1
|
Soon XQ, Gedye K, Benschop J, Gartrell B. Molecular detection of Chlamydia psittaci in birds: a systematic review. Avian Pathol 2025; 54:279-298. [PMID: 39697165 DOI: 10.1080/03079457.2024.2443952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Molecular methods are currently the most sensitive for detecting Chlamydia psittaci in birds. Most laboratories have developed their own molecular assays or adapted published protocols, often making slight modifications to fit their specific study purposes. The sensitivity and specificity of a molecular test depend on the target gene, primer sequences, types of molecular test, DNA extraction method, and sampling methods. We reviewed 120 articles published between 2000 and 2020 to compile information on the molecular detection of C. psittaci in birds. Of the ten genomic targets currently available to detect C. psittaci in birds, the ompA gene was the most widely used. In published surveillance studies, of the fourteen molecular test types, conventional PCR and quantitative PCR were applied the most. A testing strategy using a hierarchical approach that includes molecular tests of genus- and species-specific targets is recommended to detect other avian chlamydial species besides the well-recognized C. psittaci. Samples should be sourced from both the respiratory and gastrointestinal tracts whenever possible for better accuracy. High-quality DNA can be obtained when the sample is preserved in optimal medium and temperature, and an optimized DNA extraction protocol is applied. Standardization and validation of molecular Chlamydia tests are needed to enhance the comparability and reliability of assays to detect C. psittaci and other chlamydiae species in birds.RESEARCH HIGHLIGHTSHierarchical molecular testing is recommended for the detection of avian C. psittaci.Key molecular tests for surveillance were conventional PCR and quantitative PCR.The most used genomic target to detect C. psittaci in birds was the ompA gene.
Collapse
Affiliation(s)
- Xue Qi Soon
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science - Tāwharau Ora, Massey University, Palmerston North, New Zealand
- Wildbase, School of Veterinary Science - Tāwharau Ora, Massey University, Palmerston North, New Zealand
| | - Kristene Gedye
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science - Tāwharau Ora, Massey University, Palmerston North, New Zealand
| | - Jackie Benschop
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science - Tāwharau Ora, Massey University, Palmerston North, New Zealand
| | - Brett Gartrell
- Wildbase, School of Veterinary Science - Tāwharau Ora, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Divín D, Goméz Samblas M, Kuttiyarthu Veetil N, Voukali E, Świderská Z, Krajzingrová T, Těšický M, Beneš V, Elleder D, Bartoš O, Vinkler M. Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation. Proc Biol Sci 2022; 289:20221941. [PMID: 36475439 PMCID: PMC9727682 DOI: 10.1098/rspb.2022.1941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.
Collapse
Affiliation(s)
- Daniel Divín
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Mercedes Goméz Samblas
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Nithya Kuttiyarthu Veetil
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Eleni Voukali
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Zuzana Świderská
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Tereza Krajzingrová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Martin Těšický
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic
| | - Michal Vinkler
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| |
Collapse
|
3
|
Silva BBI, Urzo MLR, Encabo JR, Simbulan AM, Lunaria AJD, Sedano SA, Hsu KC, Chen CC, Tyan YC, Chuang KP. Pigeon Circovirus over Three Decades of Research: Bibliometrics, Scoping Review, and Perspectives. Viruses 2022; 14:1498. [PMID: 35891478 PMCID: PMC9317399 DOI: 10.3390/v14071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The pigeon circovirus (PiCV), first described in the literature in the early 1990s, is considered one of the most important infectious agents affecting pigeon health. Thirty years after its discovery, the current review has employed bibliometric strategies to map the entire accessible PiCV-related research corpus with the aim of understanding its present research landscape, particularly in consideration of its historical context. Subsequently, developments, current knowledge, and important updates were provided. Additionally, this review also provides a textual analysis examining the relationship between PiCV and the young pigeon disease syndrome (YPDS), as described and propagated in the literature. Our examination revealed that usages of the term 'YPDS' in the literature are characterizations that are diverse in range, and neither standard nor equivalent. Guided by our understanding of the PiCV research corpus, a conceptualization of PiCV diseases was also presented in this review. Proposed definitions and diagnostic criteria for PiCV subclinical infection (PiCV-SI) and PiCV systemic disease (PiCV-SD) were also provided. Lastly, knowledge gaps and open research questions relevant to future PiCV-related studies were identified and discussed.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
- Graduate School, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Jaymee R. Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Alea Maurice Simbulan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Allen Jerard D. Lunaria
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Susan A. Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Keng-Chih Hsu
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
| | - Chia-Chi Chen
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
- You Guan Yi Biotechnology Company, Kaohsiung 807, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
4
|
Health Status and Stress in Different Categories of Racing Pigeons. Animals (Basel) 2021; 11:ani11092686. [PMID: 34573652 PMCID: PMC8470826 DOI: 10.3390/ani11092686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Corticosterone is the most important “stress” hormone in birds. Stress response is influenced by different factors, such as phylogeny, feed supply, age, body condition, health status, climate, predators. Pigeon races over long distances, 500 km or more, can lead to the “exploitation” of animals if not strictly regulated and observed, jeopardizing their welfare status. Animals should be in good health and body condition, and health monitoring must be implemented. In stressful situations such as races, the possibility of infection increases. Clinically asymptomatic infections can flare up later in the breeding season and can cause high offspring mortality. For example, infections with circoviruses are particularly important because of their ability to weaken the immune system. The purpose of this work is to identify the critical stress points during the active training season of racing pigeons for the improvement of their condition and the preservation of their welfare during races. The aim of our study was to determine the serum corticosterone levels in different categories of racing pigeons exposed to severe stress factors. At the time of racing, some parameters of stress, including environmental factors, or the presence of infectious diseases or parasites, were recorded. It was found that participation in the race significantly increased serum corticosterone levels and remained high even one month after the race. Therefore, training and races should be properly managed and planned. Abstract The influence of different stress parameters in racing pigeon flocks, such as the presence of diseases and environmental conditions at the time of the races, were described. A total of 96 racing pigeons from 4 pigeon flocks were examined, and health monitoring was carried out. No helminth eggs and coccidia were found. Trichomonas sp. was confirmed in subclinical form. Paramyxoviruses and avian influenza viruses were not confirmed, but circovirus infections were confirmed in all flocks. Chlamydia psittaci was confirmed in one flock. Blood samples were collected, and HI antibody titers against paramyxoviruses before and 25 days after vaccination were determined. To improve the conditions during racing and the welfare of the pigeons, critical points were studied with regard to stress factors during the active training season. Serum corticosterone levels were measured in the blood serum of four different categories of pigeons from each flock. Corticosterone levels were almost twice as high in pigeons from the category that were active throughout the racing season, including medium- and long-distance racing, compared to the other three categories that were not racing actively. Within five hours of the finish of a race, the average serum corticosterone level was 59.4 nmol/L in the most physically active category. The average serum corticosterone level in this category remained at 37.5 nmol/L one month after the last race.
Collapse
|
5
|
Angen Ø, Johannesen TB, Petersen RF, Uldum SA, Schnee C. Development of a species-specific real-time PCR test for Chlamydia psittaci and its employment in the investigation of zoonotic transmission from racing pigeons in Denmark. Diagn Microbiol Infect Dis 2021; 100:115341. [PMID: 33684659 DOI: 10.1016/j.diagmicrobio.2021.115341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/29/2022]
Abstract
Species-specific detection of Chlamydia psittaci is challenging and all published PCR tests have so far shown deficiencies in specificity or sensitivity. The present investigation reports on the development of a species-specific real-time PCR assay for C. psittaci. The test is based on an 84 bp indel in a gene of unknown function that is unique to C. psittaci. The Cps-indel84-PCR assay was validated on a wide range of chlamydial and other bacterial strains as well as on clinical samples from animals and humans in two different diagnostic laboratories in Germany and Denmark. Furthermore, the test was employed for investigating samples from racing pigeon flocks in Denmark. The evaluation showed that the Cps-indel84-PCR assay has excellent test characteristics and is a highly reliable method for identifying C. psittaci in clinical samples both from humans and animals.
Collapse
Affiliation(s)
- Øystein Angen
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Copenhagen, Denmark.
| | - Thor Bech Johannesen
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Copenhagen, Denmark
| | - Randi Føns Petersen
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Copenhagen, Denmark
| | - Søren Anker Uldum
- Statens Serum Institut, Department of Bacteria, Parasites & Fungi, Copenhagen, Denmark
| | - Christiane Schnee
- Friedrich-Loeffler-Institut, Institute for Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
6
|
Wang C, Li L, Xie Y, Tan Y, Wen Y, Chen Q, Yu J, Song Y, Wu Y. Isolation and Characterization of Avian Chlamydia psittaci from Symptomatic Pet Birds in Southern Hunan, China. Avian Dis 2020; 63:31-37. [PMID: 31251517 DOI: 10.1637/11932-071718-reg.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/15/2018] [Indexed: 11/05/2022]
Abstract
Chlamydia psittaci is a zoonotic pathogen with multiple hosts, especially avian, and can be transmitted to humans, causing psittacosis or ornithosis. No effective vaccines have been developed. We therefore isolate and genotype avian C. psittaci strains and investigate the pathogenicity of isolates in the southern Hunan area of China. Among 200 suspicious avian specimens, eight were positive for the C. psittaci outer membrane protein A (ompA) gene (4%), and seven were successfully cultured in human epithelial type 2 and Vero cells (87.5%). Genotyping of the ompA gene of the eight PCR-positive samples revealed that all of the cultured strains, except for the E9 strain, belonged to genotype A. Pathologic changes in the mice infected with C. psittaci via intranasal inoculation showed severe pneumonia and intense infiltration of inflammatory cells in the lung in a dose-dependent manner, and immunohistochemical staining displayed different levels of infiltration of C. psittaci inclusions in the heart, liver, spleen, kidney, and, especially, lung. Our findings demonstrate that genotype A dominates all C. psittaci genotypes in the southern Hunan area and that the C. psittaci avian isolates in this region possess dose-dependent pathogenicity.
Collapse
Affiliation(s)
- Chuan Wang
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Li Li
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yafeng Xie
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yuan Tan
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yating Wen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Qian Chen
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Jian Yu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China.,Department of Experimental Zoology, Medical College, University of South China, Hengyang 421001, China
| | - Ying Song
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control and Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang 421001, China,
| |
Collapse
|
7
|
Mattmann P, Marti H, Borel N, Jelocnik M, Albini S, Vogler BR. Chlamydiaceae in wild, feral and domestic pigeons in Switzerland and insight into population dynamics by Chlamydia psittaci multilocus sequence typing. PLoS One 2019; 14:e0226088. [PMID: 31887111 PMCID: PMC6936790 DOI: 10.1371/journal.pone.0226088] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022] Open
Abstract
Feral pigeons, common wood pigeons and Eurasian collared doves are the most common representatives of the Columbidae family in Switzerland and are mostly present in highly populated, urban areas. Pigeons may carry various members of the obligate intracellular Chlamydiaceae family, particularly Chlamydia (C.) psittaci, a known zoonotic agent, and C. avium. The objective of the study was to identify the infection rates of common free-roaming pigeons for different Chlamydia species with the overall aim to assess the risk pigeons pose to public health. In this study, 431 pigeons (323 feral pigeons, 34 domestic pigeons, 39 Eurasian collared doves, 35 common wood pigeons) from several geographic locations in Switzerland were investigated for the presence of Chlamydiaceae. Samples consisted of pooled choanal-cloacal swabs (n = 174), liver samples (n = 52), and paired swab and liver samples from 205 pigeons (n = 410). All 636 samples were screened using a Chlamydiaceae family-specific 23S rRNA real-time PCR (qPCR). Subsequent species identification was performed by DNA-microarray assay, sequencing of a 16S rRNA gene fragment and a C. psittaci specific qPCR. In total, 73 of the 431 pigeons tested positive for Chlamydiaceae, of which 68 were positive for C. psittaci, four were C. avium-positive and one pigeon was co-infected with C. avium and C. psittaci. The highest infection rates were detected in feral (64/323) and domestic pigeons (5/34). Common wood pigeons (2/35) and Eurasian collared doves (2/39) revealed lower infection rates. Additionally, multilocus sequence typing of twelve selected C. psittaci-positive samples revealed closely related sequence types (ST) between and within different Swiss cities. Furthermore, liver and corresponding swab samples from the same bird were colonized by the same ST. Considering the high infection rates of C. psittaci in domestic and feral pigeons, close or frequent contact to these birds poses a human health risk.
Collapse
MESH Headings
- Animals
- Animals, Domestic
- Animals, Wild
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/classification
- Bacterial Outer Membrane Proteins/genetics
- Bird Diseases/diagnosis
- Bird Diseases/microbiology
- Chlamydiaceae/classification
- Chlamydiaceae/genetics
- Chlamydiaceae/isolation & purification
- Chlamydophila psittaci/genetics
- Chlamydophila psittaci/isolation & purification
- Columbidae
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Bacterial/metabolism
- Multilocus Sequence Typing
- Phylogeny
- Population Dynamics
- Psittacosis/diagnosis
- Psittacosis/microbiology
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/isolation & purification
- RNA, Ribosomal, 16S/metabolism
- Switzerland
Collapse
Affiliation(s)
- Prisca Mattmann
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Swiss Ornithological Institute, Sempach, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, Australia
| | - Sarah Albini
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Renate Vogler
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|