1
|
Szymański M, Bonowicz K, Antosik P, Jerka D, Głowacka M, Soroka M, Steinbrink K, Kleszczyński K, Gagat M. Role of Cyclins and Cytoskeletal Proteins in Endometriosis: Insights into Pathophysiology. Cancers (Basel) 2024; 16:836. [PMID: 38398227 PMCID: PMC10886501 DOI: 10.3390/cancers16040836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Endometriosis is a gynecological condition where endometrium-like tissue grows outside the uterus, posing challenges in understanding and treatment. This article delves into the deep cellular and molecular processes underlying endometriosis, with a focus on the crucial roles played by cyclins and cytoskeletal proteins in its pathogenesis, particularly in the context of Epithelial-Mesenchymal Transition (EMT). The investigation begins by examining the activities of cyclins, elucidating their diverse biological roles such as cell cycle control, proliferation, evasion of apoptosis, and angiogenesis among ectopic endometrial cells. A comprehensive analysis of cytoskeletal proteins follows, emphasizing their fundamental biological roles and their specific significance to endometriotic cell features. This review sheds light on the interconnected pathways through which cyclins and cytoskeletal proteins converge, contributing to the genesis and progression of endometriosis. Understanding these molecular complexities not only provides insight into the underlying causes of the disease but also holds promise for the development of specific therapeutic approaches, ushering in a new era in the management of this devastating disorder.
Collapse
Affiliation(s)
- Marcin Szymański
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Klaudia Bonowicz
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland;
| | - Dominika Jerka
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
| | - Mariola Głowacka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Małgorzata Soroka
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| | - Kerstin Steinbrink
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Konrad Kleszczyński
- Department of Dermatology, University of Münster, Von-Esmarch-Str. 58, 48149 Münster, Germany; (K.S.); (K.K.)
| | - Maciej Gagat
- Department of Histology and Embryology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-092 Bydgoszcz, Poland; (M.S.); (K.B.); (D.J.)
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Płock, 08-110 Płock, Poland; (M.G.); (M.S.)
| |
Collapse
|
2
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Barbosa MIA, Belinha J, Jorge RMN, Carvalho AX. Computational simulation of cellular proliferation using a meshless method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 224:106974. [PMID: 35834900 DOI: 10.1016/j.cmpb.2022.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE During cell proliferation, cells grow and divide in order to obtain two new genetically identical cells. Understanding this process is crucial to comprehend other biological processes. Computational models and algorithms have emerged to study this process and several examples can be found in the literature. The objective of this work was to develop a new computational model capable of simulating cell proliferation. This model was developed using the Radial Point Interpolation Method, a meshless method that, to the knowledge of the authors, was never used to solve this type of problem. Since the efficiency of the model strongly depends on the efficiency of the meshless method itself, the optimal numbers of integration points per integration cell and of nodes for each influence-domain were investigated. Irregular nodal meshes were also used to study their influence on the algorithm. METHODS For the first time, an iterative discrete model solved by the Radial Point Interpolation Method based on the Galerkin weak form was used to establish the system of equations from the reaction-diffusion integro-differential equations, following a new phenomenological law proposed by the authors that describes the growth of a cell over time while dependant on oxygen and glucose availability. The discretization flexibility of the meshless method allows to explicitly follow the geometric changes of the cell until the division phase. RESULTS It was found that an integration scheme of 6 × 6 per integration cell and influence-domains with only seven nodes allows to predict the cellular growth and division with the best balance between the relative error and the computing cost. Also, it was observed that using irregular meshes do not influence the solution. CONCLUSIONS Even in a preliminary phase, the obtained results are promising, indicating that the algorithm might be a potential tool to study cell proliferation since it can predict cellular growth and division. Moreover, the Radial Point Interpolation Method seems to be a suitable method to study this type of process, even when irregular meshes are used. However, to optimize the algorithm, the integration scheme and the number of nodes inside the influence-domains must be considered.
Collapse
Affiliation(s)
- M I A Barbosa
- Institute of Science and Innovation in Mechanical and Industrial Engineering, University of Porto, Rua Dr. Roberto Frias, S/N, Porto 4200-465, Portugal
| | - J Belinha
- Department of Mechanical Engineering, School of Engineering Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, Porto 4200-072, Portugal.
| | - R M Natal Jorge
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, S/N, Porto 4200-465, Portugal.
| | - A X Carvalho
- Cytoskeletal Dynamics Department, Institute for Research and Innovation in Health (I3S),University of Porto, Portugal, Rua Alfredo Allen, 208, Porto 4200-135, Portugal
| |
Collapse
|
4
|
Li S, Liu T, Liu H, Zhai X, Cao T, Yu H, Hong W, Lin X, Li M, Huang Y, Xiao J. Integrated driver mutations profile of chinese gastrointestinal-natural killer/T-cell lymphoma. Front Oncol 2022; 12:976762. [PMID: 36059700 PMCID: PMC9434212 DOI: 10.3389/fonc.2022.976762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background One of the most common nasal external sites in extranodal Natural Killer/T-cell lymphoma (NKTCL) is in the gastrointestinal (GI) system. Despite this, reports on gastrointestinal-Natural Killer/T-cell lymphoma (GI-NKTCL) are very few. To obtain a better understanding of this manifestation of NKTCL, we conducted a retrospective study on GI-NKTCL to analyze its clinical features, genomic changes and immune infiltration. Methods We retrospectively collected patients diagnosed with GI-NKTCL in the Sixth Affiliated Hospital of Sun Yat-sen University from 2010 to 2020. From this cohort we obtained mutation data via whole exome sequencing. Results Genomic analysis from 15 patients with GI-NKTCL showed that the most common driving mutations were ARID1B(14%, 2/15), ERBB3(14%, 2/15), POT1(14%, 2/15), and TP53(14%, 2/15). In addition, we found the most common gene mutation in patients with GI-NKTCL to be RETSAT(29%, 4/15) and SNRNP70(21%, 3/15), and the most common hallmark pathway mutations to be G2M checkpoint pathway (10/15, 66.7%), E2F targets (8/15, 53.3%), estrogen response late (7/15, 46.7%), estrogen response early (7/15, 46.7%), apoptosis (7/15, 46.7%) and TNFA signaling via NFKB (7/15, 46.7%). In the ICIs-Miao cohort, SNRNP7-wild-type (WT) melanoma patients had significantly prolonged overall survival (OS) time compared with SNRNP7 mutant type (MT) melanoma patients. In the TCGA-UCEC cohort, the patients with RETSAT-MT or SNRNP7-MT had significantly increased expression of immune checkpoint molecules and upregulation of inflammatory immune cells. Conclusions In this study, we explored GI-NKTCL by means of genomic analysis, and identified the most common mutant genes (RETSAT and SNRNP70), pathway mutations (G2M checkpoint and E2F targets) in GI-NKTCL patients. Also, we explored the association between the common mutant genes and immune infiltration. Our aim is that our exploration of these genomic changes will aid in the discovery of new biomarkers and therapeutic targets for those with GI-NKTCL, and finally provide a theoretical basis for improving the treatment and prognosis of patients with GI-NKTCL.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingzhi Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medical Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hailing Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
| | - Xiaohui Zhai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taiyuan Cao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongen Yu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanjia Hong
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Lin
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| |
Collapse
|
5
|
Tarazón E, de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Sahuquillo Torralba A, Simarro J, Palanca Suela S, Botella Estrada R. MiR-138-5p Suppresses Cell Growth and Migration in Melanoma by Targeting Telomerase Reverse Transcriptase. Genes (Basel) 2021; 12:genes12121931. [PMID: 34946880 PMCID: PMC8701232 DOI: 10.3390/genes12121931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
Recent evidence suggests the existence of a miRNA regulatory network involving human telomerase reverse transcriptase gene (hTERT), with miR-138-5p playing a central role in many types of cancers. However, little is known about the regulation of hTERT expression by microRNA (miRNAs) in melanocytic tumors. Here, we investigated the effects of miR-138-5p in hTERT regulation in melanoma cells lines. In vitro studies demonstrated higher miR-138-5p and lower hTERT messenger RNA (mRNA) expression in human epidermal melanocytes, compared with melanoma cell lines (A2058, A375, SK-MEL-28) by quantitative polymerase chain reaction (qPCR) observing a negative correlation between them. A2058 melanoma cells were selected to be transfected with miR-138-5p mimic or inhibitor. Using luciferase assay, hTERT was identified as a direct target of this miRNA. Overexpression of miR-138-5p detected by Western blot revealed a decrease in hTERT protein expression (p = 0.012), and qPCR showed a reduction in telomerase activity (p < 0.001). Moreover, suppressions in cell growth (p = 0.035) and migration abilities (p = 0.015) were observed in A2058-transfected cells using thiazolyl blue tetrazolium bromide and flow cytometry, respectively. This study identifies miR-138-5p as a crucial tumor suppressor miRNA involved in telomerase regulation. Targeting it as a combination therapy with immunotherapy or targeted therapies could be used in advanced melanoma treatment; however, more preclinical studies are necessary.
Collapse
Affiliation(s)
- Estefanía Tarazón
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Blanca de Unamuno Bustos
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Rosa Murria Estal
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
| | - Gema Pérez Simó
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Antonio Sahuquillo Torralba
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
| | - Javier Simarro
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
| | - Sarai Palanca Suela
- Clinical and Translational Cancer Research Group, Health Research Institute La Fe, 46026 Valencia, Spain; (G.P.S.); (J.S.)
- Laboratory of Molecular Biology, Service of Clinical Analysis, University Hospital La Fe, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-9612-44586
| | - Rafael Botella Estrada
- Dermatology and Tisular Regeneration Group, Health Research Institute La Fe, 46026 Valencia, Spain; (E.T.); (B.d.U.B.); (R.M.E.); (A.S.T.); (R.B.E.)
- Department of Dermatology, University Hospital La Fe, 46026 Valencia, Spain
- Department of Medicine, School of Medicine, Universitat de València, 46010 Valencia, Spain
| |
Collapse
|
6
|
Pan L, Feng F, Wu J, Li L, Xu H, Yang L, Xu K, Wang C. Diosmetin inhibits cell growth and proliferation by regulating the cell cycle and lipid metabolism pathway in hepatocellular carcinoma. Food Funct 2021; 12:12036-12046. [PMID: 34755740 DOI: 10.1039/d1fo02111g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Diosmetin (DSM), a newly discovered natural flavonoid, found in citrus plants and olive leaves, has been reported to inhibit the progression of cancer when used as a food supplement. This study aimed to investigate DSM's anti-hepatocellular carcinoma (HCC) properties and possible molecular mechanisms. Hep3B and HCCLM3 cells were selected to evaluate the anti-HCC properties of DSM in vitro. RNA sequencing (RNA-seq) was used to identify the possible molecular targets and pathways. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of DSM treatment on the primary metabolites of HCCLM3 cells. Tumor xenograft was performed in nude mice to examine the anti-HCC properties of DSM in vivo. The results showed that DSM inhibited the proliferation and migration of HCC cells in vitro in a dose-dependent manner. RNA-seq identified 4459 differentially expressed genes (DEGs) that were highly enriched in the cell cycle pathway. In addition, DSM regulated cell growth by arresting the cell cycle in the G1 phase by decreasing the expression of BCL2, CDK1, and CCND1. Furthermore, metabolomics analysis revealed that DSM interfered with the lipid metabolism pathway of HCC cells by significantly inhibiting the synthesis of metabolites, such as acetic acid, decanoic acid, glycerol, and L-proline. Subcutaneous tumor formation experiments revealed that DSM significantly reduced the tumor volume and weight when compared to the control. Immunohistochemical analysis further revealed that DSM treatment significantly decreased the expression of the proliferative marker KI67. Our findings demonstrated that DSM exhibited antitumor effects on HCC cells by inhibiting cell proliferation via cell cycle arrest and interfering with lipid metabolism.
Collapse
Affiliation(s)
- Lianhong Pan
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China. .,Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 400030, China
| | - Fan Feng
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Jiaqin Wu
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Lanqing Li
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Haiying Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Li Yang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| | - Kang Xu
- Hubei Engineering Technology Research Center of Chinese Materia Medica Processing, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
7
|
Sanaei M, Kavoosi F, Nasiri S. Effect of 5-aza-2'-deoxycytidine on p27Kip1, p21Cip1/Waf1/Sdi1, p57Kip2, and DNA methyltransferase 1 Genes Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer SW 480 and SW 948 Cell Lines. Galen Med J 2021; 9:e1899. [PMID: 34466608 PMCID: PMC8343479 DOI: 10.31661/gmj.v9i0.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background:
Dysregulation of the cell cycle has been reported in various cancers. Inactivation of the cyclin-dependent kinases inhibitors (CDKIs), CIP/KIP family, such as p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 genes because of hypermethylation has been shown in several cancers. Treatment with DNA demethylating agent 5-aza-2ˈ-deoxycytidine (5-Aza-CdR) has been indicated that affect genomic methylation and resulting in silenced genes reactivation in colon cancer. Previously, we evaluated the effect of 5-Aza-CdR on DNA methyltransferase 1 (DNMT1) gene expression in hepatocellular carcinoma (HCC) which encouraged us to design the current study. The present study aimed to evaluate the effect of 5-Aza-CdR on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, and DNAT1 genes expression, cell growth inhibition and apoptosis induction in colon cancer SW 480 and SW 948 cell lines.
Materials and Methods: The effect of 5-aza-CdR on the SW 480 and SW 948 cells growth, apoptosis induction and genes expression were assessed by MTT assay, flow cytometry, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis respectively. Results:
5-aza-CdR inhibited cell growth as time-and dose-dependent manner significantly (P<0.001). The agent reactivated p15INK4, p16INK4, p18INK4, and p19INK4 genes expression and induced apoptosis at a concentration of 5 μM significantly. Besides, 5-aza-CdR had a more significant effect on the SW 480 cell line in comparison to SW 948 cell line.
Conclusion:
5-Aza-CdR plays a key role in the up-regulation of p21Cip1/ Waf1/Sdi1, p27Kip1, and p57Kip2 and down-regulation of DNMT1 genes resulting in cell growth inhibition and apoptosis induction.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Correspondence to: Fraidoon Kavoosi, Research Center for Non-communicable Diseases, Jahrom University of medical sciences, Jahrom, Iran Telephone Number: 00987154265814 Email Address:
| | - Sedighe Nasiri
- Student of Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
8
|
Sahu R, Pattanayak SP. Strategic Developments & Future Perspective on Gene Therapy for Breast Cancer: Role of mTOR and Brk/ PTK6 as Molecular Targets. Curr Gene Ther 2021; 20:237-258. [PMID: 32807051 DOI: 10.2174/1566523220999200731002408] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022]
Abstract
Breast cancer is a serious health issue and a major concern in biomedical research. Alteration in major signaling (viz. PI3K-AKT-mTOR, Ras-Raf-MEK-Erk, NF-kB, cyclin D1, JAK-STAT, Wnt, Notch, Hedgehog signaling and apoptotic pathway) contributes to the development of major subtypes of mammary carcinoma such as HER2 positive, TNBC, luminal A and B and normal-like breast cancer. Further, mutation and expression parameters of different genes involved in the growth and development of cells play an important role in the progress of different types of carcinoma, making gene therapy an emerging new therapeutic approach for the management of life-threatening diseases like cancer. The genetic targets (oncogenes and tumor suppressor genes) play a major role in the formation of a tumor. Brk/PTK6 and mTOR are two central molecules that are involved in the regulation of numerous signaling related to cell growth, proliferation, angiogenesis, survival, invasion, metastasis, apoptosis, and autophagy. Since these two proteins are highly upregulated in mammary carcinogenesis, this can be used as targeted genes for the treatment of breast cancer. However, not much work has been done on them. This review highlights the therapeutic significance of Brk and mTOR and their associated signaling in mammary carcinogenesis, which may provide a strategy to develop gene therapy for breast cancer management.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India
| | - Shakti P Pattanayak
- Division of Advanced Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand- 835 215, India,Department of Pharmacy, Central University of South Bihar (Gaya), Bihar-824 236, India
| |
Collapse
|
9
|
Rajagopal P, Jayandharan GR, Krishnan UM. Evaluation of the Anticancer Activity of pH-Sensitive Polyketal Nanoparticles for Acute Myeloid Leukemia. Mol Pharm 2021; 18:2015-2031. [PMID: 33780253 DOI: 10.1021/acs.molpharmaceut.0c01243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polyketals are a class of acid-responsive polymers that have been relatively less explored for drug delivery applications compared to polyesters. The degradation of these polymers is accelerated in an acidic medium and does not result in acidic byproducts. Their biocompatibility depends on the diol used for the synthesis. The present work aims to synthesize, characterize, and fabricate nanospheres of an aliphatic polyketal for delivery of the nucleotide analogue cytarabine toward the treatment of acute myeloid leukemia (AML). The internalization mechanism of the nanospheres was probed, and its implication on the nuclear localization and escape from the endo-lysosomal compartments were studied. The drug-loaded polyketal nanoparticles reduced the cell viability to a greater extent compared with the free drug. The effect of the drug-loaded polyketal nanoparticles on the differential gene expression of leukemic cells was investigated for the first time to understand their therapeutic implications. It was found that treatment with drug-loaded polyketal nanoparticles downregulated AML-specific genes involved in cell proliferation and recurrence compared to the free drug. The protein expression studies were performed for selected genes obtained from gene expression analysis. Biodistribution studies showed that the poly(cyclohexane-1,4-diyl acetone dimethylene ketal) (PCADK) nanoparticles exhibit prolonged circulation time. Overall, our results suggest that polyketal-based delivery of cytarabine represents a more effective alternative strategy for AML therapy.
Collapse
Affiliation(s)
- Pratheppa Rajagopal
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.,The Mehta Family Centre for Engineering In Medicine, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University Thanjavur 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India.,School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
10
|
Katebi A, Kohar V, Lu M. Random Parametric Perturbations of Gene Regulatory Circuit Uncover State Transitions in Cell Cycle. iScience 2020; 23:101150. [PMID: 32450514 PMCID: PMC7251928 DOI: 10.1016/j.isci.2020.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Many biological processes involve precise cellular state transitions controlled by complex gene regulation. Here, we use budding yeast cell cycle as a model system and explore how a gene regulatory circuit encodes essential information of state transitions. We present a generalized random circuit perturbation method for circuits containing heterogeneous regulation types and its usage to analyze both steady and oscillatory states from an ensemble of circuit models with random kinetic parameters. The stable steady states form robust clusters with a circular structure that are associated with cell cycle phases. This circular structure in the clusters is consistent with single-cell RNA sequencing data. The oscillatory states specify the irreversible state transitions along cell cycle progression. Furthermore, we identify possible mechanisms to understand the irreversible state transitions from the steady states. We expect this approach to be robust and generally applicable to unbiasedly predict dynamical transitions of a gene regulatory circuit.
Collapse
Affiliation(s)
- Ataur Katebi
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Vivek Kohar
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Mingyang Lu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
11
|
Deng X, Pi Y, Li Z, Xiong R, Liu J, Zhao J, Xie Z, Lei X, Tang G. FB-15 inhibits MGC-803 cells growth by regulating energy metabolism. Chem Biol Interact 2020; 327:109186. [PMID: 32590071 DOI: 10.1016/j.cbi.2020.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022]
Abstract
In this study, we scrutinized the anticancer effects of FB-15 on human gastric carcinoma MGC-803 cells in vitro and vivo, and its preliminary effect on tubulin and HIF-1α. We confirmed that FB-15 not only inhibited the proliferation of a large number of cells in a concentration and time-dependent manner but also inhibited proliferation of a single cell to form clones. FB-15 manifested little cytotoxicity for normal stomach cells GES-1. The flow cytometry analysis displayed that FB-15 induced apoptosis MGC-803 cells and mainly arrested cells in the S phase in a concentration-dependent manner. The results of the wound healing assay indicated that FB-15 suppressed cell migration. Furthermore, the western blotting showed that FB-15 down-regulated the expression of β3-tubulin and HIF-1α, consistent with Immunohistochemical assay. The binding modes of FB-15 with tubulin were clarified by molecular docking. FB-15 significantly suppressed the growth of MGC-803 gastric cancer tumors. The inhibitory effect of FB-15 on tumor growth was superior to 5-Fu. Taken together, these results provided evidence for FB-15 to be used as an effective anticancer drug candidate for gastric cancer.
Collapse
Affiliation(s)
- Xiangping Deng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Yiyuan Pi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China; Xiangnan University, Chenzhou City, Hunan Province, PR China
| | - Zhongli Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China
| | - Jingduo Zhao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, Hunan Province, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province, PR China.
| |
Collapse
|
12
|
de Melo-Silva AJ, Lucena JP, Hueneburg T. The evolution of molecular diagnosis using digital polymerase chain reaction to detect cancer via cell-free DNA and circulating tumor cells. Cell Biol Int 2019; 44:735-743. [PMID: 31829466 DOI: 10.1002/cbin.11286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023]
Abstract
Cancer is one of the most important causes of death worldwide. The onset of cancer may be initiated due to a variety of factors such as environment, genetics or even due to personal lifestyle choices. To counteract this tremendous increase, the demand for a new technology has risen. By this means, the use of digital polymerase chain reaction (dPCR) has been shown to be a promising methodology in the early detection of many types of cancers. Furthermore, several researchers confirmed that the use of tumor cell-free DNA (cfDNA) and circulating tumor cells (CTC) in peripheral blood is essential in revealing an early prognosis of such diseases. Besides this, it was established that dPCR might be used in a much more efficient, accurate, and reliable manner to amplify a variety of genetic material up to the identification of mutations in hematological diseases. Therefore, this article demonstrates the differences between conventional PCR and dPCR as a molecular technique to detect the early onset of cancer. Furthermore, CTC and cfDNA were officially approved by the Food and Drug Administration as new biological biomarkers in cancer development and monitoring.
Collapse
Affiliation(s)
- Alex José de Melo-Silva
- Department of Immunology, Aggeu Magalhães Institute, IAM/FIOCRUZ-PE, Recife-PE, 50670-420, Brazil
| | - Jessica Paula Lucena
- Department of Immunology, Aggeu Magalhães Institute, IAM/FIOCRUZ-PE, Recife-PE, 50670-420, Brazil
| | - Thomas Hueneburg
- University of Technology Sydney, Sydney, 2007, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne-Vic, 3010 Parkeville VIC, Australia
| |
Collapse
|
13
|
The effect of co-occurring lesions on leukaemogenesis and drug response in T-ALL and ETP-ALL. Br J Cancer 2019; 122:455-464. [PMID: 31792348 PMCID: PMC7028932 DOI: 10.1038/s41416-019-0647-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 01/27/2023] Open
Abstract
Despite advances in the management of acute lymphoblastic leukaemia (ALL), current regimens fail to significantly transform outcomes for patients with high-risk subtypes. Advances in genomic analyses have identified novel lesions including mutations in genes that encode chromatin modifiers and those that influence cytokine and kinase signalling, rendering many of these alterations potentially targetable by tyrosine kinase and epigenetic inhibitors currently in clinical use. Although specific genomic lesions, gene expression patterns, and immunophenotypic profiles have been associated with specific clinical outcomes in some cancers, the application of precision medicine approaches based on these data has been slow. This approach is complicated by the reality that patients often harbour multiple mutations, and in many cases, the precise functional significance and interaction of these mutations in driving leukaemia and drug responsiveness/resistance remains unknown. Given that signalling pathways driving leukaemic pathogenesis could plausibly result from the co-existence of specific lesions and the resultant perturbation of protein interactions, the use of combined therapeutics that target multiple aberrant pathways, according to an individual’s mutational profile, might improve outcomes and lower a patient’s risk of relapse. Here we outline the genomic alterations that occur in T cell ALL (T-ALL) and early T cell precursor (ETP)-ALL and review studies highlighting the possible effects of co-occurring lesions on leukaemogenesis and drug response.
Collapse
|
14
|
Taha M, Sultan S, Herizal M, Fatmi MQ, Selvaraj M, Ramasamy K, Halim SA, Lim SM, Rahim F, Ashraf K, Shehzad A. Synthesis, anticancer, molecular docking and QSAR studies of benzoylhydrazone. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
16
|
Singh J, Park DW, Kim DH, Singh N, Kang SC, Chi KW. Coordination-Driven Self-Assembly of Triazole-Based Apoptosis-Inducible Metallomacrocycles. ACS OMEGA 2019; 4:10810-10817. [PMID: 31460178 PMCID: PMC6649141 DOI: 10.1021/acsomega.9b00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
Ru(II)-metallomacrocycles containing 4-pyridyl-1,2,3-triazole moiety were realized by coordination-driven self-assembly. All new compounds were characterized by electrospray ionisation mass spectrometry, elemental analysis, and 1H and 13C NMR spectroscopic techniques. The molecular structure of metallomacrocycle 8 was determined by single-crystal X-ray crystallography. The anticancer activities of metallomacrocycles 5-8 were evaluated by cytotoxicity, cell cycle analysis, and related protein expression. Metallomacrocycle 7 showed the highest cytotoxicity in HepG2 human hepatocellular carcinoma cells. In addition, apoptotic HepG2 cells were analyzed when metallomacrocycle 7 was treated. Our results suggest that metallomacrocycle 7 induces liver cancer cell death by increasing apoptosis and cell cycle arrest and that it has potential use as an agent for the treatment of human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jatinder Singh
- Department
of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Dae Won Park
- Department
of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong Hwan Kim
- Department
of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Nem Singh
- Department
of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| | - Se Chan Kang
- Department
of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Whan Chi
- Department
of Chemistry, University of Ulsan, Ulsan 44776, Republic of Korea
| |
Collapse
|
17
|
Zhang J, Pu XM, Xiong Y. kshv-mir-k12-1-5p promotes cell growth and metastasis by targeting SOCS6 in Kaposi's sarcoma cells. Cancer Manag Res 2019; 11:4985-4995. [PMID: 31213914 PMCID: PMC6549767 DOI: 10.2147/cmar.s198411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Kaposi’s sarcoma (KS) is a highly disseminated angiogenic tumour of endothelial cells. Many deregulated miRNAs, including kshv-mir-k12-1-5p, have been identified in KS. kshv-mir-k12-1-5p plays important roles in KS. However, the underlying mechanism is not fully understood. The aim of this study was to investigate the exact functions of kshv-mir-k12-1-5p in KS cells. Materials and methods: The biological functions of kshv-mir-k12-1-5p were studied using CCK-8, apoptosis, migration and invasion assays. Bioinformatics software was used to identify the target gene (SOCS6) of kshv-mir-k12-1-5p. A dual luciferase assay, Western blot (WB) and quantitative real-time polymerase chain reaction (q-PCR) were performed to further verify the target gene. The underlying molecular mechanisms of kshv-mir-k12-1-5p in KS cells were also explored. Results: kshv-mir-k12-1-5p can promote the proliferation, migration and invasion of KS cells and inhibit cell apoptosis. Suppressor of cytokine signalling 6 (SOCS6) was identified as a direct target of kshv-mir-k12-1-5p, and kshv-mir-k12-1-5p can downregulate SOCS6 expression. In addition, knockdown of SOCS6 rescued the effects of kshv-mir-k12-1-5p inhibitor. Hence, a direct relationship between kshv-mir-k12-1-5p and SOCS6 was confirmed. Conclusions: kshv-mir-k12-1-5p promotes the malignant phenotype of KS cells by targeting SOCS6, suggesting that kshv-mir-k12-1-5p could be a potential therapeutic target for KS.
Collapse
Affiliation(s)
- Jing Zhang
- Postgraduate College of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.,Department of Pathology, Affiliated Traditional Chinese Medicine Hospital, Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xiong-Ming Pu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, People's Republic of China
| | - Yan Xiong
- Department of Pathology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
18
|
Wang X, Xie Y, Wang J. [ARTICLE WITHDRAWN] Overexpression of MicroRNA-34a-5p Inhibits Proliferation and Promotes Apoptosis of Human Cervical Cancer Cells by Downregulation of Bcl-2. Oncol Res 2018; 26:977-985. [PMID: 28893346 PMCID: PMC7844734 DOI: 10.3727/096504017x15037506066252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
THIS ARTICLE WAS WITHDRAWN BY THE PUBLISHERS IN NOVEMBER 2020.
Collapse
Affiliation(s)
- Xiufen Wang
- *Department of Gynecology, Linzi District People’s Hospital, Zibo, P.R. China
| | - Yucui Xie
- †Department of Reproductive Health and Sterility, Linzi District People’s Hospital, Zibo, P.R. China
| | - Jing Wang
- ‡Department of Gynecology, The Second People Hospital of Dezhou, Dezhou, P.R. China
| |
Collapse
|
19
|
Oak C, Khalifa AO, Isali I, Bhaskaran N, Walker E, Shukla S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int J Oncol 2018; 53:835-843. [PMID: 29767250 PMCID: PMC6017185 DOI: 10.3892/ijo.2018.4407] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diosmetin, a plant flavonoid, has been shown to exert promising effects on prostate cancer cells as an anti‑proliferative and anticancer agent. In this study, using western blot analysis for protein expression and flow cytometry for cell cycle analysis, we determined that the treatment of the LNCaP and PC‑3 prostate cancer cells with diosmetin resulted in a marked decrease in cyclin D1, Cdk2 and Cdk4 expression levels (these proteins remain active in the G0‑G1 phases of the cell cycle). These changes were accompanied by a decrease in c-Myc and Bcl-2 expression, and by an increase in Bax, p27Kip1 and FOXO3a protein expression, which suggests the potential modulatory effects of diosmetin on protein transcription. The treatment of prostate cancer cells with diosmetin set in motion an apoptotic machinery by inhibiting X-linked inhibitor of apoptosis (XIAP) and increasing cleaved PARP and cleaved caspase-3 expression levels. On the whole, the findings of this study provide an in-depth analysis of the molecular mechanisms responsible for the regulatory effects of diosmetin on key molecules that perturb the cell cycle to inhibit cell growth, and suggest that diosmetin may prove to be an effective anticancer agent for use in the treatment of prostate cancer in the future.
Collapse
Affiliation(s)
- Christine Oak
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ahmad O Khalifa
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ilaha Isali
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Chai L, Kang XJ, Sun ZZ, Zeng MF, Yu SR, Ding Y, Liang JQ, Li TT, Zhao J. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res 2018; 10:989-1003. [PMID: 29760567 PMCID: PMC5937487 DOI: 10.2147/cmar.s163335] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background hTERT gene plays an important role in melanoma, although the specific mechanism involved is unclear. The aim of this study was to screen and identify the relative miRNAs with the regulation of hTERT in melanoma. Materials and methods Quantitative real-time polymerase chain reaction (q-PCR) and immunohistochemistry were performed to detect hTERT mRNA and protein expression in 36 formalin-fixed paraffin-embedded melanoma tissues and 36 age- and sex-matched pigmented nevi cases, respectively. Bioinformatics analysis and custom miRNA polymerase chain reaction array were determined for predicting, screening and verifying miRNAs with the regulation of the hTERT gene. To investigate the biological functions, miRNAs mimics or inhibitors were transfected into melanoma A375 cells. The relative expression of miR-497-5p, miR-195-5p, miR-455-3p and hTERT mRNA was determined by q-PCR. The protein expression of hTERT was detected by Western blot. 3-(4,5-Dimethylthiazolyl-2-yl)-2,5-biphenyl tetrazolium bromide and flow cytometry were employed to detect cell proliferation ability, cell apoptosis and cell cycle. Transwell and wound healing assays were used to observe cell invasion and migration abilities. A direct target gene of miRNAs was analyzed by a dual luciferase reporter activity assay. Results MiR-497-5p, miR-195-5p, miR-455-3p were significantly downregulated, while hTERT was upregulated in melanoma tissues. hTERT expression level was inversely correlated with miR-497-5p, miR-195-5p and miR-455-3p. Overexpression of miR-497-5p, miR-195-5p and miR-455-3p inhibited A375 cell proliferation, migration and invasion, arrested the cell cycle, induced cell apoptosis and decreased hTERT expression at both mRNA and protein levels. Suppression of miR-497-5p, miR-195-5p and miR-455-3p partially reversed the inhibitory effects. Finally, hTERT was identified as a direct target of miR-497-5p, miR-195-5p and miR-455-3p. Conclusions MiR-497-5p, miR-195-5p and miR-455-3p act as tumor suppressors by targeting hTERT in melanoma A375 cells. Therefore, miR-497-5p, miR-195-5p and miR-455-3p could be potential targeted therapeutic choice for melanoma.
Collapse
Affiliation(s)
- Li Chai
- Xinjiang Medical University, Urumqi, China
| | - Xiao-Jing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhen-Zhu Sun
- Department of Pathology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ming-Feng Zeng
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shi-Rong Yu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jun-Qin Liang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ting-Ting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Juan Zhao
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
21
|
The synthetic antihyperlipidemic drug potassium piperate selectively kills breast cancer cells through inhibiting G1-S-phase transition and inducing apoptosis. Oncotarget 2018; 8:47250-47268. [PMID: 28467790 PMCID: PMC5564562 DOI: 10.18632/oncotarget.16872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/14/2017] [Indexed: 01/09/2023] Open
Abstract
Piper longum L. is a well-known traditional antihyperlipidemic medicine in China, containing medicinal constituents of piperine, pipernonaline and piperlonguminine in its fruit. However, the antitumor properties of these constituents have not yet been studied. We found that potassium piperate (GBK), a derivative of piperine, inhibited proliferation of cancer cells. GBK selectively inhibited the G1-S-phase transition in breast cancer cells and the G1 arrest was correlated with induction of p27 expression, which is an inhibitor for cyclin-dependent kinases, and inhibition of cyclin A, cyclin E and cyclin B expression. Moreover, GBK treatment led to a downregulation of the mini-chromosome maintenance protein expression and induction of mitochondrial-dependent cell apoptosis in breast cancer cells. Our results also suggested that GBK might also inhibit cancer cell proliferation through epigenetic signaling pathways. A synergistic effect in inhibition of cancer cell proliferation was found when GBK was combined with chemotherapy medicines etoposide phosphate or cisplatin at middle or low doses in vitro. These results show that GBK is a novel potential anti-breast cancer drug that inhibits cell proliferation and promotes cell apoptosis.
Collapse
|
22
|
Abstract
Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
23
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
24
|
Wang Z, Deng X, Xiong R, Xiong S, Liu J, Cao X, Lei X, Chen Y, Zheng X, Tang G. Design, synthesis and biological evaluation of 3',4',5'-trimethoxy flavonoid benzimidazole derivatives as potential anti-tumor agents. MEDCHEMCOMM 2017; 9:305-315. [PMID: 30108924 DOI: 10.1039/c7md00578d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/10/2017] [Indexed: 11/21/2022]
Abstract
A series of 3',4',5'-trimethoxy flavonoids with benzimidazole linked by different chain alkanes have been designed and synthesized. The potential activity of these compounds as anti-tumor agents was evaluated by cytotoxicity assay in MGC-803 (human gastric cancer), MCF-7 (human breast cancer), HepG-2 (human hepatoma) and MFC (mouse gastric cancer) tumor cell lines. Among them, compound 15 7-(3-(2-chloro-1H-benzo[d]imidazol-1-yl)propoxy)-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one displayed the most potent antiproliferative activity, with IC50 values of 20.47 ± 2.07, 43.42 ± 3.56, 35.45 ± 2.03 μM and 23.47 ± 3.59 μM, respectively. The flow cytometry (FCM) results showed that compound 15 caused the cell cycle to be arrested in G1 phase and induced apoptosis of MFC cells in a dose-dependent manner. In addition, compound 15 exhibited a significant inhibitory effect on tumor growth in vivo. All the results outlined the great potential of compound 15 for further exploitation as anti-tumor agent.
Collapse
Affiliation(s)
- Zhe Wang
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Xiangping Deng
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Runde Xiong
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Shujuan Xiong
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Juan Liu
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Yanming Chen
- Mu Dan Jiang You Bo Pharmaceutical Co. Ltd. , Mudanjiang , China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology , Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study , University of South China , Hengyang , China . ;
| |
Collapse
|
25
|
Ma Y, Fan C, Jia B, Cheng P, Liu J, Ma Y, Qiao K. Total synthesis and biological evaluation of spirotryprostatin A analogs. Chirality 2017; 29:737-746. [DOI: 10.1002/chir.22746] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/15/2023]
Affiliation(s)
- Yangmin Ma
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| | - Chao Fan
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| | - Bin Jia
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| | - Pei Cheng
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| | - Jia Liu
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| | - Yuqiang Ma
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| | - Ke Qiao
- Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education; Shaanxi University of Science & Technology; Xi'an China
| |
Collapse
|
26
|
Liang WZ, Jan CR, Hsu SS. Cytotoxic effects of gastrodin extracted from the rhizome of Gastrodia elata Blume in glioblastoma cells, but not in normal astrocytes, via the induction of oxidative stress-associated apoptosis that involved cell cycle arrest and p53 activation. Food Chem Toxicol 2017; 107:280-292. [PMID: 28689919 DOI: 10.1016/j.fct.2017.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 02/07/2023]
Abstract
Researches have been conducted to explore the biological effect of gastrodin, a natural compound extracted from the rhizome of Gastrodia elata Blume, in different models. However, the effects of gastrodin on cytotoxicity, cell cycle distribution and oxidative stress in glia cells have not been explored. The aim of this study was to investigate the cytotoxic effect of gastrodin and its mechanisms in DBTRG-05MG human glioblastoma cells and CTX TNA2 rat astrocytes. In DBTRG-05MG cells but not in CTX TNA2 cells, gastrodin (20-30 μM) induced cytotoxicity, G2/M phase cell cycle arrest and apoptosis. Regarding oxidative stress, gastrodin (20-30 μM) elevated intracellular ROS levels but reduced GSH levels. Treatment with the antioxidant NAC (10 μM) partially reversed gastrodin-altered antioxidant enzymes levels. Furthermore, gastrodin induced mitochondria-associated apoptosis. The apoptotic effects evoked by gastrodin were partially inhibited by the antioxidant NAC and the pancaspase inhibitor Z-VAD-FMK. Together, in DBTRG-05MG cells, but not in CTX TNA2 cells, gastrodin activated ROS-associated mitochondrial apoptotic pathways that involved cell cycle arrest. These data provide insight into the molecular mechanisms governing the ability of gastrodin to induce cytotoxicity in human glioblastoma cells and further suggest that gastrodin is a new potential agent for the treatment of human gliblasoma.
Collapse
Affiliation(s)
- Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC
| | - Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan, ROC; Department of Surgery, National Defense Medical Center, Taipei 11490, Taiwan, ROC.
| |
Collapse
|
27
|
Sathish Kumar P, Viswanathan MBG, Venkatesan M, Balakrishna K. Bauerenol, a triterpenoid from Indian Suregada angustifolia: Induces reactive oxygen species–mediated P38MAPK activation and apoptosis in human hepatocellular carcinoma (HepG2) cells. Tumour Biol 2017; 39:1010428317698387. [DOI: 10.1177/1010428317698387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The triterpenoid, bauerenol, from Suregada angustifolia (Baill. ex Muell.-Arg.) Airy Shaw (Euphorbiaceae) was screened for anti-cancer property using hepatocellular carcinoma cell line, HepG2. Bauerenol exhibited growth inhibitory and apoptosis inducing potential against HepG2 cancer cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxic assay revealed that bauerenol treatment significantly reduced the growth of HepG2 cells in a time- and dose-dependent manner with 50% growth inhibitory concentration doses of 45 and 25 µg/mL at 24 and 48 h treatments, respectively. Bauerenol-induced cell death reflected apoptotic morphological features, that is, cell membrane blebbing, vacuolization, chromatin condensation, and nuclear fragmentation. In addition, bauerenol treatment diminished the mitochondrial membrane potential, by inducing the efflux of cytochrome c, downregulating the levels of anti-apoptotic Bcl-2 as well as upregulating the levels of pro-apoptotic Bax, and inducing caspase activation and poly (ADP-ribose) polymerase cleavage. Moreover, bauerenol treatment activates p38MAPK and inactivates the anti-apoptotic kinases Akt and ERK1/2 through the induction of reactive oxygen species. Furthermore, bauerenol-mediated S-phase arrest was associated with downregulation of cell cycle-rate-limiting factor (cyclin D1) and upregulation of cyclin-dependent kinase inhibitor p21 and tumor suppressor p53. Interestingly, pre-treatment of cells with reactive oxygen species inhibitor and p38 inhibitor significantly decreases bauerenol-induced cytotoxicity, Bax upregulation, and p38 activation. This study clearly states that bauerenol induces cell cycle arrest and apoptosis through the reactive oxygen species–dependent p38MAPK activation in HepG2 cancer cells.
Collapse
Affiliation(s)
- Perumal Sathish Kumar
- Centre for Research and Development of Siddha-Ayurveda Medicines (CRDSAM), Department of Plant Science, Bharathidasan University, Tiruchirappalli, India
| | - Madepalli Byrappa Gowdu Viswanathan
- Centre for Research and Development of Siddha-Ayurveda Medicines (CRDSAM), Department of Plant Science, Bharathidasan University, Tiruchirappalli, India
| | | | | |
Collapse
|
28
|
Molecular Biomarkers for Prediction of Targeted Therapy Response in Metastatic Breast Cancer: Trick or Treat? Int J Mol Sci 2017; 18:ijms18010085. [PMID: 28054957 PMCID: PMC5297719 DOI: 10.3390/ijms18010085] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the study of genomic alterations and protein expression involved in the pathways of breast cancer carcinogenesis has provided an increasing number of targets for drugs development in the setting of metastatic breast cancer (i.e., trastuzumab, everolimus, palbociclib, etc.) significantly improving the prognosis of this disease. These drugs target specific molecular abnormalities that confer a survival advantage to cancer cells. On these bases, emerging evidence from clinical trials provided increasing proof that the genetic landscape of any tumor may dictate its sensitivity or resistance profile to specific agents and some studies have already showed that tumors treated with therapies matched with their molecular alterations obtain higher objective response rates and longer survival. Predictive molecular biomarkers may optimize the selection of effective therapies, thus reducing treatment costs and side effects. This review offers an overview of the main molecular pathways involved in breast carcinogenesis, the targeted therapies developed to inhibit these pathways, the principal mechanisms of resistance and, finally, the molecular biomarkers that, to date, are demonstrated in clinical trials to predict response/resistance to targeted treatments in metastatic breast cancer.
Collapse
|
29
|
Zheng J, Lin Z, Zhang L, Chen H. MicroRNA-455-3p Inhibits Tumor Cell Proliferation and Induces Apoptosis in HCT116 Human Colon Cancer Cells. Med Sci Monit 2016; 22:4431-4437. [PMID: 27861461 PMCID: PMC5117242 DOI: 10.12659/msm.898452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND MicroRNAs have been reported to play significant roles in pathogenesis of colorectal cancer (CRC). In the present study, we aimed to investigate the functional role of microRNA-455-3p (miR-455-3p) in CRC, as well as its underlying mechanisms. MATERIAL AND METHODS Human colon cancer cell line HCT116 cells were transfected with miR-455-3p mimics, inhibitors, or controls. After transfection, the effects of miR-455-3p mimics or inhibitors on cell proliferation were analyzed by 3-(4, 5-dimethyl-2- thiazolyl)-2, 5-diphenyl -2-H-tetrazolium bromide (MTT) assay and BrdU assay, and the effects of miR-455-3p mimics or inhibitors on cell apoptosis were determined. In addition, the underlying mechanisms of cell proliferation and apoptosis were explored by assessing the protein levels of cell cycle regulators and apoptosis-related protein. RESULTS The results showed that overexpression of miR-455-3p significantly inhibited the cell proliferation (P<0.05 or <0.01) in HCT116 cells compared with the control group, but significantly increased the apoptosis (P<0.01). On the contrary, suppression of miR-455-3p significantly increased the cell proliferation but decreased the apoptosis. Moreover, we found that overexpression of miR-455-3p significantly elevated the protein levels of p27 kinase inhibition protein (KIP) 1, Bax, pro-caspase-3, and active caspase-3, and markedly downregulated the levels of B-cell lymphoma-2 (Bcl-2). Contrary results were found by suppression of miR-455-3p. However, there were no significant differences in p21 expression. CONCLUSIONS MiRNA-455-3p functions as an anti-oncogene in HCT116 cells by inhibiting cell proliferation and inducing of apoptosis.
Collapse
Affiliation(s)
- Jiantao Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Zhenlv Lin
- Department of Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Lin Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| | - Hui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China (mainland)
| |
Collapse
|
30
|
Pham HHT, Seong YA, Oh CW, Kim GD. The herbal medicine Cyperus amuricus inhibits proliferation of human hepatocellular carcinoma Hep3B cells by inducing apoptosis and arrest at the G0/G1 cell cycle phase. Int J Oncol 2016; 49:2046-2054. [PMID: 27667556 DOI: 10.3892/ijo.2016.3698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cyperus amuricus (C. amuricus) is one of the most common herbs in Oriental folk medicine for exerting astringent, diuretic, wound healing and other intestinal problems. However, little is known about the molecular mechanism of C. amuricus on anticancer activity. In the present study, the underlying mechanism of the anticancer effect of C. amuricus were elucidated. The methyl alcohol extract from the whole plant of C. amuricus exhibited cytotoxicity against Hep3B cells, but not against A549 and HaCaT cells. Consistent with an acceleration of the sub-G1 phase, downregulation of cdc25A, cyclin D1 and cyclin E, CDK4 and 2 as well as E2F-1, phospho-Rb, with concomitant of upregulation of p21CIP1/WAF1, p27KIPI and p16INK4a proteins, as evidenced by the appearance of cell cycle arrest, were detected in C. amuricus-treated Hep3B cells. Additionally, the sequential activation of various caspases (cleaved caspase-8, -9, -3, -7 and -6, and cleaved PARP) and the changed expression of other proteins related to the apoptosis pathway were observed after C. amuricus exposure. An increment in the pro-apoptotic proteins (Bim, tBid, Bax and Bak) and a reduction of anti-apoptotic protein (Bcl-2) regulate Hep3B cell death by controlling the permeability of mitochondrial membranes and the release of cytochrome c from mitochondria into the cytosol with Apaf-1 after C. amuricus treatment. This is the first study indicating the potential of C. amuricus as a complementary agent for prevention and treatment of human liver cancer.
Collapse
Affiliation(s)
- Hai Ha Thi Pham
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeong-Ae Seong
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Chul-Woong Oh
- Department of Marine Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
31
|
Xie W, Qin W, Kang Y, Zhou Z, Qin A. MicroRNA-340 Inhibits Tumor Cell Proliferation and Induces Apoptosis in Endometrial Carcinoma Cell Line RL 95-2. Med Sci Monit 2016; 22:1540-6. [PMID: 27153225 PMCID: PMC4917329 DOI: 10.12659/msm.898121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The purpose of our study was to investigate the functional role of microRNA-340 (miR-340) in endometrial carcinoma (EC). MATERIAL AND METHODS Human EC cell line RL 95-2 was transfected with miR-340 mimics, inhibitors, or controls. After 48 h of transfection, the cell viability was determined by 3-(4, 5-dimethyl-2- thiazolyl)-2, 5-diphenyl -2-H-tetrazolium bromide (MTT) assay. The BrdU assay and apoptosis assay were performed to determine the effects of miR-340 mimics or inhibitors on cell proliferation and apoptosis, respectively. The underlying mechanisms involved in cell proliferation and apoptosis were explored by measuring the protein levels of cell cycle regulators (p27 kinase inhibition protein (KIP) 1 and p21) and apoptosis-related factors (B-cell lymphoma-2 (Bcl-2), Bax, pro-Caspase 3, and active-Caspase-3). RESULTS Overexpression of miR-340 significantly inhibited the cell viability (P<0.05) and cell proliferation (P<0.01) of RL 95-2 cells compared with the control group, but increased the apoptosis (P<0.01). However, suppression of miR-340 had opposite results. Moreover, the protein levels of p27 KIP1, Bax, pro-Caspase 3, and active-Caspase-3 were significantly increased by overexpression of miR-340 but were statistically decreased by suppression of miR-340. Contrary results were found in the protein levels of Bcl-2. However, no significant differences were found in p21 expression. CONCLUSIONS MiRNA-340 acts as an anti-oncogene in EC cell line RL 95-2 by inhibition of tumor cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Wei Xie
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wen Qin
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yalin Kang
- , Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ziyan Zhou
- , Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Aiping Qin
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
32
|
Hong JF, Song YF, Liu Z, Zheng ZC, Chen HJ, Wang SS. Anticancer activity of taraxerol acetate in human glioblastoma cells and a mouse xenograft model via induction of autophagy and apoptotic cell death, cell cycle arrest and inhibition of cell migration. Mol Med Rep 2016; 13:4541-8. [PMID: 27081915 PMCID: PMC4878554 DOI: 10.3892/mmr.2016.5105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 01/22/2016] [Indexed: 01/23/2023] Open
Abstract
The aim of the present study was to investigate the in vitro and in vivo anticancer and apoptotic effects of taraxerol acetate in U87 human glioblastoma cells. The effects on cell cycle phase distribution, cell cycle-associated proteins, autophagy, DNA fragmentation and cell migration were assessed. Cell viability was determined using the MTT assay, and phase contrast and fluorescence microscopy was utilized to determine the viability and apoptotic morphological features of the U87 cells. Flow cytometry using propidium iodide and Annexin V-fluorescein isothiocyanate demonstrated the effect of taraxerol acetate on the cell cycle phase distribution and apoptosis induction. Western blot analysis was performed to investigate the effect of the taraxerol acetate on cell cycle-associated proteins and autophagy-linked LC3B-II proteins. The results demonstrated that taraxerol acetate induced dose- and time-dependent cytotoxic effects in the U87 cells. Apoptotic induction following taraxerol acetate treatment was observed and the percentage of apoptotic cells increased from 7.3% in the control cells, to 16.1, 44.1 and 76.7% in the 10, 50 and 150 µM taraxerol acetate-treated cells, respectively. Furthermore, taraxerol acetate treatment led to sub-G1 cell cycle arrest with a corresponding decrease in the number of S-phase cells. DNA fragments were observed as a result of the gel electrophoresis experiment following taraxerol acetate treatment. To investigate the inhibitory effects of taraxerol acetate on the migration of U87 cell, a wound healing assay was conducted. The number of cells that migrated to the scratched area decreased significantly following treatment with taraxerol acetate. In addition, taraxerol acetate inhibited tumor growth in a mouse xenograft model. Administration of 0.25 and 0.75 µg/g taraxerol acetate reduced the tumor weight from 1.2 g in the phosphate-buffered saline (PBS)-treated group (control) to 0.81 and 0.42 g, respectively. Similarly, 0.25 and 0.75 µg/g taraxerol acetate injection reduced the tumor volume from 1.3 cm3 in the PBS-treated group (control) to 0.67 and 0.25 cm3, respectively.
Collapse
Affiliation(s)
- Jing-Fang Hong
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Ying-Fang Song
- Department of Pulmonary and Critical Care Medicine, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Zheng Liu
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Zhao-Cong Zheng
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Hong-Jie Chen
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Military Command, Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
33
|
Chattopadhyay S, Chaklader M, Chatterjee R, Law A, Law S. Differential expression of mitotic regulators and tumor microenvironment influences the regional growth pattern of solid sarcoma along the cranio-caudal axis. Exp Cell Res 2015; 340:91-101. [PMID: 26658517 DOI: 10.1016/j.yexcr.2015.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/28/2015] [Indexed: 02/04/2023]
Abstract
Soft tissue sarcomas are relatively rare, unusual, anatomically diverse group of malignancies. According to the recent literature and medical bulletins, tumor growth and aggressiveness immensely relies on its anatomical locations. However, it is unclear whether the cranio-caudal anatomical axis of the mammalian body can influence sarcoma development and the underlying molecular mechanisms are not yet deciphered. Here, we investigated the growth pattern of solid sarcoma implanted into the murine cranial and caudal anatomical locations and tried to explore the location specific expression pattern of crucial mammalian mitotic regulators such as Aurora kinase A, Histone H3 and c-Myc in the cranio-caudally originated solid tumors. In addition, the influence of local tumor microenvironment on regional sarcoma growth was also taken into consideration. We found that solid sarcoma developed differentially when implanted into two different anatomical locations and most notably, enhanced tumor growth was observed in case of cranially implanted sarcoma than the caudal sarcoma. Interestingly, Aurora kinase A and c-Myc expression and histone H3 phosphorylation level were comparatively higher in the cranial tumor than the caudal. In addition, variation of tumor stroma in a location specific manner also facilitated tumor growth. Cranial sarcoma microenvironment was well vascularized than the caudal one and consequently, a significantly higher microvessel density count was observed which was parallel with low hypoxic response with sign of local tumor inflammation in this region. Taken together, our findings suggest that differential gradient of mitotic regulators together with varied angiogenic response and local tumor microenvironment largely controls solid sarcoma growth along the cranio-caudal anatomical axis.
Collapse
Affiliation(s)
- Sukalpa Chattopadhyay
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, West Bengal, India
| | - Malay Chaklader
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, West Bengal, India
| | - Ritam Chatterjee
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, West Bengal, India
| | - Aditya Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R. Avenue, Kolkata 700073, West Bengal, India.
| |
Collapse
|
34
|
Wu Z, Boonmars T, Nagano I, Boonjaraspinyo S, Srinontong P, Ratasuwan P, Narong K, Nielsen PS, Maekawa Y. Significance of S100P as a biomarker in diagnosis, prognosis and therapy of opisthorchiasis-associated cholangiocarcinoma. Int J Cancer 2015; 138:396-408. [PMID: 26312563 DOI: 10.1002/ijc.29721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/10/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
Cholangiocarcinoma (CCA) is a malignancy of bile duct with the difficulty in early diagnosis, poor prognosis and less alternation in therapy. S100P is a member of S100 family proteins and plays important roles in cancers. We investigated the S100P expression and its correlation with clinicopathology in 78 cases of opisthorchiasis-associated CCA, and the effects of S100P knockdown with shRNA interference on the proliferation, cell cycle, migration, apoptosis and sensitivity to anti-cancer drug. Extremely high expression of S100P mRNA was detected in the CCA tumor tissues. The increased S100P protein expression was immunohistochemically confirmed and localized in the CCA cytoplasm and/or nuclei as well as in the hyperneoplasia and dysplasia bile ducts, but not in normal bile ducts. The intensity of immunostaining was correlated with survival, tumor stage and metastasis, and the high expression could be an independent prognostic factor. High levels of S100P were detected in the serum and bile fluid of CCA patients. The shRNA-mediated knockdown of S100P expression inhibited the proliferation in vitro and in vivo, and migration of CCA cells, arrested cell cycle with the up-regulated expression of cell cycle arrest related factors, p21, p27, GADD45A, and 14-3-3 zeta. S100P knockdown also promoted CCA cell apoptosis by up-regulating expression of apoptosis related factors, DR5, TRADD, caspase 3 and BAX, and increased the sensitivity of CCA cells to the chemotherapeutic agents sunitinib and apigenin. Taken together, this study indicates that S100P might be a promising biomarker for the diagnosis, prognosis and therapy of CCA.
Collapse
Affiliation(s)
- Zhiliang Wu
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Japan
| | - Thidarut Boonmars
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Isao Nagano
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Japan
| | - Sirintip Boonjaraspinyo
- Department of Community Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyarat Srinontong
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Japan
| | - Panaratana Ratasuwan
- Department of Anesthesiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Khuntikeo Narong
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Phuangphaka Sadee Nielsen
- Division of Clinical Immunology, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Japan
| |
Collapse
|
35
|
Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine. J Biol Inorg Chem 2015; 20:935-48. [PMID: 26077814 DOI: 10.1007/s00775-015-1277-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/03/2015] [Indexed: 12/11/2022]
Abstract
Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)2}L](NO3)2 incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.
Collapse
|
36
|
Xu WS, Li T, Wu GS, Dang YY, Hao WH, Chen XP, Lu JJ, Wang YT. Effects of furanodiene on 95-D lung cancer cells: apoptosis, autophagy and G1 phase cell cycle arrest. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:243-55. [PMID: 24467547 DOI: 10.1142/s0192415x14500165] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Herein, we systematically investigated the effects of FUR on the significant processes of tumor progression with the relatively low concentrations in 95-D lung cancer cells. FUR concentration-dependently inhibited cell proliferation and blocked the cell cycle progressions in G1 phase by down-regulating the protein levels of cyclin D1 and CDK6, and up-regulating those of p21 and p27 in 95-D cells. FUR also affected the signaling molecules that regulate apoptosis in 95-D cells revealed by the down-regulation of the protein levels of full PARP, pro-caspase-7, survivin, and Bcl-2, and the up-regulation of cleaved PARP. Further studies showed that FUR enhanced the expression of light chain 3-II (LC3-II) in the protein level, indicating that autophagy is involved in this process. Besides, the adhesion ability of 95-D cells to matrigel and fibronectin was slightly inhibited after FUR treatment for 1 h in our experimental condition. FUR also slightly suppressed cell migration and invasion in 95-D cells according to the data from wound healing and Transwell assays, respectively. Taken together, FUR activated the signal molecules regulating G1 cell cycle arrest, apoptosis and autophagy, while slightly affecting the key steps of cell metastasis in 95-D lung cancer cells in the relatively low concentrations.
Collapse
Affiliation(s)
- Wen-Shan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mathi P, Nikhil K, Ambatipudi N, Roy P, Bokka VR, Botlagunta M. In-Vitro and in-Silico characterization of Sophora interrupta plant extract as an anticancer activity. Bioinformation 2014; 10:144-151. [PMID: 24748754 PMCID: PMC3974241 DOI: 10.6026/97320630010144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022] Open
Abstract
Sophora interrupta belongs to the family of Fabaceae and the species in this genus have a diverse medicinal importance as a folk medicine for preventing many ailments including cancer. In order to evaluate the anticancer activity of S.interrupta, we have performed in vitro anti-oxidant, anti-inflammatory, anti-proliferative, and cell based anticancer activity in MCF-7 and PC-3 cell lines. Secondary metabolites of S.interrupta were used to identify anticancer compounds using Open Eye software. The antioxidant activity of the S.interrupta root ethylacetate (SEA) extract at 100 µg/ml is equal to that of ascorbic acid at 50 µg/ml. The antiinflammatory activity of SEA is half of that of diclofenac at 50 µg/ml. Anticancer activity was detected by measuring the mitochondrial dehydrogenase activity (MTT assay). The half maximal inhibitory concentrations (IC50) for MCF-7 and PC-3 cell lines are 250 and 700 µg/ml respectively. This was supported by the morphological changes such as membrane blebbing, cell detachment and rounded cell morphology when compared to the parental cells. In addition, we observed few green cells (live) over red cells (dead) based on the uptake of acridine orange and ethidium bromide dyes. Kaempferol-3-O-b-D-glucopyranoside, a Secondary metabolite of S.interrupta form 6 hydrogen bond interactions with Arg 202, Gln 207, Gly 227, Gly 229, Thr 231 and Ala 232 human DEAD box RNA helicase, DDX3 protein and is equivalent to crystal structure of adenosine mono phosphate to DDX3. Overall, it suggests that the SEA extract has anticancer compounds, and it can be used to enhance death receptor mediated cancer cell death.
Collapse
Affiliation(s)
- Pardhasaradhi Mathi
- Biomedical research Laboratory, Department of Biotechnology, K L University, Green fields, Vaddeswaram, Guntur 522 502, AndhraPradesh, India
| | - Kumar Nikhil
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | | | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Venkata Raman Bokka
- Department of Basic Sciences-Chemistry, Madanapalle Institute of Technology and Science (MITS), Madanapalle 517 325, Chittoor District, Andhra Pradesh, India
| | - Mahendran Botlagunta
- Biomedical research Laboratory, Department of Biotechnology, K L University, Green fields, Vaddeswaram, Guntur 522 502, AndhraPradesh, India
| |
Collapse
|
38
|
de Freitas AC, Coimbra EC, Leitão MDCG. Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:91-103. [PMID: 24388872 DOI: 10.1016/j.bbcan.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 12/10/2013] [Accepted: 12/27/2013] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide and is responsible for 275,000 deaths each year. Persistent infection with high-risk human papillomavirus (HR-HPV) is an essential factor for the development of cervical cancer. Although the process is not fully understood, molecular mechanisms caused by HPV infection are necessary for its development and reveal a large number of potential biomarkers for diagnosis and prognosis. These molecules are host genes and/or proteins, and cellular microRNAs involved in cell cycle regulation that result from disturbed expression of HR-HPV E5, E6 and E7 oncoproteins. One of the current challenges in medicine is to discover potent biomarkers that can correctly diagnose cervical premalignant lesions and standardize clinical management. Currently, studies are showing that some of these molecules are potential biomarkers of cervical carcinogenesis, and it is possible to carry out a more accurate diagnosis and provide more appropriate follow-up treatment for women with cervical dysplasia. In this paper, we review recent research studies on cell cycle molecules deregulated by HPV infections, as well as their potential use for cervical cancer screening.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Eliane Campos Coimbra
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
39
|
Yang HL, Kumar KJS, Kuo YT, Chang HC, Liao JW, Hsu LS, Hseu YC. Antrodia camphorata induces G1 cell-cycle arrest in human premyelocytic leukemia (HL-60) cells and suppresses tumor growth in athymic nude mice. Food Funct 2014; 5:2278-88. [DOI: 10.1039/c4fo00423j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antrodia camphorata is a well-known medicinal mushroom in Taiwan.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition
- China Medical University
- Taichung 40402, Taiwan
| | | | - Ya-Ting Kuo
- Institute of Nutrition
- China Medical University
- Taichung 40402, Taiwan
| | - Hebron C. Chang
- Institute of Biotechnology and Bioinformatics
- Asia University
- Taichung 41354, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology
- National Chung Hsing University
- Taichung 402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry and Biotechnology
- Chung Shan Medical University
- Taichung 40401, Taiwan
| | - You-Cheng Hseu
- Department of Health and Nutrition Biotechnology
- Asia University
- Taichung 41354, Taiwan
- Department of Cosmeceutics
- College of Pharmacy
| |
Collapse
|
40
|
|
41
|
Cheng J, Du YF, Xiao ZY, Pan LL, Li W, Huan L, Gong ZN, Wei SH, Huang SQ, Xun W, Zhang Y, Chang LL, Xie MY, Ao GZ, Cai J, Qiu T, Wu H, Sun T, Xu GL. Growth inhibitory effect of KYKZL-1 on Hep G2 cells via inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Toxicol Appl Pharmacol 2013; 274:96-106. [PMID: 24189224 DOI: 10.1016/j.taap.2013.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/19/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022]
Abstract
KYKZL-1, a newly synthesized compound with COX/5-LOX dual inhibition, was subjected to the inhibitory activity test on Hep G2 growth. We found that KYKZL-1 inhibited the growth of Hep G2 cells via inducing apoptosis. Further studies showed that KYKZL-1 activated caspase-3 through cytochrome c release from mitochondria and down regulation of Bcl-2/Bax ratio and reduced the high level of COX-2 and 5-LOX. As shown in its anti-inflammatory effect, KYKZL-1 also exhibited inhibitory effect on the PGE2 and LTB4 production in Hep G2 cells. Accordingly, exogenous addition of PGE2 or LTB4 reversed the decreases in cell viability. In addition, KYKZL-1 caused cell cycle arrest at the S-G2 checkpoint via the activation of p21(CIP1) protein and down-regulation of cyclin A expression. These data indicate that the growth inhibitory effect of KYKZL-1 is associated with inhibition of AA metabolites and caspase-3 pathway and cell cycle arrest. Combined with our previous findings, KYKZL-1 exhibiting COX/5-LOX inhibition may be a promising potential agent not only for inflammation control but also for cancer prevention/therapy with an enhanced gastric safety profile.
Collapse
Affiliation(s)
- Jing Cheng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi-Fang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhi-Yi Xiao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Li-Li Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wei Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lin Huan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Zhu-Nan Gong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Shao-Hua Wei
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Shi-Qian Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Wei Xun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yi Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Lei-Lei Chang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Meng-Yu Xie
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Gui-Zhen Ao
- Department of Medicinal Chemistry, School of Pharmacy, Soochow University, Jiangsu, China
| | - Jie Cai
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ting Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Hao Wu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ting Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Guang-Lin Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China; Department of Pharmacology, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
42
|
Gulappa T, Reddy RS, Suman S, Nyakeriga AM, Damodaran C. Molecular interplay between cdk4 and p21 dictates G0/G1 cell cycle arrest in prostate cancer cells. Cancer Lett 2013; 337:177-83. [PMID: 23684928 DOI: 10.1016/j.canlet.2013.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 02/08/2023]
Abstract
This study examined the effect of 3, 9-dihydroxy-2-prenylcoumestan (pso), a furanocoumarin, on PC-3 and C4-2B castration-resistant prostate cancer (CRPC) cell lines. Pso caused significant G0/G1 cell cycle arrest and inhibition of cell growth. Molecular analysis of cyclin (D1, D2, D3, and E), cyclin-dependent kinase (cdk) (cdks 2, 4, and 6), and cdk inhibitor (p21 and p27) expression suggested transcriptional regulation of the cdk inhibitors and more significant downregulation of cdk4 than of cyclins or other cdks. Overexpression of cdk4, or silencing of p21 or p27, overcame pso-induced G0/G1 arrest, suggesting that G0/G1 cell cycle arrest is a potential mechanism of growth inhibition in CRPC cells.
Collapse
Affiliation(s)
- Thippeswamy Gulappa
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | | | | | | | | |
Collapse
|
43
|
Ubhenin A, Uwakwe A, Falodun A, Engel N, Onwuka F, Langer P. Anti-proliferative and Pro-apoptotic Effects ofCaesalpinia bonducExtract and its Fractions in Estrogen-Sensitive Human Breast Adenocarcinoma Cell Line. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/10496475.2012.762725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Wu G, Lin N, Xu L, Liu B, Feitelson MA. UCN-01 induces S and G2/M cell cycle arrest through the p53/p21(waf1) or CHK2/CDC25C pathways and can suppress invasion in human hepatoma cell lines. BMC Cancer 2013; 13:167. [PMID: 23537372 PMCID: PMC3618254 DOI: 10.1186/1471-2407-13-167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/11/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND UCN-01 (7-hydroxystaurosporine), a protein kinase inhibitor, has attracted a great deal of attention as a potent antitumour agent. Several clinical trials of UCN-01 alone or in combination with other agents for different tumour types are currently underway, and some of these trials have had positive results. Hepatocellular carcinoma has high incidence rates and is associated with poor prognosis and high mortality rates. METHODS Three different hepatoma cell lines (Huh7, HepG2, and Hep3B) were treated with different concentrations of UCN-01, and the anti-tumour effects of UCN-01 were evaluated. Following UCN-01 treatment, cell growth was measured using an MTT assay, cell cycle arrest was assayed using flow cytometry, and the mechanisms of cell cycle arrest and invasion inhibition were investigated through western blotting and a Matrigel invasion assay. RESULTS After a 72-h UCN-01 treatment, the growth of different hepatoma cell lines was significantly inhibited in a dose-dependent manner, with IC50 values ranging from 69.76 to 222.74 nM. Flow cytometry results suggested that UCN-01 inhibits proliferation in the hepatoma cells by inducing S and G2/M phase arrest, but not G1/S arrest, which differs from previous reports that used other tumour cell lines. Western blot results illustrated that UCN-01 induces a G2/M phase arrest, regardless of the status of the p53/P21(waf1) pathway, whereas the CHK2/CDC25C pathway and the p53/p21(waf1)pathway were involved in the UCN-01-induced S phase arrest. UCN-01 remarkably inhibited Huh7 cell invasion in a time-dependent manner. Suppression of Huh7 cell invasion may be due to the down-regulation of phosphorylated β-catenin by UCN-01. CONCLUSIONS These findings suggest that UCN-01 induces hepatoma cell growth inhibition by regulating the p53/p21(waf1) and CHK2/CDC25 pathways. Suppression of Huh7 cell invasion by UCN-01 may be due to the down-regulation of phosphorylated β-catenin. These data lend support for further studies on UCN-01 as a promising anti-HCC candidate.
Collapse
Affiliation(s)
- Guoyi Wu
- Department of General Surgery, the Lingnan Hospital, the Third Affiliated Hospital, Sun Yat-Sen University, GuangZhou 510630, PR China
| | | | | | | | | |
Collapse
|
45
|
Huang Y, de Leval L, Gaulard P. Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol 2013; 26:57-74. [DOI: 10.1016/j.beha.2013.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Tao Y, Chai D, Ma L, Zhang T, Feng Z, Cheng Z, Wu S, Qin Y, Lai M. Identification of distinct gene expression profiles between esophageal squamous cell carcinoma and adjacent normal epithelial tissues. TOHOKU J EXP MED 2012; 226:301-11. [PMID: 22499122 DOI: 10.1620/tjem.226.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a predominant type of esophageal cancer, which is a malignant tumor originating from the esophageal mucosa or gland and is aggressive with poor prognosis. Identification of new gene expression patterns would be helpful for providing new targets for the early detection and treatment of ESCC patients. In the present study, we employed cDNA array technology to compare gene expression profiles between ESCC tissues and adjacent normal epithelial tissues from ESCC patients. There was at least a 4-fold change in the expression levels of 72 genes that were significantly increased and 107 genes that were decreased in ESCC compared with normal esophageal epithelium. Among them, genes known to be involved in ESCC were found, including matrix metalloproteinases, transcription factors SOX-4 and SOX-17, the Wingless-type MMTV integration site family member 2, and cell cycle regulators. Moreover, we have newly identified the two genes that are down-regulated in ESCC: monoamine oxidase A, an enzyme that catalyzes monoamines oxidation and 15-hydroxyprostaglandin dehydrogenase [NAD+], a prostaglandin-synthesizing enzyme that physiologically antagonizes COX-2. Likewise, we found the three genes that are up-regulated in ESCC: CD7, a cell surface glycoprotein member of the immunoglobulin superfamily, LIM-domain kinase 1, a small subfamily with an unique combination of two N-terminal LIM motifs and a C-terminal protein kinase domain, and TTK protein kinase, a previously unidentified member of the kinase family. These newly identified genes may be involved in the progression of the tumor and/or represent properties specific to ESCC.
Collapse
Affiliation(s)
- Yisheng Tao
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
YOO SEUNGHEE, YOON YOUNGGEOL, LEE JEESUK, SONG YEONSUK, OH JOONSEOK, PARK BONGSOO, KWON TAEGKYU, PARK CHEOL, CHOI YUNGHYUN, YOO YOUNGHYUN. Etoposide induces a mixed type of programmed cell death and overcomes the resistance conferred by Bcl-2 in Hep3B hepatoma cells. Int J Oncol 2012; 41:1443-54. [DOI: 10.3892/ijo.2012.1585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/13/2012] [Indexed: 11/05/2022] Open
|
48
|
Kono Y, Inomata M, Hagiwara S, Hiratsuka T, Suzuki K, Koga H, Shiraishi N, Noguchi T, Kitano S. Antiproliferative effects of a new α-lipoic acid derivative, DHL-HisZnNa, in HT29 human colon cancer cellsin vitro. Expert Opin Ther Targets 2012; 16 Suppl 1:S103-9. [DOI: 10.1517/14728222.2011.640320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Zurlo D, Leone C, Assante G, Salzano S, Renzone G, Scaloni A, Foresta C, Colantuoni V, Lupo A. Cladosporol a stimulates G1-phase arrest of the cell cycle by up-regulation of p21(waf1/cip1) expression in human colon carcinoma HT-29 cells. Mol Carcinog 2011; 52:1-17. [PMID: 22025467 DOI: 10.1002/mc.20872] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 09/02/2011] [Accepted: 09/19/2011] [Indexed: 12/13/2022]
Abstract
Cladosporols, purified and characterized as secondary metabolites from Cladosporium tenuissimum, display an antifungal activity. In this study, we tested the antiproliferative properties of cladosporol A, the main isoform of this metabolite family, against human cancer cell lines. By assessing cell viability, we found that cladosporol A inhibits the growth of various human colon cancers derived cell lines (HT-29, SW480, and CaCo-2) in a time- and concentration-dependent manner, specifically of HT-29 cells. The reduced cell proliferation was due to a G1-phase arrest, as assessed by fluorescence activated cell sorting analysis on synchronized HT-29 cells, and was associated with an early and robust over-expression of p21(waf1/cip1) , the well-known cyclin-dependent kinases inhibitor. This suggests that the drug may play a role in the control of cancer cell proliferation. Consistently, cyclin D1, cyclin E, CDK2, and CDK4 proteins were reduced and histone H1-associated CDK2 kinase activity inhibited. In addition to p21(waf1/cip1) , exposure to 20 µM cladosporol A caused a simultaneous increase of pERK and pJNK, suggesting that this drug activates a circuit that integrates cell cycle regulation and the signaling pathways both involved in the inhibition of cell proliferation. Finally, we showed that the increase of p21(waf1/cip1) expression was generated by a Sp1-dependent p53-independent stimulation of its gene transcription as mutagenesis of the Sp1 binding sites located in the p21 proximal promoter abolished induction. To our knowledge, this is the first report showing that cladosporol A inhibits colon cancer cell proliferation by modulating p21(waf1/cip1) expression.
Collapse
Affiliation(s)
- Diana Zurlo
- Dipartimento di Scienze Biologiche ed Ambientali, Facoltà di Scienze, Università del Sannio, Benevento, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rhee HK, Yoo JH, Lee E, Kwon YJ, Seo HR, Lee YS, Choo HYP. Synthesis and cytotoxicity of 2-phenylquinazolin-4(3H)-one derivatives. Eur J Med Chem 2011; 46:3900-8. [PMID: 21704436 DOI: 10.1016/j.ejmech.2011.05.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 05/17/2011] [Accepted: 05/24/2011] [Indexed: 02/02/2023]
Abstract
Thirty 2-phenylquinazolin-4(3H)-one derivatives were prepared and their cytotoxic activities were tested in five human tumor cell lines. Some compounds (5e, 5k, 5t, 6c and 6f) showed relatively high cytotoxic activity. Especially, compound 6c showed the most cytotoxicity against all cell lines tested among the synthesized derivatives, and the inhibitory activity of 6c against HeLa cell was higher than that of adriamycin. The putative mechanism of antitumor action in apoptotic cell death was cell cycle arrest in the G0/G1 phase by compounds 5k, 5v, 5m, 6c, and 6f in HeLa cells. These compounds showed relatively high cytotoxicity in this cell type.
Collapse
Affiliation(s)
- Hee-Kyung Rhee
- College of Pharmacy & Division of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|