractory chronic GVHD.
Collapse
Affiliation(s)
- Abdul-Hamid Bazarbachi
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Markus Y Mapara
- Division of Hematology/Oncology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA; Columbia Center for Translational Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York City, USA.
| |
Collapse
|
24
|
Russo E, Gambella M, Raiola AM, Beltrametti E, Zanetti V, Chirco G, Viazzi F, Angelucci E, Esposito P. Acute kidney injury in hematological patients treated with CAR-T cells: risk factors, clinical presentation and impact on outcomes. Sci Rep 2024; 14:26886. [PMID: 39506012 PMCID: PMC11542077 DOI: 10.1038/s41598-024-77720-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of hematologic malignancies, yet it carries significant risks, including acute kidney injury (AKI). In this study, we investigated the risk factors and clinical impact of AKI in patients undergoing CAR-T cell therapy. This retrospective study involved hematologic patients treated with CAR-T therapy. Clinical and laboratory data were collected, and clinical outcomes were monitored during follow-up after CAR-T infusion. AKI was defined according to KDIGO criteria. The outcome measures included early mortality, overall survival (OS), and disease-free survival (DFS). Among the 48 patients analyzed, 14 (29%) developed AKI, with a mean onset of 6 days after CAR-T infusion. The risk of AKI was associated with baseline performance status (OR 8.65, IC95% 6.2-12, p = 0.032) and the development of severe cytokine release syndrome post-therapy (OR 16.4 95%CI 1.9-138.5, p = 0.01). Patients with AKI more frequently required intensive care. Furthermore, severe AKI was independently associated with worse clinical outcomes, including reduced OS and DFS (HR 18.2, 95%CI 2.6-27.3, p = 0.003). Additionally, patients who developed AKI post-CAR-T therapy were more likely to progress to chronic kidney disease during follow-up. In conclusion, frail patients undergoing CAR-T therapy are at an increased risk of developing AKI, which can significantly affect both short- and long-term outcomes. Preventive strategies and early recognition of AKI are essential in these patients.
Collapse
Affiliation(s)
- Elisa Russo
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Massimiliano Gambella
- Unit of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Anna Maria Raiola
- Unit of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Elena Beltrametti
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | - Valentina Zanetti
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | - Giuseppe Chirco
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Emanuele Angelucci
- Unit of Hematology and Cellular Therapy, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pasquale Esposito
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy.
- Unit of Nephrology, Dialysis and Transplantation, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
25
|
Ai K, Liu B, Chen X, Huang C, Yang L, Zhang W, Weng J, Du X, Wu K, Lai P. Optimizing CAR-T cell therapy for solid tumors: current challenges and potential strategies. J Hematol Oncol 2024; 17:105. [PMID: 39501358 PMCID: PMC11539560 DOI: 10.1186/s13045-024-01625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy demonstrates substantial efficacy in various hematological malignancies. However, its application in solid tumors is still limited. Clinical studies report suboptimal outcomes such as reduced cytotoxicity of CAR-T cells and tumor evasion, underscoring the need to address the challenges of sliding cytotoxicity in CAR-T cells. Despite improvements from fourth and next-generation CAR-T cells, new challenges include systemic toxicity from continuously secreted proteins, low productivity, and elevated costs. Recent research targets genetic modifications to boost killing potential, metabolic interventions to hinder tumor progression, and diverse combination strategies to enhance CAR-T cell therapy. Efforts to reduce the duration and cost of CAR-T cell therapy include developing allogenic and in-vivo approaches, promising significant future advancements. Concurrently, innovative technologies and platforms enhance the potential of CAR-T cell therapy to overcome limitations in treating solid tumors. This review explores strategies to optimize CAR-T cell therapies for solid tumors, focusing on enhancing cytotoxicity and overcoming application restrictions. We summarize recent advances in T cell subset selection, CAR-T structural modifications, infiltration enhancement, genetic and metabolic interventions, production optimization, and the integration of novel technologies, presenting therapeutic approaches that could improve CAR-T cell therapy's efficacy and applicability in solid tumors.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Chuxin Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Liping Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Weiya Zhang
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, The Netherlands
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
26
|
Alb M, Reiche K, Rade M, Sewald K, Loskill P, Cipriano M, Maulana TI, van der Meer AD, Weener HJ, Clerbaux LA, Fogal B, Patel N, Adkins K, Lund E, Perkins E, Cooper C, van den Brulle J, Morgan H, Rubic-Schneider T, Ling H, DiPetrillo K, Moggs J, Köhl U, Hudecek M. Novel strategies to assess cytokine release mediated by chimeric antigen receptor T cells based on the adverse outcome pathway concept. J Immunotoxicol 2024; 21:S13-S28. [PMID: 39655500 DOI: 10.1080/1547691x.2024.2345158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 12/18/2024] Open
Abstract
The success of cellular immunotherapies such as chimeric antigen receptor (CAR) T cell therapy has led to their implementation as a revolutionary treatment option for cancer patients. However, the safe translation of such novel immunotherapies, from non-clinical assessment to first-in-human studies is still hampered by the lack of suitable in vitro and in vivo models recapitulating the complexity of the human immune system. Additionally, using cells derived from human healthy volunteers in such test systems may not adequately reflect the altered state of the patient's immune system thus potentially underestimating the risk of life-threatening conditions, such as cytokine release syndrome (CRS) following CAR T cell therapy. The IMI2/EU project imSAVAR (immune safety avatar: non-clinical mimicking of the immune system effects of immunomodulatory therapies) aims at creating a platform for novel tools and models for enhanced non-clinical prediction of possible adverse events associated with immunomodulatory therapies. This platform shall in the future guide early non-clinical safety assessment of novel immune therapeutics thereby also reducing the costs of their development. Therefore, we review current opportunities and challenges associated with non-clinical in vitro and in vivo models for the safety assessment of CAR T cell therapy ranging from organ-on-chip models up to advanced biomarker screening.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Cytokine Release Syndrome/immunology
- Cytokine Release Syndrome/therapy
- Cytokine Release Syndrome/diagnosis
- Animals
- T-Lymphocytes/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Cytokines/metabolism
- Cytokines/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Miriam Alb
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Kristin Reiche
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Michael Rade
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Katherina Sewald
- Fraunhofer-Institut für Toxikologie und Experimentelle Medizin ITEM, Hannover, Germany
| | - Peter Loskill
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madalena Cipriano
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
| | - Tengku Ibrahim Maulana
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for In vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen
| | | | - Huub J Weener
- Applied Stem Cell Technologies, University of Twente, Enschede, the Netherlands
| | | | - Birgit Fogal
- Department on Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceutical, Inc, Ridgefield, CT, USA
| | - Nirav Patel
- Preclinical Safety, Research and Development, Sanofi-Aventis US, LLC, Cambridge, MA, USA
| | - Karissa Adkins
- Preclinical Safety, Research and Development, Sanofi-Aventis US, LLC, Cambridge, MA, USA
| | - Emma Lund
- Labcorp Drug Development Inc, Derbyshire, UK
| | | | | | | | - Hannah Morgan
- Novartis Biomedical Research, Novartis Campus, Basel, Switzerland
| | | | - Hui Ling
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | - Jonathan Moggs
- Novartis Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Ulrike Köhl
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Lehrstuhl für Zelluläre Immuntherapie, Universitätsklinikum Würzburg, Würzburg, Germany
- Fraunhofer-Institut für Zelltherapie und Immunologie IZI, Leipzig, Germany
| |
Collapse
|
27
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
28
|
Awaya T, Hara H, Moroi M. Cytokine Storms and Anaphylaxis Following COVID-19 mRNA-LNP Vaccination: Mechanisms and Therapeutic Approaches. Diseases 2024; 12:231. [PMID: 39452475 PMCID: PMC11507195 DOI: 10.3390/diseases12100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Acute adverse reactions to COVID-19 mRNA vaccines are a major concern, as autopsy reports indicate that deaths most commonly occur on the same day of or one day following vaccination. These acute reactions may be due to cytokine storms triggered by lipid nanoparticles (LNPs) and anaphylaxis induced by polyethene glycol (PEG), both of which are vital constituents of the mRNA-LNP vaccines. Kounis syndrome, in which anaphylaxis triggers acute coronary syndrome (ACS), may also be responsible for these cardiovascular events. Furthermore, COVID-19 mRNA-LNP vaccines encompass adjuvants, such as LNPs, which trigger inflammatory cytokines, including interleukin (IL)-1β and IL-6. These vaccines also produce spike proteins which facilitate the release of inflammatory cytokines. Apart from this, histamine released from mast cells during allergic reactions plays a critical role in IL-6 secretion, which intensifies inflammatory responses. In light of these events, early reduction of IL-1β and IL-6 is imperative for managing post-vaccine cytokine storms, ACS, and myocarditis. Corticosteroids can restrict inflammatory cytokines and mitigate allergic responses, while colchicine, known for its IL-1β-reducing capabilities, could also prove effective. The anti-IL-6 antibody tocilizumab also displays promising treatment of cytokine release syndrome. Aside from its significance for treating anaphylaxis, epinephrine can induce coronary artery spasms and myocardial ischemia in Kounis syndrome, making accurate diagnosis essential. The upcoming self-amplifying COVID-19 mRNA-LNP vaccines also contain LNPs. Given that these vaccines can cause a cytokine storm and allergic reactions post vaccination, it is crucial to consider corticosteroids and measure IL-6 levels for effective management.
Collapse
Affiliation(s)
- Toru Awaya
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Hidehiko Hara
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, 2-22-36, Ohashi Meguro-ku, Tokyo 153-8515, Japan
- Department of Internal Medicine, Misato Central General Hospital, Saitama 341-8526, Japan
| |
Collapse
|
29
|
Tang JP, Lafeuille P, Socolov A, Diamond SS, Aptekar J, Moore TB, Nie EH, Hanudel MR, Nowicki TS. Hypophosphatemia Correction Reduces ICANS Incidence and Duration in CAR T-cell Therapy: A Pooled Clinical Trial Analysis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2589-2597. [PMID: 39269033 PMCID: PMC11448391 DOI: 10.1158/2767-9764.crc-24-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/31/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
A common complication of chimeric antigen receptor (CAR) T-cell therapy is immune effector cell-associated neurotoxicity syndrome (ICANS), which presents with encephalopathy, aphasia, inattention, somnolence, seizures, weakness, or cerebral edema. Despite its significant morbidity, there are currently no effective targeted treatments. Given the clinical similarities between ICANS and the neurological manifestations of acute hypophosphatemia, we retrospectively reviewed 499 patients treated with CD19-targeted CAR T-cell therapy across multiple clinical trials between 2015 and 2020. In addition to clinical toxicities experienced by the patients, we also interrogated the impact of serum electrolyte data and repletion of corresponding electrolyte deficiencies with ICANS incidence, severity, and duration. Hypophosphatemia was a common occurrence in CAR T-cell recipients and the only electrolyte derangement associated with a significantly higher cumulative incidence of ICANS. Moreover, phosphorus repletion in patients with hypophosphatemia was associated with significantly decreased ICANS incidence and duration. Hypophosphatemia was uniquely associated with encephalopathy neurological adverse events, which also showed the strongest positive correlation with both ICANS and cytokine release syndrome severity. These findings suggest that serum phosphorus could be a reliable biomarker for ICANS, and expeditious, goal-directed phosphorus repletion in response to serum hypophosphatemia could be a safe, inexpensive, and widely available intervention for such patients. SIGNIFICANCE Herein we show that phosphorus repletion in patients with hypophosphatemia receiving anti-CD19 chimeric antigen receptor T-cell therapeutics was associated with significantly decreased immune effector cell-associated neurotoxicity syndrome (ICANS) incidence and symptom duration. Given the significant morbidity associated with ICANS and lack of targeted interventions, hypophosphatemia may serve as both a useful biomarker and an inexpensive intervention for ICANS.
Collapse
Affiliation(s)
- Jack Pengfei Tang
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California.
| | | | | | | | - Jacob Aptekar
- Medidata, a Dassault Systèmes Company, New York, New York.
| | - Theodore B. Moore
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California.
| | - Esther H. Nie
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California.
| | - Mark R. Hanudel
- Division of Pediatric Nephrology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California.
| | - Theodore S. Nowicki
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California Los Angeles, Los Angeles, California.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, California.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California.
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
30
|
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, Au L. Bispecific antibodies: advancing precision oncology. Trends Cancer 2024; 10:893-919. [PMID: 39214782 DOI: 10.1016/j.trecan.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered molecules designed to target two different epitopes or antigens. The mechanism of action is determined by the bsAb molecular targets and structure (or format), which can be manipulated to create variable and novel functionalities, including linking immune cells with tumor cells, or dual signaling pathway blockade. Several bsAbs have already changed the treatment landscape of hematological malignancies and select solid cancers. However, the mechanisms of resistance to these agents are understudied and the management of toxicities remains challenging. Herein, we review the principles in bsAb engineering, current understanding of mechanisms of action and resistance, data for clinical application, and provide a perspective on ongoing challenges and future developments in this field.
Collapse
Affiliation(s)
- Mercedes Herrera
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Giulia Pretelli
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jayesh Desai
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Elena Garralda
- Department of Medical Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Thiago M Steiner
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Lewis Au
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Xu F, Ni Q, Gong N, Xia B, Zhang J, Guo W, Hu Z, Li J, Liang XJ. Delivery Systems Developed for Treatment Combinations to Improve Adoptive Cell Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407525. [PMID: 39165065 DOI: 10.1002/adma.202407525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Indexed: 08/22/2024]
Abstract
Adoptive cell therapy (ACT) has shown great success in the clinic for treating hematologic malignancies. However, solid tumor treatment with ACT monotherapy is still challenging, owing to insufficient expansion and rapid exhaustion of adoptive cells, tumor antigen downregulation/loss, and dense tumor extracellular matrix. Delivery strategies for combination cell therapy have great potential to overcome these hurdles. The delivery of vaccines, immune checkpoint inhibitors, cytokines, chemotherapeutics, and photothermal reagents in combination with adoptive cells, have been shown to improve the expansion/activation, decrease exhaustion, and promote the penetration of adoptive cells in solid tumors. Moreover, the delivery of nucleic acids to engineer immune cells directly in vivo holds promise to overcome many of the hurdles associated with the complex ex vivo cell engineering strategies. Here, these research advance, as well as the opportunities and challenges for integrating delivery technologies into cell therapy s are discussed, and the outlook for these emerging areas are criticlly analyzed.
Collapse
Affiliation(s)
- Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiankun Ni
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Ningqiang Gong
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Weisheng Guo
- College of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhongbo Hu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, New Cornerstone Science Institute, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
32
|
Liu R, Zhao H, Lu Z, Zeng L, Shi H, Wu L, Wang J, Zhong F, Liu C, Zhang Y, Qiu Z. Toxicity profiles of immune checkpoint inhibitors in nervous system cancer: a comprehensive disproportionality analysis using FDA adverse event reporting system. Clin Exp Med 2024; 24:216. [PMID: 39249163 PMCID: PMC11383843 DOI: 10.1007/s10238-024-01403-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/12/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Immune-related adverse events (irAEs) always occur during treatment with immune checkpoint inhibitors (ICIs). Patients with nervous system cancer (NSC) may gain clinical benefit from ICIs, but irAEs in NSC patients are rarely examined. Therefore, our study systematically summarized reports of irAEs in NSC. METHODS We obtained information from the FDA adverse event reporting system from the first quarter (Q1) of 2013 to the fourth quarter (Q4) of 2022. We examined use of a combination of ICIs and chemotherapy (ICI_Chemo) or chemotherapy only (ICI_Chemo) for patients with NSC. Multiple disproportionality analyses were applied to assess irAEs. Multiomics data from the gene expression omnibus (GEO) database were analyzed to explore potential molecular mechanisms associated with irAEs in NSC patients. RESULTS Fourteen irAEs were identified in 8,357 NSC patients after removing duplicates; the top five events were seizure, confused state, encephalopathy, muscular weakness and gait disturbance. Older patients were more likely to develop irAEs than were younger patients. From the start of ICIs_Chemo to irAE occurrence, there was a significant difference in the time to onset of irAEs between age groups. irAEs may occur via mechanisms involving the inflammatory response, secretion of inflammatory mediators, and aberrant activation of pathologic pathways. CONCLUSIONS This study helps to characterize irAEs in NSC patients treated with ICIs. We combined GEO database analysis to explore the potential molecular mechanisms of irAEs. The results of this study provide a basis for improving the toxic effects of ICIs in NSC patients.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hui Zhao
- Department of Sleep Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Zenghong Lu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lingshuai Zeng
- Major of Rehabilitation, Faculty of Medicine, Jinggangshan University, Ji'an, Jiangxi, China
| | - Huaqiu Shi
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longqiu Wu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangjun Zhong
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chuanjian Liu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yu Zhang
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Zhengang Qiu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
33
|
Biery DN, Turicek DP, Diorio C, Schroeder BA, Shah NN. Need for standardization of cytokine profiling in CAR T cell therapy. Mol Ther 2024; 32:2979-2983. [PMID: 38532629 PMCID: PMC11403224 DOI: 10.1016/j.ymthe.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024] Open
Abstract
With expansion of chimeric antigen receptor (CAR) T cell therapy and broader utilization of anti-cytokine directed therapeutics for toxicity mitigation, the routine assessment of cytokines may enhance understanding of toxicity profiles, guide therapeutic interventions, and facilitate cross-trial comparisons. As specific cytokine elevations can correlate with and provide insights into CAR T cell toxicity, mitigation strategies, and response, we explored the reporting of cytokine detection methods and assessed for the correlation of cytokines to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) across clinical trials. In this analysis, we reviewed 21 clinical trials across 60 manuscripts that featured a US Food and Drug Administration-approved CAR T cell construct or one of its predecessors. We highlight substantial variability and limited reporting of cytokine measurement platforms and panels used across CAR T cell clinical trials. Specifically, across 60 publications, 28 (46.7%) did not report any cytokine data, representing 6 of 21 (28.6%) clinical trials. In the 15 trials reporting cytokine data, at least 4 different platforms were used. Furthermore, correlation of cytokines with ICANS, CRS, and CRS severity was limited. Considering the fundamental role of cytokines in CAR T cell toxicity, our manuscript supports the need to establish standardization of cytokine measurements as a key biomarker essential to improving outcomes of CAR T cell therapy.
Collapse
Affiliation(s)
- D Nathan Biery
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA; George Washington University School of Medicine, Washington, DC, USA
| | - David P Turicek
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA; Division of Biology and Biomedical Sciences, Washington University, St. Louis, MO, USA
| | - Caroline Diorio
- Division of Oncology, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brett A Schroeder
- Department of Hematology and Medical Oncology, CCR, NCI, NIH, Bethesda, MD, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD, USA.
| |
Collapse
|
34
|
Yang Y, Luo K, Xu G. Acute kidney injury following chimeric antigen receptor T-cell therapy: Epidemiology, mechanism and prognosis. Clin Immunol 2024; 266:110311. [PMID: 38996858 DOI: 10.1016/j.clim.2024.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy is a promising treatment for hematologic tumors, and adverse events of acute kidney injury (AKI) have been reported. However, its incidence, clinical characteristics, and prognosis remained unclear. We searched PubMed, EMBASE, and Web of Science for study about AKI after CAR-T therapy, a total of 15 studies, comprising 694 patients, were included. Among the 694 patients, 154 (22%) developed AKI, of which 89 (57.8%) were in stage 1, 59 (38.3%) were in stage 2 or 3, and 6 (3.9%) were not reported. Cytokine release syndrome is considered to be the most common cause of AKI. Of the 154 AKI patients, only 16 (10.4%) received renal replacement therapy, most AKI recovered renal function after symptomatic treatment. Although the occurrence of AKI after CAR-T therapy is rare and mostly mild, active knowledge of its pathogenesis, timely diagnosis and treatment are necessary for clinicians.
Collapse
Affiliation(s)
- Yang Yang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China; Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, PR China
| | - Kaiping Luo
- Department of Nephrology, Ganzhou People's Hospital, Ganzhou, PR China.
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, PR China.
| |
Collapse
|
35
|
Ravandi F, Subklewe M, Walter RB, Vachhani P, Ossenkoppele G, Buecklein V, Döhner H, Jongen-Lavrencic M, Baldus CD, Fransecky L, Pardee TS, Kantarjian H, Yen PK, Mukundan L, Panwar B, Yago MR, Agarwal S, Khaldoyanidi SK, Stein A. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: a phase 1a dose-escalation study. Leuk Lymphoma 2024; 65:1281-1291. [PMID: 38712673 DOI: 10.1080/10428194.2024.2346755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/08/2024]
Abstract
AMG 330, a bispecific T-cell engager (BiTE®) that binds CD33 and CD3 on T cells facilitates T-cell-mediated cytotoxicity against CD33+ cells. This first-in-human, open-label, dose-escalation study evaluated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of AMG 330 in adults with relapsed/refractory acute myeloid leukemia (R/R AML). Amongst 77 patients treated with AMG 330 (0.5 µg/day-1.6 mg/day) on 14-day or 28-day cycles, maximum tolerated dose was not reached; median duration of treatment was 29 days. The most frequent treatment-related adverse events were cytokine release syndrome (CRS; 78%) and rash (30%); 10% of patients experienced grade 3/4 CRS. CRS was mitigated with stepwise dosing of AMG 330, prophylactic dexamethasone, and early treatment with tocilizumab. Among 60 evaluable patients, eight achieved complete remission or morphologic leukemia-free state; of the 52 non-responders, 37% had ≥50% reduction in AML bone marrow blasts. AMG 330 is a promising CD33-targeted therapeutic strategy for R/R AML.
Collapse
MESH Headings
- Humans
- Male
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Female
- Middle Aged
- Adult
- Aged
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
- Treatment Outcome
- Young Adult
- Maximum Tolerated Dose
- Drug Resistance, Neoplasm/drug effects
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Recurrence
- Aged, 80 and over
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Dose-Response Relationship, Drug
- Cytokine Release Syndrome/etiology
Collapse
Affiliation(s)
- Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Research, Gene Center, LMU Munich, Munich, Germany
| | - Roland B Walter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Pankit Vachhani
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Veit Buecklein
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
- Laboratory for Translational Research, Gene Center, LMU Munich, Munich, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Mojca Jongen-Lavrencic
- Department of Hematology, Erasmus University Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Claudia D Baldus
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Lars Fransecky
- Department of Internal Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Timothy S Pardee
- Department of Internal Medicine, Section on Hematology and Oncology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | - Anthony Stein
- Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
36
|
Kuruvilla D, Huynh T, Nester M, Chose C, Zervoudakis G, Letson GD, Joyce DM, Binitie OT, Figura NB, Costello JR, Freeman CL, Lazarides AL. Management of bone disease with concurrent chimeric antigen receptor T-cell therapy for multiple myeloma. Crit Rev Oncol Hematol 2024; 201:104429. [PMID: 38942219 DOI: 10.1016/j.critrevonc.2024.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
In the intricate landscape of multiple myeloma, a hematologic malignancy of plasma cells, bone disease presents a pivotal and often debilitating complication. The emergence of Chimeric Antigen Receptor T-cell (CAR-T) therapy has marked a pivotal shift in the therapeutic landscape, offering novel avenues for the management of MM, particularly for those with relapsed or refractory disease. This innovative treatment modality not only targets malignant cells with precision but also influences the bone microenvironment, presenting both challenges and opportunities in patient care. In this comprehensive review, we aim to examine the multifaceted aspects of bone disease in patients with multiple myeloma and concurrent CAR-T therapy, highlighting its clinical ramifications and the latest advancements in diagnostic modalities and therapeutic interventions. The article aims to synthesize current understanding of the interplay between myeloma cells, CAR-T cells, and the bone microenvironment in the context of current treatment strategies in this challenging and unique patient population.
Collapse
Affiliation(s)
- Davis Kuruvilla
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | - Thien Huynh
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | - Matthew Nester
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | - Chloe Chose
- University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
| | | | - G Douglas Letson
- Department of Sarcoma, Moffitt Cancer Center, Tampa, FL, United States.
| | - David M Joyce
- Department of Sarcoma, Moffitt Cancer Center, Tampa, FL, United States.
| | - Odion T Binitie
- Department of Sarcoma, Moffitt Cancer Center, Tampa, FL, United States.
| | - Nicholas B Figura
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States.
| | - James R Costello
- Department of Diagnostic Imaging and Intervention, Moffitt Cancer Center, Tampa, FL, United States.
| | - Ciara L Freeman
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, United States.
| | | |
Collapse
|
37
|
Perna F, Parekh S, Diorio C, Smith M, Subklewe M, Mehta R, Locke FL, Shah NN. CAR T-cell toxicities: from bedside to bench, how novel toxicities inform laboratory investigations. Blood Adv 2024; 8:4348-4358. [PMID: 38861351 PMCID: PMC11375260 DOI: 10.1182/bloodadvances.2024013044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Multiple chimeric antigen receptor (CAR) T-cell therapies are US Food and Drug Administration-approved, and several are under development. Although effective for some cancers, toxicities remain a limitation. The most common toxicities, that is, cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome, are well described. With increasing utilization, providers worldwide are reporting other emergent and often complicated toxicities. Given the evolving toxicity profiles and urgent need to catalog these emerging and emergent CAR T-cell toxicities and describe management approaches, the American Society of Hematology Subcommittee on Emerging Gene and Cell Therapies organized the first scientific workshop on CAR T-cell toxicities during the annual society meeting. The workshop functioned to (1) aggregate reports of CAR T-cell emergent toxicities, including movement disorders after B-cell maturation antigen CAR T cell, coagulation abnormalities, and prolonged cytopenia; (2) disseminate bedside-to-bench efforts elucidating pathophysiological mechanisms of CAR T-cell toxicities, including the intestinal microbiota and systemic immune dysregulation; and (3) highlight gaps in the availability of clinical tests, such as cytokine measurements, which could be used to expand our knowledge around the monitoring of toxicities. Key themes emerged. First, although clinical manifestations may develop before the pathophysiologic mechanisms are understood, they must be studied to aid in the detection and prevention of such toxicities. Second, systemic immune dysregulation appears to be central to these emergent toxicities, and research is needed to elucidate the links between tumors, CAR T cells, and microbiota. Finally, there was a consensus around the urgency to create a repository to capture emergent CAR T-cell toxicities and the real-world management.
Collapse
Affiliation(s)
- Fabiana Perna
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Samir Parekh
- Division of Hematology and Medical Oncology, The Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline Diorio
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Melody Smith
- Department of Medicine, Stanford University, Stanford, CA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rakesh Mehta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Frederick L. Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
38
|
Li K, Cai J, Jiang Z, Meng Q, Meng Z, Xiao H, Chen G, Qiao C, Luo L, Yu J, Li X, Wei Y, Li H, Liu C, Shen B, Wang J, Feng J. Unveiling novel insights into human IL-6 - IL-6R interaction sites through 3D computer-guided docking and systematic site mutagenesis. Sci Rep 2024; 14:18293. [PMID: 39112658 PMCID: PMC11306327 DOI: 10.1038/s41598-024-69429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The cytokine interleukin-6 (IL-6) plays a crucial role in autoimmune and inflammatory diseases. Understanding the precise mechanism of IL-6 interaction at the amino acid level is essential to develop IL-6-inhibiting compounds. In this study, we employed computer-guided drug design tools to predict the key residues that are involved in the interaction between IL-6 and its receptor IL-6R. Subsequently, we generated IL-6 mutants and evaluated their binding affinity to IL-6R and the IL-6R - gp130 complex, as well as monitoring their biological activities. Our findings revealed that the R167A mutant exhibited increased affinity for IL-6R, leading to enhanced binding to IL-6R - gp130 complex and subsequently elevated intracellular phosphorylation of STAT3 in effector cells. On the other hand, although E171A reduced its affinity for IL-6R, it displayed stronger binding to the IL-6R - gp130 complex, thereby enhancing its biological activity. Furthermore, we identified the importance of R178 and R181 for the precise recognition of IL-6 by IL-6R. Mutants R181A/V failed to bind to IL-6R, while maintaining an affinity for the IL-6 - gp130 complex. Additionally, deletion of the D helix resulted in complete loss of IL-6 binding affinity for IL-6R. Overall, this study provides valuable insights into the binding mechanism of IL-6 and establishes a solid foundation for future design of novel IL-6 inhibitors.
Collapse
Affiliation(s)
- Kaitong Li
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Junyu Cai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Zhiyang Jiang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qingbin Meng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Zhao Meng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - He Xiao
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guojiang Chen
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chunxia Qiao
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Longlong Luo
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jijun Yu
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xinying Li
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Chenghua Liu
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Beifen Shen
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jing Wang
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jiannan Feng
- Laboratory for Genetic Engineering of Antibodies and Functional Proteins, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
39
|
Al Hadidi S, Heslop HE, Brenner MK, Suzuki M. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies. Mol Ther 2024; 32:2444-2460. [PMID: 38822527 PMCID: PMC11405165 DOI: 10.1016/j.ymthe.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control. This review explores the mechanisms underlying autologous CAR-T therapies and BsAbs, focusing on their clinical application in multiple myeloma, ALL, and non-Hodgkin lymphoma. We provide comprehensive insights into their individual efficacy, limitations concerning broad application, and the potential of combination therapies. These upcoming strategies aim to propel the field forward, paving the way for safer and more effective therapeutic interventions in hematological malignancies.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/therapeutic use
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Combined Modality Therapy
Collapse
Affiliation(s)
- Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
40
|
Wu KL, Montalvo MJ, Menon PS, Roysam B, Varadarajan N. PostFocus: automated selective post-acquisition high-throughput focus restoration using diffusion model for label-free time-lapse microscopy. Bioinformatics 2024; 40:btae467. [PMID: 39042160 PMCID: PMC11520405 DOI: 10.1093/bioinformatics/btae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 07/24/2024] Open
Abstract
MOTIVATION High-throughput time-lapse imaging is a fundamental tool for efficient living cell profiling at single-cell resolution. Label-free phase-contrast video microscopy enables noninvasive, nontoxic, and long-term imaging. The tradeoff between speed and throughput, however, implies that despite the state-of-the-art autofocusing algorithms, out-of-focus cells are unavoidable due to the migratory nature of immune cells (velocities >10 μm/min). Here, we propose PostFocus to (i) identify out-of-focus images within time-lapse sequences with a classifier, and (ii) deploy a de-noising diffusion probabilistic model to yield reliable in-focus images. RESULTS De-noising diffusion probabilistic model outperformed deep discriminative models with a superior performance on the whole image and around cell boundaries. In addition, PostFocus improves the accuracy of image analysis (cell and contact detection) and the yield of usable videos. AVAILABILITY AND IMPLEMENTATION Open-source code and sample data are available at: https://github.com/kwu14victor/PostFocus.
Collapse
Affiliation(s)
- Kwan-Ling Wu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Melisa J Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Prashant S Menon
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, United States
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, United States
| |
Collapse
|
41
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
42
|
Xi X, Yan X, Chen Y, Li W, Dong J, Ou X, Tan H. Cytokine release syndrome associated with immune checkpoint inhibitors: a pharmacovigilance study based on spontaneous reports in FAERS. Expert Opin Drug Saf 2024:1-8. [PMID: 39051882 DOI: 10.1080/14740338.2024.2385489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To describe cytokine release syndrome (CRS) associated with immune checkpoint inhibitors (ICIs) reported in the FDA Adverse Event Reporting System (FAERS). METHODS We obtained ICIs adverse event (AE) reports from January 2011 to September 2023 from the FAERS database. The preferred term (PT) 'cytokine release syndrome' from the Medical Dictionary for Regulatory Activities (MedDRA) 26.1 was used to identify cases with ICIs-related CRS. The reporting odds ratio (ROR) of the disproportionality method was performed to quantify the association between CRS and ICIs treatment strategy. RESULTS Three hundred and ninety-five cases were gathered. 42.03% of the patients were aged 18 to 65. Male patients outnumbered female patients (53.67% vs. 34.94%). The prevalent potential cancer types were lung cancer (33.42%) and skin cancer (20.51%). Japanese were responsible for the majority of ICIs-related CRS cases (176 cases). The combination of nivolumab and ipilimumab resulted in the most CRS cases (138 cases), and the ICIs combination therapy had the highest ROR signal value (ROR = 11.95 [10.14-14.06]). ICIs-related CRS had a median time to onset of 14 days (interquartile range [IQR] 7-43.25). CONCLUSIONS ICIs-related CRS is an increasingly important immune-related AE. Our study provided helpful information to help medical professionals learn more about ICIs-related CRS.
Collapse
Affiliation(s)
- Xin Xi
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xida Yan
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Ying Chen
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Wenjun Li
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Dong
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Ou
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Haowen Tan
- Office of Good Clinical Practice, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| |
Collapse
|
43
|
Chung YS, Lam CY, Tan PH, Tsang HF, Wong SCC. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int J Mol Sci 2024; 25:8155. [PMID: 39125722 PMCID: PMC11312261 DOI: 10.3390/ijms25158155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
At present, COVID-19 remains a public health concern due to the ongoing evolution of SARS-CoV-2 and its prevalence in particular countries. This paper provides an updated overview of the epidemiology and pathogenesis of COVID-19, with a focus on the emergence of SARS-CoV-2 variants and the phenomenon known as 'long COVID'. Meanwhile, diagnostic and detection advances will be mentioned. Though many inventions have been made to combat the COVID-19 pandemic, some outstanding ones include multiplex RT-PCR, which can be used for accurate diagnosis of SARS-CoV-2 infection. ELISA-based antigen tests also appear to be potential diagnostic tools to be available in the future. This paper also discusses current treatments, vaccination strategies, as well as emerging cell-based therapies for SARS-CoV-2 infection. The ongoing evolution of SARS-CoV-2 underscores the necessity for us to continuously update scientific understanding and treatments for it.
Collapse
Affiliation(s)
| | | | | | | | - Sze-Chuen Cesar Wong
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (Y.-S.C.); (C.-Y.L.); (P.-H.T.); (H.-F.T.)
| |
Collapse
|
44
|
Marschollek P, Liszka K, Mielcarek-Siedziuk M, Dachowska-Kałwak I, Haze N, Panasiuk A, Olejnik I, Jarmoliński T, Frączkiewicz J, Gamrot Z, Radajewska A, Bil-Lula I, Kałwak K. The Kinetics of Inflammation-Related Proteins and Cytokines in Children Undergoing CAR-T Cell Therapy-Are They Biomarkers of Therapy-Related Toxicities? Biomedicines 2024; 12:1622. [PMID: 39062195 PMCID: PMC11275041 DOI: 10.3390/biomedicines12071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
CD19-targeted CAR-T cell therapy has revolutionized the treatment of relapsed/refractory (r/r) pre-B acute lymphoblastic leukemia (ALL). However, it can be associated with acute toxicities related to immune activation, particularly cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cytokines released from activated immune cells play a key role in their pathophysiology. This study was a prospective analysis of proinflammatory proteins and cytokines in children treated with tisagenlecleucel. Serial measurements of C-reactive protein, fibrinogen, ferritin, IL-6, IL-8, IL-10, IFNγ, and TNFα were taken before treatment and on consecutive days after infusion. The incidence of CRS was 77.8%, and the incidence of ICANS was 11.1%. No CRS of grade ≥ 3 was observed. All complications occurred within 14 days following infusion. Higher biomarker concentrations were found in children with CRS grade ≥ 2. Their levels were correlated with disease burden and CAR-T cell dose. While cytokine release syndrome was common, most cases were mild, primarily due to low disease burden before lymphodepleting chemotherapy (LDC). ICANS occurred less frequently but exhibited various clinical courses. None of the toxicities were fatal. All of the analyzed biomarkers rose within 14 days after CAR-T infusion, with most reaching their maximum around the third day following the procedure.
Collapse
Affiliation(s)
- Paweł Marschollek
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Karolina Liszka
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Monika Mielcarek-Siedziuk
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Iwona Dachowska-Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Natalia Haze
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Anna Panasiuk
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Igor Olejnik
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Tomasz Jarmoliński
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Jowita Frączkiewicz
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Zuzanna Gamrot
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| | - Anna Radajewska
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (I.B.-L.)
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Hematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (A.R.); (I.B.-L.)
| | - Krzysztof Kałwak
- Department of Pediatric Bone Marrow Transplantation, Oncology, and Hematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (K.L.); (M.M.-S.); (I.D.-K.); (N.H.); (A.P.); (I.O.); (T.J.); (J.F.); (Z.G.)
| |
Collapse
|
45
|
Rousseau A, Zafrani L. Acute kidney injury after CAR-T cell infusion. Bull Cancer 2024; 111:748-753. [PMID: 36220698 DOI: 10.1016/j.bulcan.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Chimeric antigen receptor T (CAR-T)-cell, an adaptive immune therapy is approved for patients with acute lymphoblastic leukemia and diffuse large B-cell lymphoma. Its use and subsequent toxicities are expected to rise in the coming years. The main toxicities are cytokine release syndrome, hemophagocytic lymphohistiocytosis and immune effector cell associated neurotoxicity syndrome. Cytokine release syndrome is observed in up to 40% of patients. Almost 20% of patient suffer from acute kidney injury after CAR-T cell infusion. Associated factors are high-grade cytokine release syndrome, a prior autologous or allogeneic stem cell transplantation andrequirement of intensive care unit. Several mechanisms may contribute to the occurrence of acute kidney injury after CAR-T infusion: hypoperfusion during cytokine release syndrome, cytokine injury, T cell infiltration, tumor lysis syndrome and sepsis-induced injury. Kidney injury is associated with substantial increase in morbi-mortality.
Collapse
Affiliation(s)
- Adrien Rousseau
- Gustave Roussy, Department of Cancer Medicine, Villejuif, France.
| | - Lara Zafrani
- Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris, Medical Intensive Care Unit, Paris, France
| |
Collapse
|
46
|
Mo CC, Richardson E, Calabretta E, Corrado F, Kocoglu MH, Baron RM, Connors JM, Iacobelli M, Wei LJ, Rapoport AP, Díaz-Ricart M, Moraleda JM, Carlo-Stella C, Richardson PG. Endothelial injury and dysfunction with emerging immunotherapies in multiple myeloma, the impact of COVID-19, and endothelial protection with a focus on the evolving role of defibrotide. Blood Rev 2024; 66:101218. [PMID: 38852017 DOI: 10.1016/j.blre.2024.101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Patients with multiple myeloma (MM) were among the groups impacted more severely by the COVID-19 pandemic, with higher rates of severe disease and COVID-19-related mortality. MM and COVID-19, plus post-acute sequelae of SARS-CoV-2 infection, are associated with endothelial dysfunction and injury, with overlapping inflammatory pathways and coagulopathies. Existing treatment options for MM, notably high-dose therapy with autologous stem cell transplantation and novel chimeric antigen receptor (CAR) T-cell therapies and bispecific T-cell engaging antibodies, are also associated with endothelial cell injury and mechanism-related toxicities. These pathologies include cytokine release syndrome (CRS) and neurotoxicity that may be exacerbated by underlying endotheliopathies. In the context of these overlapping risks, prophylaxis and treatment approaches mitigating the inflammatory and pro-coagulant effects of endothelial injury are important considerations for patient management, including cytokine receptor antagonists, thromboprophylaxis with low-molecular-weight heparin and direct oral anticoagulants, and direct endothelial protection with defibrotide in the appropriate clinical settings.
Collapse
Affiliation(s)
- Clifton C Mo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA
| | - Edward Richardson
- Department of Medicine, Warren Alpert Medical School at Brown University, Providence, RI, USA
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Francesco Corrado
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA; Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Mehmet H Kocoglu
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron P Rapoport
- Department of Medicine, University of Maryland School of Medicine, and Transplant and Cellular Therapy Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Maribel Díaz-Ricart
- Hematopathology, Pathology Department, CDB, Hospital Clinic, and IDIBAPS, Barcelona, Spain, and Barcelona Endothelium Team, Barcelona, Spain
| | - José M Moraleda
- Department of Medicine, Faculty of Medicine, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, and IRCCS Humanitas Research Hospital, Milan, Italy
| | - Paul G Richardson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Jerome Lipper Center for Multiple Myeloma Research, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Brudno JN, Kochenderfer JN. Current understanding and management of CAR T cell-associated toxicities. Nat Rev Clin Oncol 2024; 21:501-521. [PMID: 38769449 PMCID: PMC11529341 DOI: 10.1038/s41571-024-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of several haematological malignancies and is being investigated in patients with various solid tumours. Characteristic CAR T cell-associated toxicities such as cytokine-release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) are now well-recognized, and improved supportive care and management with immunosuppressive agents has made CAR T cell therapy safer and more feasible than it was when the first regulatory approvals of such treatments were granted in 2017. The increasing clinical experience with these therapies has also improved recognition of previously less well-defined toxicities, including movement disorders, immune effector cell-associated haematotoxicity (ICAHT) and immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome (IEC-HS), as well as the substantial risk of infection in patients with persistent CAR T cell-induced B cell aplasia and hypogammaglobulinaemia. A more diverse selection of immunosuppressive and supportive-care pharmacotherapies is now being utilized for toxicity management, yet no universal algorithm for their application exists. As CAR T cell products targeting new antigens are developed, additional toxicities involving damage to non-malignant tissues expressing the target antigen are a potential hurdle. Continued prospective evaluation of toxicity management strategies and the design of less-toxic CAR T cell products are both crucial for ongoing success in this field. In this Review, we discuss the evolving understanding and clinical management of CAR T cell-associated toxicities.
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - James N Kochenderfer
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
48
|
Yoshimura Y, Mizuno H, Ikuma D, Yamanouchi M, Sekine A, Suwabe T, Oba Y, Kurihara S, Sugimoto H, Inoue N, Yoshimoto M, Tanimizu H, Tsunoda S, Iijima M, Kono K, Kinowaki K, Ohashi K, Takazawa Y, Hasegawa E, Ubara Y, Sawa N. Long-term clinicopathological characteristics of TAFRO syndrome and its relapse: a case series study. Clin Kidney J 2024; 17:sfae110. [PMID: 38983652 PMCID: PMC11231578 DOI: 10.1093/ckj/sfae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 07/11/2024] Open
Abstract
Introduction This study aimed to analyze the clinical course of TAFRO syndrome in patients through extended follow-up, focusing on recurrent cases and long-term remission. Methods This was a retrospective case series study. We assessed the clinical course of patients diagnosed with TAFRO syndrome between January 2012 and September 2022 at Toranomon Hospital or Toranomon Hospital Kajigaya, excluding those patients who died during the initial hospitalization. Results Twelve patients were included. Baseline characteristics, laboratory findings, treatment modalities, and outcomes were assessed. During the median follow-up period of 1474 days, two patients experienced recurrence following a reduction in tocilizumab (TCZ) dose, whereas two achieved remission for >400 days without TCZ treatment. The remaining eight patients maintained remission under the continued TCZ therapy. Recurrence diagnosis was complicated by the non-simultaneous presentation of the five manifestations of TAFRO syndrome. The patients who experienced recurrence showed milder manifestations and faster recovery than the initial onset. Glomerular endotheliopathy was evident in kidney biopsies during recurrence, which was similar to the initial presentation. In a case where only inflammation preceded other manifestation, a kidney biopsy was pivotal in distinguishing TAFRO syndrome relapse from other inflammatory conditions such as infection. Pretreatment serum IL-6 levels were within the reference range only in patients who experienced long-term remission without TCZ treatment. Conclusions This is the first study to perform kidney biopsies on recurrent TAFRO cases, highlighting recurrence after TCZ dosage reduction, non-simultaneous manifestation of symptoms, the utility of kidney biopsies in recurrence diagnosis, and potential non-IL-6 pathogenesis factors. Pretreatment serum IL-6 levels may help identify patients suitable for maintenance therapy without TCZ. Further investigation is warranted to identify stratified treatment approaches based on individual etiologic factors.
Collapse
Affiliation(s)
| | - Hiroki Mizuno
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Daisuke Ikuma
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | | | - Tatsuya Suwabe
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Yuki Oba
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | | | - Noriko Inoue
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
| | | | - Hikaru Tanimizu
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Susumu Tsunoda
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | | | - Kei Kono
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
| | | | - Kenichi Ohashi
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | | | | | - Yoshifumi Ubara
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| | - Naoki Sawa
- Nephrology Center, Toranomon Hospital Kajigaya, Kanagawa, Japan
| |
Collapse
|
49
|
Hu B, Korsos V, Palomba ML. Chimeric antigen receptor T-cell therapy for aggressive B-cell lymphomas. Front Oncol 2024; 14:1394057. [PMID: 39011476 PMCID: PMC11246842 DOI: 10.3389/fonc.2024.1394057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/17/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary approach in the treatment of lymphoma. This review article provides an overview of the four FDA-approved CAR T-cell products for aggressive B-cell lymphoma, including diffuse large B-cell lymphoma and mantle cell lymphoma, highlighting their efficacy and toxicity as well as discussing future directions.
Collapse
Affiliation(s)
- Bei Hu
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute/Wake Forest School of Medicine, Charlotte, NC, United States
| | - Victoria Korsos
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - M. Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
50
|
Géraud A, Hueso T, Laparra A, Bige N, Ouali K, Cauquil C, Stoclin A, Danlos FX, Hollebecque A, Ribrag V, Gazzah A, Goldschmidt V, Baldini C, Suzzoni S, Bahleda R, Besse B, Barlesi F, Lambotte O, Massard C, Marabelle A, Castilla-Llorente C, Champiat S, Michot JM. Reactions and adverse events induced by T-cell engagers as anti-cancer immunotherapies, a comprehensive review. Eur J Cancer 2024; 205:114075. [PMID: 38733717 DOI: 10.1016/j.ejca.2024.114075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
T-cell engagers (TCE) are cancer immunotherapies that have recently demonstrated meaningful benefit for patients with hematological malignancies and solid tumors. The anticipated widespread use of T cell engagers poses implementation challenges and highlights the need for guidance to anticipate, mitigate, and manage adverse events. By mobilizing T-cells directly at the contact of tumor cells, TCE mount an obligatory and immediate anti-tumor immune response that could result in diverse reactions and adverse events. Cytokine release syndrome (CRS) is the most common reaction and is largely confined to the first drug administrations during step-up dosage. Cytokine release syndrome should be distinguished from infusion related reaction by clinical symptoms, timing to occurrence, pathophysiological aspects, and clinical management. Other common reactions and adverse events with TCE are immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), infections, tumor flare reaction and cytopenias. The toxicity profiles of TCE and CAR-T cells have commonalities and distinctions that we sum-up in this review. As compared with CAR-T cells, TCE are responsible for less frequently severe CRS or ICANS. This review recapitulates terminology, pathophysiology, severity grading system and management of reactions and adverse events related to TCE.
Collapse
Affiliation(s)
- Arthur Géraud
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Thomas Hueso
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Ariane Laparra
- Gustave Roussy, Departement Interdisciplinaire d'Organisation des Parcours Patients, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Naike Bige
- Gustave Roussy, Service de réanimation et de soins intensifs, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Kaissa Ouali
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Cécile Cauquil
- Hôpital Universitaire du Kremlin Bicêtre, Service de Neurologie, 94270 Le Kremlin-Bicêtre, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Annabelle Stoclin
- Gustave Roussy, Service de réanimation et de soins intensifs, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - François-Xavier Danlos
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Antoine Hollebecque
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Vincent Ribrag
- Gustave Roussy, Department Hématologie, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Anas Gazzah
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Vincent Goldschmidt
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Capucine Baldini
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Steve Suzzoni
- Gustave Roussy, Department of Pharmacy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Rastislav Bahleda
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Benjamin Besse
- Gustave Roussy, Department de Médecine Oncologique, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Fabrice Barlesi
- Gustave Roussy, Department de Médecine Oncologique, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Olivier Lambotte
- Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Hôpital Universitaire du Kremlin Bicêtre, Service de Médecine Interne, 94270 Le Kremlin-Bicêtre, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Christophe Massard
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Aurélien Marabelle
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Cristina Castilla-Llorente
- Gustave Roussy, Department Hématologie, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Stéphane Champiat
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France
| | - Jean-Marie Michot
- Gustave Roussy, Département d'Innovation Thérapeutique et d'Essais Précoces, 94805 Villejuif, France; Gustave Roussy, Department d'Hématologie Clinique, 94805 Villejuif, France.
| |
Collapse
|