1
|
Nguyen TTT, Shahin K, Allan B, Sarfraz M, Wheler C, Gerdts V, Köster W, Dar A. Enhancement of protective efficacy of innate immunostimulant based formulations against yolk sac infection in young chicks. Poult Sci 2022; 101:102119. [PMID: 36087444 PMCID: PMC9468504 DOI: 10.1016/j.psj.2022.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
This study was conducted to characterize and compare the protective effects of various innate immune stimulants against yolk sac infection (YSI) caused by an avian pathogenic Escherichia coli in young chicks. The immune stimulants were administered alone or in various combinations of unmethylated CpG oligodeoxynucleotides (CpG), polyinosinic:polycytidylic acid (Poly I:C), and avian antimicrobial peptides (AMPs). Routes included in ovo or in ovo followed by a subcutaneous (S/C) injection. CpG alone and in combination with Poly I:C, truncated avian cathelicidin (CATH)-1(6-26), avian beta defensin (AvBD)1, and CATH-1(6-26) + AvBD1, were administered in ovo to 18-day-old embryonated eggs for gene expression and challenge studies. Next, CpG alone and the potentially effective formulation of CpG + Poly I:C, were administrated via the in ovo route using 40 embryonated eggs. At 1 day post-hatch, half of each group also received their respective treatments via the S/C route. Four hours later, all chicks were challenged using E. coli strain EC317 and mortalities were recorded for 14 d. The first challenge study revealed that amongst the single use and combinations of CpG with different innate immune stimulants, a higher protection and a lower clinical score were offered by the combination of CpG + Poly I:C. The second challenge study showed that this combination (CpG + Poly I:C) provides an even higher level of protection when a second dose is administered via the S/C route at 1 day post-hatch. The current research highlights the efficacy of a combination of CpG + Poly I:C administered either in ovo or in ovo along with a S/C injection and its potential use as an alternative to antibiotics against yolk sac infection in young chicks.
Collapse
Affiliation(s)
- Thuy Thi Thu Nguyen
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada.
| | - Khalid Shahin
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Brenda Allan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Mishal Sarfraz
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Colette Wheler
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Wolfgang Köster
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| | - Arshud Dar
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, SK S7N 5E3, Canada
| |
Collapse
|
2
|
Benefit of Dietary Supplementation with Bacillus subtilis BYS2 on Growth Performance, Immune Response, and Disease Resistance of Broilers. Probiotics Antimicrob Proteins 2021; 12:1385-1397. [PMID: 32128666 DOI: 10.1007/s12602-020-09643-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A strain of Bacillus subtilis (B. subtilis) BYS2 was previously isolated from Mount Tai, which is located in Tai'an City in the Shandong Province of China. The strain was then stored in the Environmental Microbiology Laboratory at Shandong Agricultural University. To evaluate the effect of the bacterium preparation in broiler production, we fed the bacterium (106 CFU/g) to 1-day-old broilers and continued this feeding for 6 weeks to analyze its effect on growth and immune performance. We found that the average weight of the bacterium-fed group increased by 17.19% at weeks 5 compared to the control group (P < 0.05). The height of the villi in the duodenum and jejunum and the ratio of villi to crypt were significantly increased in the bacterium-fed group at weeks 5 (P < 0.05). Also, the IgG in the serum of broilers in the experimental group increased by 31.60% (P < 0.05) and IgM 30.52% (P < 0.05) compared with those in the control group. The expressions of the major pattern recognition receptors (PRRs), antiviral proteins, pro-inflammatory cytokines, and β-defensins were significantly higher than those in the control group (P < 0.05). Meanwhile, the bursa immune organ indices of broilers in the experimental group were significantly higher than those in the control group (P < 0.05). Also, after 5 weeks of continuous feeding, when infected with Escherichia coli (E. coli) O1K1 and Newcastle disease virus (NDV) F48E8, the content of bacteria and virus in tissues and organs of the experimental group decreased significantly, and the survival rate of infected chickens increased by 31.1% and 17.7%, respectively (P < 0.05). These results show that the anti-infective B. subtilis BYS2 could, to some extent, replace antibiotics to promote growth, improve innate immunity, and enhance disease resistance in broilers.
Collapse
|
3
|
Avian antimicrobial peptides: in vitro and in ovo characterization and protection from early chick mortality caused by yolk sac infection. Sci Rep 2021; 11:2132. [PMID: 33483611 PMCID: PMC7822892 DOI: 10.1038/s41598-021-81734-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Increasing antibiotic resistance is a matter of grave concern for consumers, public health authorities, farmers, and researchers. Antimicrobial peptides (AMPs) are emerging as novel and effective non-antibiotic tools to combat infectious diseases in poultry. In this study, we evaluated six avian AMPs including 2 truncated cathelicidins, [CATH-1(6-26) and CATH-2(1-15)], and 4 avian β-defensins (ABD1, 2, 6 and 9) for their bactericidal and immunomodulatory activities. Our findings have shown CATH-1(6-26) and ABD1 being the two most potent avian AMPs effective against Gram-positive and Gram-negative bacteria investigated in these studies. Moreover, CATH-1(6-26) inhibited LPS-induced NO production and exhibited dose-dependent cytotoxicity to HD11 cells. While, ABD1 blocked LPS-induced IL-1β gene induction and was non-toxic to HD11 cells. Importantly, in ovo administration of these AMPs demonstrated that ABD1 can offer significant protection from early chick mortality (44% less mortality in ABD1 treated group versus the control group) due to the experimental yolk sac infection caused by avian pathogenic Escherichia coli. Our data suggest that in ovo administration of ABD1 has immunomodulatory and anti-infection activity comparable with CpG ODN. Thus, ABD1 can be a significant addition to potential alternatives to antibiotics for the control of bacterial infections in young chicks.
Collapse
|
4
|
Lactobacillus reuteri Enhances the Mucosal Barrier Function against Heat-killed Salmonella Typhimurium in the Intestine of Broiler Chicks. J Poult Sci 2020; 57:148-159. [PMID: 32461730 PMCID: PMC7248004 DOI: 10.2141/jpsa.0190044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Salmonella Typhimurium (ST) infection in chickens inhibits their growth and can lead to food-borne diseases in humans. Probiotics are expected to enhance the function of host intestinal barrier against pathogen infection. The aim of our study was to determine the effect of viable Lactobacillus reuteri (LR) on the response of the mucosal barrier function to antigen stimulation in broiler chicks. Day-old male (n=8) and female (n=4) broiler chicks were orally administered either 1 × 108 LR or a water-only control, every day for 7 days. After 7 days, either 1 × 108 heat-killed ST (k-ST), or a buffer-only control, was administered via intra-cardiac injection. The ileum and cecum were collected 3 h post-injection, and paraffin sections were prepared for either mRNA extraction (males), or gut permeability tests (females). Villus and crypt lengths were determined via histological analysis. Real-time PCR was used to calculate expression levels of Toll-like receptors (TLRs), pro-inflammatory cytokines, anti-inflammatory cytokines, avian β-defensins, and tight-junction-associated molecules. Gut permeability was assessed using the inverted intestine method. We found that (1) expression of TLR2-1, TLR21, TGF-β2 and TGF-β3 were reduced following k-ST stimulation, but were unaffected by LR-treatment; (2) oral administration of LR led to increased Claudin1, Claudin5, ZO2, and JAM2 expression following k-ST stimulation; (3) cecal permeability was reduced by co-treatment with LR and k-ST, but not by treatment with LR or k-ST alone. These results suggest that LR, as used in this study, may enhance the intestinal mucosal physical barrier function, but not the expression of other immune-related factors in newly hatched chicks.
Collapse
|
5
|
Yang M, Zhang C, Hansen SA, Mitchell WJ, Zhang MZ, Zhang S. Antimicrobial efficacy and toxicity of novel CAMPs against P. aeruginosa infection in a murine skin wound infection model. BMC Microbiol 2019; 19:293. [PMID: 31842727 PMCID: PMC6915932 DOI: 10.1186/s12866-019-1657-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of P. aeruginosa wound infection is challenging due to its inherent and acquired resistance to many conventional antibiotics. Cationic antimicrobial peptides (CAMPs) with distinct modes of antimicrobial action have been considered as the next-generation therapeutic agents. In the present study, a murine skin surgical wound infection model was used to evaluate the in vivo toxicity and efficacy of two newly designed antimicrobial peptides (CAMP-A and CAMP-B), as chemotherapeutic agents to combat P. aeruginosa infection. RESULTS In the first trial, topical application of CAMPs on the wounds at a dose equivalent to 4 × MIC for 7 consecutive days did not cause any significant changes in the physical activities, hematologic and plasma biochemical parameters, or histology of systemic organs of the treated mice. Daily treatment of infected wounds with CAMP-A and CAMP-B for 5 days at a dose equivalent to 2× MIC resulted in a significant reduction in wound bacterial burden (CAMP-A: 4.3 log10CFU/g of tissue and CAMP-B: 5.8 log10CFU/g of tissue), compared to that of the mock-treated group (8.1 log10CFU/g of tissue). Treatment with CAMPs significantly promoted wound closure and induced epidermal cell proliferation. Topical application of CAMP-A on wounds completely prevented systemic dissemination of P. aeruginosa while CAMP-B blocked systemic infection in 67% of mice and delayed the onset of systemic infection by at least 2 days in the rest of the mice (33%). In a second trial, daily application of CAMP-A at higher doses (5× MIC and 50× MIC) didn't show any significant toxic effect on mice and the treatments with CAMP-A further reduced wound bacterial burden (5× MIC: 4.5 log10CFU/g of tissue and 50× MIC: 3.8 log10CFU/g of tissue). CONCLUSIONS The data collectively indicated that CAMPs significantly reduced wound bacterial load, promoted wound healing, and prevented hepatic dissemination. CAMP-A is a promising alternative to commonly used antibiotics to treat P. aeruginosa skin infection.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Sarah A. Hansen
- Office of Animal Resources, University of Missouri, Columbia, MO 65211 USA
| | - William J. Mitchell
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael Z. Zhang
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Zhang C, Yang M, Ericsson AC. Antimicrobial Peptides: Potential Application in Liver Cancer. Front Microbiol 2019; 10:1257. [PMID: 31231341 PMCID: PMC6560174 DOI: 10.3389/fmicb.2019.01257] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
The physicochemical properties of antimicrobial peptides (AMPs) including size, net charge, amphipathic structure, hydrophobicity, and mode-of-action together determine their broad-spectrum activities against bacteria, fungi, protozoa, and viruses. Recent studies show that some AMPs have both antimicrobial and anticancer activities, suggesting a new strategy for cancer therapy. Hepatocellular carcinoma (HCC), the primary liver cancer, is a leading cause of cancer mortality worldwide, and lacks effective treatment. Anticancer peptides (ACPs) derived from AMPs or natural resources could be applied to combat HCC directly or as a synergistic treatment. However, the number of known ACPs is low compared to the number of antibacterial and antifungal peptides, and very few of them can be applied clinically for HCC treatment. In this review, we first summarize recent studies related to ACPs for HCC, followed by a description of potential modes-of-action including direct killing, anti-inflammation, immune modulation, and enhanced wound healing. We then describe the structures of AMPs and methods to design and modify these peptides to improve their anticancer efficacy. Finally, we explore the potential application of ACPs as vaccines or nanoparticles for HCC treatment. Overall, ACPs display several attractive properties as therapeutic agents, including broad-spectrum anticancer activity, ease-of-design and modification, and low production costs. As this is an emerging and novel area of cancer therapy, additional studies are needed to identify existing candidate AMPs with ACP activity, and assess their anticancer activity and specificity, and immunomodulatory effects, using in vitro, in silico, and in vivo approaches.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, United States
| | - Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
- University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
7
|
Yang M, Zhang C, Zhang MZ, Zhang S. Beta-defensin derived cationic antimicrobial peptides with potent killing activity against gram negative and gram positive bacteria. BMC Microbiol 2018; 18:54. [PMID: 29871599 PMCID: PMC5989455 DOI: 10.1186/s12866-018-1190-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/18/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Avian β-defensins (AvBD) are cationic antimicrobial peptides (CAMP) with broad-spectrum antimicrobial activity, chemotactic property, and low host cytotoxicity. However, their bactericidal activity is greatly compromised under physiological salt concentrations which limits the use of these peptides as therapeutic agents. The length and the complex structure involving three conserved disulfide bridges are additional drawbacks associated with high production cost. In the present study, short linear CAMPs (11 to 25 a.a. residues) were developed based on the key functional components of AvBDs with additional modifications. Their biological functions were characterized. RESULTS CAMP-t1 contained the CCR2 binding domain (N-terminal loop and adjacent α-helix) of AvBD-12 whereas CAMP-t2 comprised the key a.a. residues responsible for the concentrated positive surface charge and hydrophobicity of AvBD-6. Both CAMP-t1 and CAMP-t2 demonstrated strong antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus pseudintermedius. However, CAMP-t1 failed to show chemotactic activity and CAMP-t2, although superior in killing Staphylococcus spp., remained sensitive to salts. Using an integrated design approach, CAMP-t2 was further modified to yield CAMP-A and CAMP-B which possessed the following characteristics: α-helical structure with positively and negatively charged residues aligned on the opposite side of the helix, lack of protease cutting sites, C-terminal poly-Trp tail, N-terminal acetylation, and C-terminal amidation. Both CAMP-A and CAMP-B demonstrated strong antimicrobial activity against multidrug-resistant P. aeruginosa and methicillin-resistant S. pseudintermedius (MRSP) strains. These peptides were resistant to major proteases and fully active at physiological concentrations of NaCl and CaCl2. The peptides were minimally cytotoxic to avian and murine cells and their therapeutic index was moderate (≥ 4.5). CONCLUSIONS An integrated design approach can be used to develop short and potent antimicrobial peptides, such as CAMP-A and CAMP-B. The advantageous characteristics, including structural simplicity, resistance to salts and proteases, potent antimicrobial activity, rapid membrane attacking mode, and moderate therapeutic index, suggest that CAMP-A and CAMP-B are excellent candidates for development as therapeutic agents against multidrug-resistant P. aeruginosa and methicillin-resistant staphylococci.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael Z. Zhang
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
8
|
Yang M, Zhang C, Zhang MZ, Zhang S. Novel synthetic analogues of avian β-defensin-12: the role of charge, hydrophobicity, and disulfide bridges in biological functions. BMC Microbiol 2017; 17:43. [PMID: 28231771 PMCID: PMC5324278 DOI: 10.1186/s12866-017-0959-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Avian β-defensins (AvBD) possess broad-spectrum antimicrobial, LPS neutralizing and chemotactic properties. AvBD-12 is a chemoattractant for avian immune cells and mammalian dendritic cells (JAWSII) - a unique feature that is relevant to the applications of AvBDs as chemotherapeutic agents in mammalian hosts. To identify the structural components essential to various biological functions, we have designed and evaluated seven AvBD analogues. RESULTS In the first group of analogues, the three conserved disulfide bridges were eliminated by replacing cysteines with alanine and serine residues, peptide hydrophobicity and charge were increased by changing negatively charged amino acid residues to hydrophobic (AvBD-12A1) or positively charged residues (AvBD-12A2 and AvBD-12A3). All three analogues in this group showed improved antimicrobial activity, though AvBD-12A3, with a net positive charge of +9, hydrophobicity of 40% and a predicted CCR2 binding domain, was the most potent antimicrobial peptide. AvBD-12A3 also retained more than 50% of wild type chemotactic activity. In the second group of analogues (AvBD-12A4 to AvBD-12A6), one to three disulfide bridges were removed via substitution of cysteines with isosteric amino acids. Their antimicrobial activity was compromised and chemotactic activity abolished. The third type of analogue was a hybrid that had the backbone of AvBD-12 and positively charged amino acid residues AvBD-6. The antimicrobial and chemotactic activities of the hybrid resembled that of AvBD-6 and AvBD-12, respectively. CONCLUSIONS While the net positive charge and charge distribution have a dominating effect on the antimicrobial potency of AvBDs, the three conserved disulfide bridges are essential to the chemotactic property and the maximum antimicrobial activity. Analogue AvBD-12A3 with a high net positive charge, a moderate degree of hydrophobicity and a CCR2-binding domain can serve as a template for the design of novel antimicrobial peptides with chemotactic property and salt resistance.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Michael Z. Zhang
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|
9
|
Yang M, Zhang C, Zhang X, Zhang MZ, Rottinghaus GE, Zhang S. Structure-function analysis of Avian β-defensin-6 and β-defensin-12: role of charge and disulfide bridges. BMC Microbiol 2016; 16:210. [PMID: 27613063 PMCID: PMC5016922 DOI: 10.1186/s12866-016-0828-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 09/06/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Avian beta-defensins (AvBD) are small, cationic, antimicrobial peptides. The potential application of AvBDs as alternatives to antibiotics has been the subject of interest. However, the mechanisms of action remain to be fully understood. The present study characterized the structure-function relationship of AvBD-6 and AvBD-12, two peptides with different net positive charges, similar hydrophobicity and distinct tissue expression profiles. RESULTS AvBD-6 was more potent than AvBD-12 against E. coli, S. Typhimurium, and S. aureus as well as clinical isolates of extended spectrum beta lactamase (ESBL)-positive E. coli and K. pneumoniae. AvBD-6 was more effective than AvBD-12 in neutralizing LPS and interacting with bacterial genomic DNA. Increasing bacterial concentration from 10(5) CFU/ml to 10(9) CFU/ml abolished AvBDs' antimicrobial activity. Increasing NaCl concentration significantly inhibited AvBDs' antimicrobial activity, but not the LPS-neutralizing function. Both AvBDs were mildly chemotactic for chicken macrophages and strongly chemotactic for CHO-K1 cells expressing chicken chemokine receptor 2 (CCR2). AvBD-12 at higher concentrations also induced chemotactic migration of murine immature dendritic cells (DCs). Disruption of disulfide bridges abolished AvBDs' chemotactic activity. Neither AvBDs was toxic to CHO-K1, macrophages, or DCs. CONCLUSIONS AvBDs are potent antimicrobial peptides under low-salt conditions, effective LPS-neutralizing agents, and broad-spectrum chemoattractant peptides. Their antimicrobial activity is positively correlated with the peptides' net positive charges, inversely correlated with NaCl concentration and bacterial concentration, and minimally dependent on intramolecular disulfide bridges. In contrast, their chemotactic property requires the presence of intramolecular disulfide bridges. Data from the present study provide a theoretical basis for the design of AvBD-based therapeutic and immunomodulatory agents.
Collapse
Affiliation(s)
- Ming Yang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
| | - Xuehan Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People’s Republic of China
| | - Michael Z. Zhang
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - George E. Rottinghaus
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, MO USA
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO USA
- Department of Veterinary Pathobiology, Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211 USA
| |
Collapse
|