1
|
Song L, Wu J, Weng K, Yao F, Vongsangnak W, Zhu G, Chen G, Zhang Y, Xu Q. The salmonella effector Hcp modulates infection response, and affects salmonella adhesion and egg contamination incidences in ducks. Front Cell Infect Microbiol 2022; 12:948237. [PMID: 36262184 PMCID: PMC9575552 DOI: 10.3389/fcimb.2022.948237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Salmonella Entertidis (SE) often causes persistent infections and egg contamination in laying ducks. Hcp, the core structural and effector proteins of the Type VI Secretion System (T6SS) in SE, contributes to bacterial invasion, adhesion and virulence. However, little is known about the effect of Hcp on the host’s infection responses and egg contamination incidences in duck. Herein, we generated an hcp deletion mutant SE MY1△hcp and detected its ability to invade duck granulosa cells (dGCs) and contaminate eggs. In comparison with MY1-infected group, the SE adhesion decreased by 15.96% in MY1△hcp-infected dGCs, and the apoptosis in MY1△hcp-infected dGCs decreased by 26.58% and 30.99% at 3 and 6 hours postinfection, respectively. However, the expression levels of immunogenic genes TLR4, NOD1, TNFα, IL-1β and proinflammatory cytokines IL-6, IL-1β, TNF-α release were markedly lower in the dGCs inoculated with MY1△hcp than that of the wild type. Besides, the laying ducks were challenged with MY1 or MY1△hcp in vivo, respectively. The lower egg production and higher egg contamination were observed in MY1-infected ducks in comparison with MY1△hcp-infected birds. Furthermore, the host’s infection response of differentially abundant proteins (DAPs) to Salmonella effector Hcp was identified using quantitative proteomics. A total of 164 DAPs were identified between the MY1- and MY1△hcp-infected cells, which were mainly engaged in the immune, hormone synthesis, cell proliferation and cell apoptotic process. Among them, STAT3, AKT1, MAPK9, MAPK14, and CREBBP were the center of the regulatory network, which might serve as key host response regulators to bacterial Hcp. In conclusion, we demonstrated that effector Hcp contributed to not only SE invasion, induction of dGCs apoptosis, and trigger of immune responses, but also enhanced contamination incidences. Also, the STAT3, AKT1, MAPK9, MAPK14, and CREBBP were identified as host’s infection response regulators of bacterial Hcp in duck. Overall, these results not only offered a novel evidence of SE ovarian transmission but also identified some promising candidate regulators during SE infection.
Collapse
Affiliation(s)
- Lina Song
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jia Wu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Weng
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fenghua Yao
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Zhang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Yu Zhang,
| | - Qi Xu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang Y, Song L, Hou L, Cao Z, Vongsangnak W, Zhu G, Xu Q, Chen G. Dual Transcriptomic Analyses Unveil Host-Pathogen Interactions Between Salmonella enterica Serovar Enteritidis and Laying Ducks ( Anas platyrhynchos). Front Microbiol 2021; 12:705712. [PMID: 34421865 PMCID: PMC8374152 DOI: 10.3389/fmicb.2021.705712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella enteritidis (SE) is a pathogen that can readily infect ovarian tissues and colonize the granulosa cell layer such that it can be transmitted via eggs from infected poultry to humans in whom it can cause food poisoning. Ducks are an important egg-laying species that are susceptible to SE infection, yet the host–pathogen interactions between SE and ducks have not been thoroughly studied to date. Herein, we performed dual RNA-sequencing analyses of these two organisms in a time-resolved infection model of duck granulosa cells (dGCs) by SE. In total, 10,510 genes were significantly differentially expressed in host dGCs, and 265 genes were differentially expressed in SE over the course of infection. These differentially expressed genes (DEGs) of dGCs were enriched in the cytokine–cytokine receptor interaction pathway via KEGG analyses, and the DEGs in SE were enriched in the two-component system, bacterial secretion system, and metabolism of pathogen factors pathways as determined. A subsequent weighted gene co-expression network analysis revealed that the cytokine–cytokine receptor interaction pathway is mostly enriched at 6 h post-infection (hpi). Moreover, a number of pathogenic factors identified in the pathogen–host interaction database (PHI-base) are upregulated in SE, including genes encoding the pathogenicity island/component, type III secretion, and regulators of systemic infection. Furthermore, an intracellular network associated with the regulation of SE infection in ducks was constructed, and 16 cytokine response-related dGCs DEGs (including IL15, CD40, and CCR7) and 17 pathogenesis-related factors (including sseL, ompR, and fliC) were identified, respectively. Overall, these results not only offer new insights into the mechanisms underlying host–pathogen interactions between SE and ducks, but they may also aid in the selection of potential targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Yu Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lina Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lie Hou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhengfeng Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Zhang Y, Chen Y, Gu T, Xu Q, Zhu G, Chen G. Effects of Salmonella enterica serovar Enteritidis infection on egg production and the immune response of the laying duck Anas platyrhynchos. PeerJ 2019; 7:e6359. [PMID: 30701142 PMCID: PMC6348949 DOI: 10.7717/peerj.6359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022] Open
Abstract
Persistent colonization of the avian reproductive tract by Salmonella enterica serovar Enteritidis (SE) negatively affects egg production and contaminates the egg. The immune function of the ovary and oviduct is essential for protection from infection and for the production of wholesome eggs. However, the immune response of laying ducks during SE infection is not well-understood. In this study, ducks (Anas platyrhynchos) were infected with SE and were systematically monitored for fecal shedding during a 13-week period. We also assessed bacterial distribution in the reproductive tract and classified infected ducks as resistant or susceptible based on the presence of tissue lesions and on SE isolation from fecal samples. We found that infected animals had persistent, but intermittent, bacterial shedding that resulted in the induction of carrier ducks. Laying rate and egg quality were also decreased after SE infection (P < 0.05). SE readily colonized the stroma, small follicle, isthmus, and vagina in the reproductive tracts of susceptible ducks. Immunoglobulin (IgA, IgG, IgM) levels were higher in susceptible ducks compared with resistant birds (P < 0.05); T-lymphocyte subpopulations (CD3+, CD4+, CD8+) displayed the opposite trend. qRT-PCR analysis was used to examine expression profiles of immune response genes in the reproductive tract of infected ducks. The analysis revealed that immune genes, including toll-like receptors (TLR2, TLR4-5, TLR15, TLR21), NOD-like receptors (NOD1, NLRX1, NLRP12), avian β-defensins (AvβD4-5, AvβD7, AvβD12), cytokines (IL-6, IL-1β, IFN-γ), and MyD88 were markedly upregulated in the reproductive tracts of SE-infected ducks (all P < 0.05); TLR3, TLR7, NLRC3, NLRC5, and TNF-α were significantly downregulated. These results revealed that SE infection promoted lower egg production and quality, and altered the expression of TLRs, NLRs, AvβDs, and cytokine family genes. These findings provide a basis for further investigation of the physiological and immune mechanisms of SE infection in laying ducks.
Collapse
Affiliation(s)
- Yu Zhang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tiantian Gu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Zhang Y, Gu TT, Chen Y, Huang Y, Du J, Lu L, Zhu GQ, Xu Q, Chen GH. Comparative transcriptome analysis reveals PERP upregulated during Salmonella Enteritidis challenge in laying ducks. J Cell Physiol 2018; 234:11330-11347. [PMID: 30478915 DOI: 10.1002/jcp.27790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/07/2022]
Abstract
Salmonella Enteritidis (SE) can be transmitted to eggs through cecum or the ovary from infected layers and causes food poisoning in humans. The mechanism of cecal transmission has been extensively studied. However, the mechanism and route of transovarian transmission of SE remain unclear. In this study, the ducks were orally inoculated with SE, and the ovarian follicles and stroma were collected to detect SE infection. The immune responses were triggered and the innate and adaptive immune genes (TLR4, NOD1, AvβD7, and IL-1β) were upregulated significantly during the SE challenge. Moreover, the ovary tissues (small follicle and stroma) of susceptible and resistant-laying ducks were performed by RNA sequencing. We obtained and identified 23 differentially expressed genes (DEGs) between susceptible and resistant-laying ducks in both small follicle and stroma tissues ( p < 0.05). The DEGs were predominately identified in the p53 signaling pathway. The expression of key genes (p53, MDM2, PERP, caspase-3, and Bcl-2) involved in the signaling pathway was significantly higher in granulosa cells (dGCs) from SE-infected ducks than those from uninfected ducks. Moreover, the overexpression of PERP resulted in further induction of p53, MDM2, caspase-3, and Bcl-2 during SE infection in dGCs. Whereas, an opposite trend was observed with the knockdown of PERP. Besides, it is further revealed that the PERP could enhance cell apoptosis, SE adhesion, and SE invasion in SE-infected dGCs overexpression. Altogether, our results demonstrate the duck PERP involved in the ovarian local immune niche through p53 signaling pathway in dGCs challenged with SE.
Collapse
Affiliation(s)
- Yu Zhang
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tian-Tian Gu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yang Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yu Huang
- Institute of Animal Science, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Jinping Du
- Institute of Animal Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lizhi Lu
- Institute of Animal Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guo-Qiang Zhu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qi Xu
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| | - Guo-Hong Chen
- Joint International Research Laboratory of Agriculture & Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Liao H, Wu X, Zhang K, Ding X, Bai S, Wang J, Zeng Q. The effect of citric acid acidification of drinking water on growth performance, cecal pH, and cecal microflora of meat duck. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Li P, Fan W, Li Q, Wang J, Liu R, Everaert N, Liu J, Zhang Y, Zheng M, Cui H, Zhao G, Wen J. Splenic microRNA Expression Profiles and Integration Analyses Involved in Host Responses to Salmonella enteritidis Infection in Chickens. Front Cell Infect Microbiol 2017; 7:377. [PMID: 28884089 PMCID: PMC5573731 DOI: 10.3389/fcimb.2017.00377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/08/2017] [Indexed: 01/26/2023] Open
Abstract
To understand the role of miRNAs in regulating genes involved in the host response to Salmonella enteritidis (SE) infection, next generation sequencing was applied to explore the altered splenic expression of microRNAs (miRNAs) and deregulated genes in specific-pathogen-free chickens. Birds were either infected or not (controls, C) and those challenged with SE were evaluated 24 h later and separated into two groups on the basis of the severity of clinical symptoms and blood load of SE: resistant (R, SE challenged-slight clinical symptoms and <105 cfu / 10 μL), and susceptible (S, SE challenged-severe clinical symptoms and >107 cfu/10 μL). Thirty-two differentially expressed (DE) miRNAs were identified in spleen, including 16 miRNAs between S and C, 13 between R and C, and 13 between S and R. Through integration analysis of DE miRNAs and mRNA, a total of 273 miRNA-target genes were identified. Functional annotation analysis showed that Apoptosis and NOD-like receptor signaling pathway and adaptive immune response were significantly enriched (P < 0.05). Interestingly, apoptosis pathway was significantly enriched in S vs. C, while NOD-like receptor pathway was enriched in R vs. C (P < 0.05). Two miRNAs, gga-miR-101-3p and gga-miR-155, in the hub positions of the miRNA-mRNA regulatory network, were identified as candidates potentially associated with SE infection. These 2 miRNAs directly repressed luciferase reporter gene activity via binding to 3'-untranslated regions of immune-related genes IRF4 and LRRC59; over-expressed gga-miR-155 and interference gga-miR-101-3p in chicken HD11 macrophage cells significantly altered expression of their target genes and decreased the production of pro-inflammatory cytokines. These findings facilitate better understanding of the mechanisms of host resistance and susceptibility to SE infection in chickens.
Collapse
Affiliation(s)
- Peng Li
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
- State Key Laboratory of Animal NutritionBeijing, China
| | - Wenlei Fan
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Qinghe Li
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jie Wang
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| | - Ranran Liu
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of LiègeGembloux, Belgium
| | - Jie Liu
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| | - Yonghong Zhang
- College of Animal Science, Jilin UniversityChangchun, China
| | - Maiqing Zheng
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Huanxian Cui
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Guiping Zhao
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural SciencesBeijing, China
- State Key Laboratory of Animal NutritionBeijing, China
| |
Collapse
|
7
|
Arafat N, Eladl AH, Mahgoub H, El-Shafei RA. Effect of infectious bursal disease (IBD) vaccine on Salmonella Enteritidis infected chickens. Vaccine 2017; 35:3682-3689. [PMID: 28495316 DOI: 10.1016/j.vaccine.2017.04.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chickens infected with both infectious bursal disease virus (IBDV) and Salmonella had higher mortality. In this work, we investigated the effect of IBDV vaccine (modified live-virus bursal disease vaccine, Nobilis strain 228E®) on experimentally infected chickens with Salmonella Enteritidis (SE). METHODS Four experimental groups were included in this study, negative control group, 228E®group, 228E®+SE infected group, and SE infected group. Chickens were ocularly administrated 228E® at 12days of age and orally infected with S. Enteritidis at 13days of age. Sera, intestinal fluid, blood, cloacal swabs and tissue samples were collected at 1, 2 and 3weeks post vaccination (PV). RESULTS The recorded mortalities were higher in the 228E®+SE infected group, compared to the SE infected group. The anti-S. Enteritidis serum antibody titer and the intestinal mucosal IgA level were higher in the SE infected group at 2 and 3weeks PV, compared to 228E®+SE infected group. S. Enteritidis fecal shedding and organ colonization were significantly higher in the 228E®+SE infected group than the SE infected group at 2 and 3weeks PV. The 228E®+SE group had significantly lower bursa to body weight ratios at 2 and 3weeks PV, as well as had higher bursal lesion scores than the SE infected group. IBDV vaccine depressed the specific-SE systemic and mucosal antibody responses, but did not affect the specific-SE cellular immune responses. CONCLUSION Chickens administrated IBDV vaccine, followed by S. Enteritidis infection, could cause a significant effect on the bursa of Fabricius, resulting in failure of systemic and mucosal antibody responses to the S. Enteritidis and reduce the elimination and the clearance of S. Enteritidis.
Collapse
Affiliation(s)
- Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Hebatallah Mahgoub
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
A one-step duplex rRT-PCR assay for the simultaneous detection of duck hepatitis A virus genotypes 1 and 3. J Virol Methods 2016; 236:207-214. [PMID: 27435338 DOI: 10.1016/j.jviromet.2016.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 11/21/2022]
Abstract
Duck hepatitis A virus (DHAV) is a highly infectious pathogen that causes significant bleeding lesions in the viscera of ducklings less than 3 weeks old. There are three serotypes of DHAV: serotype 1 (DHAV-1), serotype 2 (DHAV-2) and serotype 3 (DHAV-3). These serotypes have no cross-antigenicity with each other. To establish an rRT-PCR assay for the rapid detection of a mixed infection of DHAV-1 and DHAV-3, two pairs of primers and a pair of matching TaqMan probes were designed based on conserved regions of DHAV-1 VP0 and DHAV-3 VP3. Finally, we established a one-step duplex rRT-PCR assay with high specificity and sensitivity for the simultaneous detection of DHAV-1 and DHAV-3. This method showed no cross-antigenicity with the other pathogens tested, including duck plague virus, Muscovy duck parvovirus, Riemerella anatipestifer, and pathogenic E. coli from ducks. Sensitivity tests identified the minimum detection limits of this method as 98 (DHAV-1) and 10 (DHAV-3) copies/reaction. To validate the method, thirty-eight clinical samples and thirty artificially infected samples collected from dead duck embryos were studied. Thirty-seven samples were positive for DHAV-1, seventeen samples were positive for DHAV-3, and fourteen samples were positive for a mixed infection using the duplex rRT-PCR method. The method established in this study is specific, sensitive, convenient and timesaving and is a powerful tool for detecting DHAV-1, DHAV-3, and their mixed infection and for conducting surveys of pandemic virus strains.
Collapse
|
9
|
Yang L, Li J, Bi Y, Xu L, Liu W. Development and application of a reverse transcription loop-mediated isothermal amplification method for rapid detection of Duck hepatitis A virus type 1. Virus Genes 2012; 45:585-9. [PMID: 22869367 PMCID: PMC7088793 DOI: 10.1007/s11262-012-0798-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/21/2012] [Indexed: 11/25/2022]
Abstract
We developed and evaluated a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for detecting Duck hepatitis A virus type 1 (DHAV-1). The amplification could be finished in 1 h under isothermal conditions at 63 °C by employing a set of four primers targeting the 2C gene of DHAV-1. The RT-LAMP assay showed higher sensitivity than the RT-PCR with a detection limit of 0.1 ELD(50) 0.1 ml(-1) of DHAV-1. The RT-LAMP assay was highly specific; no cross-reactivity was observed from the samples of other related viruses, bacteria, allantoic fluid of normal chicken embryos, or the livers of uninfected ducks. Thirty clinical samples were subjected to detection by RT-LAMP, RT-PCR, and virus isolation, which obtained completely consistent, positive results. As a simple, rapid, and accurate detection method, this RT-LAMP assay has important potential applications in the clinical diagnosis of DHAV-1.
Collapse
Affiliation(s)
- Limin Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
10
|
Gou Z, Liu R, Zhao G, Zheng M, Li P, Wang H, Zhu Y, Chen J, Wen J. Epigenetic modification of TLRs in leukocytes is associated with increased susceptibility to Salmonella enteritidis in chickens. PLoS One 2012; 7:e33627. [PMID: 22438967 PMCID: PMC3306431 DOI: 10.1371/journal.pone.0033627] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022] Open
Abstract
Toll-like receptors (TLRs) signaling pathways are the first lines in defense against Salmonella enteritidis (S. enteritidis) infection but the molecular mechanism underlying susceptibility to S. enteritidis infection in chicken remains unclear. SPF chickens injected with S. enteritidis were partitioned into two groups, one consisted of those from Salmonella-susceptible chickens (died within 5 d after injection, n = 6), the other consisted of six Salmonella-resistant chickens that survived for 15 d after injection. The present study shows that the bacterial load in susceptible chickens was significantly higher than that in resistant chickens and TLR4, TLR2-1 and TLR21 expression was strongly diminished in the leukocytes of susceptible chickens compared with those of resistant chickens. The induction of expression of pro-inflammatory cytokine genes, IL-6 and IFN-β, was greatly enhanced in the resistant but not in susceptible chickens. Contrasting with the reduced expression of TLR genes, those of the zinc finger protein 493 (ZNF493) gene and Toll-interacting protein (TOLLIP) gene were enhanced in the susceptible chickens. Finally, the expression of TLR4 in peripheral blood mononuclear cells (PBMCs) infected in vitro with S. enteritidis increased significantly as a result of treatment with 5-Aza-2-deoxycytidine (5-Aza-dc) while either 5-Aza-dc or trichostatin A was effective in up-regulating the expression of TLR21 and TLR2-1. DNA methylation, in the predicted promoter region of TLR4 and TLR21 genes, and an exonic CpG island of the TLR2-1 gene was significantly higher in the susceptible chickens than in resistant chickens. Taken together, the results demonstrate that ZNF493-related epigenetic modification in leukocytes probably accounts for increased susceptibility to S. enteritidis in chickens by diminishing the expression and response of TLR4, TLR21 and TLR2-1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Wen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Haidian, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Replication Kinetics of <I>Salmonella</I> Enteritidis Live Vaccine in the Immune Organs of Chicken after Subcutaneous Immunization. J Poult Sci 2012. [DOI: 10.2141/jpsa.011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
He GZ, Feng Y, Deng SX, He LF, An CW, Tian WY. Evaluation of the colonization capabilities of Salmonella Enteritidis in quails using an RT-PCR approach. Res Vet Sci 2011; 93:28-30. [PMID: 21764092 DOI: 10.1016/j.rvsc.2011.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 06/16/2011] [Accepted: 06/25/2011] [Indexed: 10/18/2022]
Abstract
We used a real-time PCR assay and indirect fluorescent antibody (IFA) assay to detect genomic DNA of Salmonella Enteritidis in the internal organs of quails after an oral challenge. The results showed that S. Enteritidis was detected in all the samples at different time points. This study will assist a future understanding of the pathogenesis of S. Enteritidis.
Collapse
Affiliation(s)
- Guang-Zhi He
- Guiyang College of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, China
| | | | | | | | | | | |
Collapse
|
13
|
He GZ, Tian WY, Qian N, Deng SX, An CW, Feng Y. The population of a high-virulence strain of Salmonella enterica serovar Enteritidis in subcutaneously infected partridge: a quantitative time-course study using real-time PCR. Vet Res Commun 2011; 35:439-45. [PMID: 21594642 DOI: 10.1007/s11259-011-9481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
This research was undertaken to determine the population of a high-virulence strain of Salmonella enterica serovar Enteritidis in partridge by a fluorescent quencher PCR assay and to correlate these findings with the results obtained from the immunohistochemical localization and histopathological examinations of selected Salmonella enterica serovar Enteritidis-infected tissues. To make the results meaningful, a side-by-side bacteriology method (indirect immuno-fluorescent antibody staining) was performed too. The results of indirect immuno-fluorescent antibody staining and immunohistochemical localization were similar to the fluorescent quencher PCR assay. The time course of the appearance of bacterial antigens and tissue lesions in various tissues was coincident with the levels of the bacterial DNA loads at the infection sites. This suggests that Salmonella enterica serovar Enteritidis loads in internal organs are closely correlated with the progression of the infection.
Collapse
Affiliation(s)
- Guang-Zhi He
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, Guizhou Province, China
| | | | | | | | | | | |
Collapse
|
14
|
He GZ, Tian WY, Qian N, Cheng AC, Deng SX. Quantitative studies of the distribution pattern for Salmonella Enteritidis in the internal organs of chicken after oral challenge by a real-time PCR. Vet Res Commun 2010; 34:669-76. [PMID: 20665111 DOI: 10.1007/s11259-010-9438-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 01/06/2023]
Abstract
This research was undertaken to identify and understand the regular distribution pattern for Salmonella Enteritidis (S. enteritidis) in the internal organs of chicken after oral challenge over a 3 wk period. We used a real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) to detect genomic DNA of S. enteritidis in the blood and the internal organs, including heart, liver, spleen, kidney, pancreas, and gallbladder, from chicken after oral challenge at different time points. The results showed that the spleen was positive at 12 h post inoculation (PI), and the blood was at 14 h PI. The organism was detected in the liver and heart at 16 h PI, pancrea was positive at 20 h PI, and the final organ to show a positive results were the kidney and gallbladder at 22 h PI. The copy number of S. enteritidis DNA in each tissue reached a peak at 24 h-36 h PI, with the liver and spleen containing high concentrations of S. enteritidis, whereas the blood, heart, kidney, pancreas, and gallbladder had low concentrations. S. enteritidis populations began to decrease and were not detectable at 3 d PI, but were still present up to 12 d PI in the gallbladder, 2 wk for the liver, and 3 wk for the spleen without causing apparent symptoms. The results showed that the liver and spleen may be the primary sites for S. enteritidis setting itself up as a commensa over a long time after oral challenge. Interestingly, it may be the first time reported that the gallbladder is a site of carriage for S. enteritidis over a 12 d period. This study will help to understand the mechanisms of action of S. enteritidis infection in vivo.
Collapse
Affiliation(s)
- G Z He
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, Guizhou Province, China.
| | | | | | | | | |
Collapse
|
15
|
Spontaneous excision of the Salmonella enterica serovar Enteritidis-specific defective prophage-like element phiSE14. J Bacteriol 2010; 192:2246-54. [PMID: 20172996 DOI: 10.1128/jb.00270-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis has emerged as a major health problem worldwide in the last few decades. DNA loci unique to S. Enteritidis can provide markers for detection of this pathogen and may reveal pathogenic mechanisms restricted to this serovar. An in silico comparison of 16 Salmonella genomic sequences revealed the presence of an approximately 12.5-kb genomic island (GEI) specific to the sequenced S. Enteritidis strain NCTC13349. The GEI is inserted at the 5' end of gene ydaO (SEN1377), is flanked by 308-bp imperfect direct repeats (attL and attR), and includes 21 open reading frames (SEN1378 to SEN1398), encoding primarily phage-related proteins. Accordingly, this GEI has been annotated as the defective prophage SE14 in the genome of strain NCTC13349. The genetic structure and location of phiSE14 are conserved in 99 of 103 wild-type strains of S. Enteritidis studied here, including reference strains NCTC13349 and LK5. Notably, an extrachromosomal circular form of phiSE14 was detected in every strain carrying this island. The presence of attP sites in the circular forms detected in NCTC13349 and LK5 was confirmed. In addition, we observed spontaneous loss of a tetRA-tagged version of phiSE14, leaving an empty attB site in the genome of strain NCTC13349. Collectively, these results demonstrate that phiSE14 is an unstable genetic element that undergoes spontaneous excision under standard growth conditions. An internal fragment of phiSE14 designated Sdf I has been used as a serovar-specific genetic marker in PCR-based detection systems and as a tool to determine S. Enteritidis levels in experimental infections. The instability of this region may require a reassessment of its suitability for such applications.
Collapse
|
16
|
Zou Q, Sun K, Cheng A, Wang M, Xu C, Zhu D, Jia R, Luo Q, Zhou Y, Chen Z, Chen X. Detection of anatid herpesvirus 1 gC gene by TaqMan fluorescent quantitative real-time PCR with specific primers and probe. Virol J 2010; 7:37. [PMID: 20152046 PMCID: PMC2837632 DOI: 10.1186/1743-422x-7-37] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anatid herpesvirus 1 (AHV-1) is known for the difficulty of monitoring and controlling, because it has a long period of asymptomatic carrier state in waterfowls. Furthermore, as a significant essential agent for viral attachment, release, stability and virulence, gC (UL44) gene and its protein product (glycoprotein C) may play a key role in the epidemiological screening. The objectives of this study were to rapidly, sensitively, quantitatively detect gC gene of AHV-1 and provide the underlying basis for further investigating pcDNA3.1-gC DNA vaccine in infected ducks by TaqMan fluorescent quantitative real-time PCR assay (FQ-PCR) with pcDNA3.1-gC plasmid. RESULTS The repeatable and reproducible quantitative assay was established by the standard curve with a wide dynamic range (eight logarithmic units of concentration) and very good correlation values (1.000). This protocol was able to detect as little as 1.0 x 101 DNA copies per reaction and it was highly specific to AHV-1. The TaqMan FQ-PCR assay successfully detected the gC gene in tissue samples from pcDNA3.1-gC and AHV-1 attenuated vaccine (AHV-1 Cha) strain inoculated ducks respectively. CONCLUSIONS The assay offers an attractive method for the detection of AHV-1, the investigation of distribution pattern of AHV-1 in vivo and molecular epidemiological screening. Meanwhile, this method could expedite related AHV-1 and gC DNA vaccine research.
Collapse
Affiliation(s)
- Qing Zou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Deng SX, Cheng AC, Wang MS, Ye LG. Quantitative analysis of Salmonella Enteritidis loads in ducklings after nasal inoculation. Poult Sci 2009; 88:1888-92. [PMID: 19687274 DOI: 10.3382/ps.2009-000164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution patterns of Salmonella Enteritidis in systemic organs, which have not been described previously, should be studied to better understand its pathogenesis in vivo. We inoculated the ducklings with Salmonella Enteritidis via the nasal route and performed a real-time PCR assay for determining the concentration of Salmonella Enteritidis DNA and studied the histopathology of various tissues postinoculation. The results show that the Salmonella Enteritidis load in systemic organs has a close correlation with the progression of disease. Further, rapid dissemination and active replication of Salmonella Enteritidis in multiple systemic organs accelerated the progression of disease.
Collapse
Affiliation(s)
- S X Deng
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Yaan, Sichuan Province, 625014, China
| | | | | | | |
Collapse
|
18
|
Deng SX, Cheng AC, Wang MS, Yan B, Yin NC, Cao SY, Zhang ZH, Cao P. The pathogenesis of Salmonella enteritidis in experimentally infected ducks: a quantitative time-course study using taqman polymerase chain reaction. Poult Sci 2008; 87:1768-72. [PMID: 18753444 DOI: 10.3382/ps.2008-00166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ducks were subcutaneously infected with a high-virulence strain of Salmonella enterica ssp. enterica serovar Enteritidis (Salmonella Enteritidis). The kinetics of the Salmonella Enteritidis genomic DNA loads, the immunohistochemical localization of the bacterial antigens, and the histopathological examination in various tissues were investigated. The results showed that the time course of the appearance of the Salmonella Enteritidis bacterial antigens and the lesions in various tissues was coincident with the bacterial load of the organism in various infected tissues. This suggests that Salmonella Enteritidis loads in systemic organs are closely correlated with the progression of the infection.
Collapse
Affiliation(s)
- S X Deng
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Yaan, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Deng SX, Cheng AC, Wang MS, Li XR, Yan B. Replication kinetics of Salmonella enteritidis in internal organs of ducklings after oral challenge: a quantitative time-course study using real-time PCR. Vet Res Commun 2008; 33:273-80. [PMID: 18781393 DOI: 10.1007/s11259-008-9175-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 08/21/2008] [Indexed: 12/23/2022]
Abstract
This research was undertaken to understand the replication kinetics of Salmonella enteritidis (S. enteritidis) in the internal organs of ducklings after oral challenge over a 2 wk period. A serovar-specific real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) assay was used to detect genomic DNA of S. enteritidis in the blood and the internal organs at different time points respectively. The results showed that the spleen was positive at 12 h post inoculation (PI) and the blood was at 14 h PI. The organism was detected in the liver and heart at 16 h PI, the pancreas and kidney were positive at 20 h PI, and the final organ to show a positive results was the gallbladder at 22 h PI. The copy number of S. enteritidis DNA in each tissue reached a peak at 24 h-36 h PI, with the liver and spleen containing the highest concentration of S. enteritidis. The blood, heart, kidney, pancreas, and gallbladder had low concentrations. S. enteritidis populations began to decrease and were not detectable at 3 d PI, but were still present up to 2 wk for the spleen without causing apparent symptoms. To make the results meaningful, a side-by-side bacteriology method (IFA) was performed. The results of IFA were similar to the FQ-PCR assay. This research provided a significant data for understanding the life cycle of S. enteritidis in the internal organs, and may help to understand the pathogenesis of S.entertidis in the future.
Collapse
Affiliation(s)
- S X Deng
- Avian Diseases Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Yaan, 625014, Sichuan Province, China
| | | | | | | | | |
Collapse
|
20
|
Yang M, Cheng A, Wang M, Xing H. Development and application of a one-step real-time Taqman RT-PCR assay for detection of Duck hepatitis virus type1. J Virol Methods 2008; 153:55-60. [PMID: 18611411 DOI: 10.1016/j.jviromet.2008.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 06/05/2008] [Accepted: 06/09/2008] [Indexed: 12/25/2022]
Abstract
A one-step real-time RT-PCR assay (rRT-PCR) was developed for efficient detection of Duck hepatitis virus type1 (DHV-1). A pair of specific primers was designed against the conserved region in the 3D gene that encodes the RNA dependent RNA polymerase with a single conserved TaqMan probe. The detection limit of this assay was 10 viral genomic copies per reaction and it was highly specific to DHV-1. The rRT-PCR assay was used to determine the distribution and concentration of DHV-1 virulent strain in duck embryos as well as the DHV-1 attenuated vaccine strain in chicken embryos. The results revealed that the copy numbers of DHV-1 reached a peak in duck embryos and chicken embryos at 28-40h, 44-56h postinoculation respectively. The comparative tests for ducklings infected artificially and clinical samples between neutralization test and rRT-PCR showed that the positive results of infected samples were the same, while the rRT-PCR method was more sensitive than neutralization test for detection of clinical samples. The rapid, sensitive and specific rRT-PCR assay will be a powerful tool for detection of suspected cases of DHV-1, distribution pattern of DHV-1 in vivo and molecular epidemiological screening.
Collapse
Affiliation(s)
- Miao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | | | | | | |
Collapse
|