1
|
Liu T, Lin L, Pan Y, Lin X, Liang M, Shao G, Feng K, Liu Y, Zhang X, Xie Q. Construction and efficacy of recombinant Newcastle disease virus co-expressing VP2 and VP3 proteins of very virulent infectious bursal disease virus. Poult Sci 2025; 104:104388. [PMID: 39644723 PMCID: PMC11665685 DOI: 10.1016/j.psj.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024] Open
Abstract
Infectious bursal disease (IBD), triggered by the infectious bursal disease virus (IBDV), poses a substantial risk to the poultry industry due to its immunosuppressive nature and the emergence of highly virulent strains. Traditional vaccination strategies have limitations, prompting the need for novel approaches. This study aimed to develop a recombinant Newcastle disease virus (NDV) vector vaccine co-expressing IBDV VP2 and VP3 proteins to enhance immunogenicity and protective efficacy against IBDV. The recombinant Newcastle disease virus (rNDV) expressing both VP2 and VP3 (rNDV-VP2-VP3) was generated and compared to rNDV expressing VP2 alone (rNDV-VP2). The genetic stability and growth pattern of rNDV were evaluated and its immunogenicity was assessed in specific pathogen free (SPF) chickens. rNDV-VP2-VP3 vaccines induced higher levels of neutralising antibodies, no damage to immune organs, and significantly lower viral loads in the bursa of the falciparum. rNDV-VP2 group showed partial protection, while the placebo group exhibited severe lesions and higher mortality, suggesting that the vaccine was effective in preventing IBDV-induced damage. These findings suggest that co-expression of VP2 and VP3 in NDV vectors is a viable strategy for the development of an effective IBDV vaccine, providing a safe and effective method for controlling IBD in poultry.
Collapse
Affiliation(s)
- Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xiaoling Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Ming Liang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yaxin Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
2
|
Khalil NW, Elshorbagy MA, Elboraay EM, Helal AM. Live IBD vaccine exacerbates disease and pathological effects of Asian lineage H9N2 LPAIV in chickens. Avian Pathol 2023; 52:351-361. [PMID: 37439655 DOI: 10.1080/03079457.2023.2236994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/14/2023]
Abstract
Avian influenza H9N2 is one of the most commonly circulating viruses in numerous Egyptian poultry farms. The Asian lineage H9N2 exhibits an immunosuppressive effect, and its pathogenicity is amplified when it co-infects with other pathogens, especially with the immunosuppressive infectious bursal disease virus (IBDV), resulting in increased mortality rates. Both vaccines and field infection can exacerbate the pathogenicity of H9N2, particularly in the bursa of Fabricius, causing more significant lymphoid depletion. To comprehend the impact of the IBD vaccine on the viral and pathogenic effect of H9N2 infection in specific pathogen-free chicks (SPF), the experiment was designed as four groups; group 1 served as the negative control, group 2 received (228E) IBD vaccine, group 3 was challenged with H9N2, and group-4 was vaccinated by the IBD vaccine then challenged with H9N2. The clinical signs, relative immune organs weights and histopathological lesion scores were recorded. The tracheal and cloacal H9N2 viral shedding were also measured. Group 4 exhibited a significant decrease (P ≤ 0.05) in the relative bursal weight and an increase in the bursal lesion score when compared with groups 1 and 3 at 4 and 8 days post-challenge (dpc). The tracheal lesion score of group-4 recorded a significant increase when compared with groups 1 and 3. The renal lesion score of group 4 achieved a significant increase when compared with 1 and 3 at 8 dpc. Also, group 4 recorded a significant increase in H9N2 shedding in comparison with groups 1 and 3. Consequently, our study concluded that routine vaccination with the IBD intermediate plus vaccine exacerbates the silent infection of H9N2 resulting in outbreaks.
Collapse
Affiliation(s)
- N W Khalil
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - M A Elshorbagy
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - E M Elboraay
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - A M Helal
- Central Laboratory for Evaluation of Veterinary Biologics, Cairo, Egypt
| |
Collapse
|
3
|
Marusic C, Drissi Touzani C, Bortolami A, Donini M, Zanardello C, Lico C, Rage E, Fellahi S, El Houadfi M, Terregino C, Baschieri S. The expression in plants of an engineered VP2 protein of Infectious Bursal Disease Virus induces formation of structurally heterogeneous particles that protect from a very virulent viral strain. PLoS One 2021; 16:e0247134. [PMID: 33592038 PMCID: PMC7886152 DOI: 10.1371/journal.pone.0247134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 11/18/2022] Open
Abstract
Infectious Bursal Disease Virus (IBDV), the etiological agent of Gumboro disease, causes mortality and immunosuppression in chickens and major losses to poultry industry worldwide. The IBDV major capsid protein VP2 is considered the best candidate for the production of novel subunit vaccines. This structural protein contains the major conformational epitopes responsible for the induction of IBDV neutralizing antibodies in chickens and has been demonstrated able to form supramolecular structures in yeast and insect cells. The aim of this study was to express an engineered version of the VP2 protein (His-pVP2) to verify its ability to self-assemble into virus-like particles in plants. The recombinant VP2 was transiently expressed by agroinfiltration in Nicotiana benthamiana and transmission electron microscopy of sucrose density gradient fractions revealed the presence of a mixed population of differently shaped particles ranging from spherical capsids, with a diameter between ~25 and ~70 nm, to tubular structures, with variable length (from 100 to 400 nm). The recombinant VP2-based particles when used for the intramuscular immunization of specific-pathogen-free chicks resulted able to induce the production of anti-IBDV specific antibodies at titers comparable to those induced by a commercial vaccine. Moreover, all the immunized birds survived to the challenge with a Moroccan very virulent IBDV strain with no major histomorphological alterations of the Bursa of Fabricius, similarly to what obtained with the commercial inactivated vaccine.
Collapse
Affiliation(s)
- Carla Marusic
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Charifa Drissi Touzani
- Avian Pathology Unit, Pathology and Veterinary Public Health Department, Agronomy and Veterinary Institute Hassan II, Rabat, Morocco
| | - Alessio Bortolami
- Specialized Virology and Experimental Research Department Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Claudia Zanardello
- Diagnostic Services, Histopathology, Parasitology Department, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Chiara Lico
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Emile Rage
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| | - Siham Fellahi
- Avian Pathology Unit, Pathology and Veterinary Public Health Department, Agronomy and Veterinary Institute Hassan II, Rabat, Morocco
| | - Mohammed El Houadfi
- Avian Pathology Unit, Pathology and Veterinary Public Health Department, Agronomy and Veterinary Institute Hassan II, Rabat, Morocco
| | - Calogero Terregino
- Specialized Virology and Experimental Research Department Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, ENEA Casaccia Research Center, Rome, Italy
| |
Collapse
|
4
|
El-Aried TA, Mansour SMG, ElBakrey RM, N Ismail AES, Eid AAM. Infectious Bursal Disease Virus: Molecular Epidemiologic Perspectives and Impact on Vaccine Efficacy Against Avian Influenza and Newcastle Disease Viruses. Avian Dis 2020; 63:606-618. [PMID: 31865675 DOI: 10.1637/aviandiseases-d-19-00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/02/2019] [Indexed: 11/05/2022]
Abstract
Infectious bursal disease (IBD) virus (IBDV) is the causative agent of a highly contagious and immunosuppressive disease of chickens with huge economic losses to the poultry industry despite extensive vaccination. Analysis of isolated IBDV field strains from vaccinated birds would greatly improve the current immunization regimens and support the development of vaccines that offer better immunity. The study investigated the genetic characteristics and pathologic features of IBDVs in commercial broiler chicken farms, as well as the effect of IBDV infection on the efficacy of vaccination against avian influenza virus (AIV) and Newcastle disease virus (NDV) under field conditions. A preliminary diagnosis of IBD was made on the basis of the flock history and the characteristic gross pathologic findings. Microscopically, lymphoid depletion in bursal follicles with infiltration of lymphomononuclear cells along with cystic cavitations reflected the IBDV infection. The molecular analysis confirmed the IBDV infection in (57.1%) of tested flocks. Upon phylogenetic analysis of the VP2 hypervariable region of 14 Egyptian IBDVs, most viruses (n = 12) were clustered within the genogroup 3, while two viruses were closely related to attenuated vaccine isolates in genogroup 1. The analysis of the amino acid (aa) sequences revealed that most of the strains possessed five consistent aas at the VP2 protein (222A, 242I, 256I, 294I, and 299S), which are characteristic for the very virulent IBDV (vvIBDV). Serology indicated the immunosuppressive effect of IBDV, which is represented by a decrease (1.6-2.6 and 1.4-2.6 mean log 2) in the hemagglutination inhibition titer of the low pathogenic AIV subtype H9N2 and NDV, respectively. The examined IBDVs showed a high mutation rate within the hypervariable domain of the VP2 peptide. The results highlighted the need for carrying out an inclusive surveillance of IBDV infections in chicken flocks in Egypt.
Collapse
Affiliation(s)
- Tamer A El-Aried
- Reference Laboratory for Quality Control on Poultry Production, Sharkia Branch, Zagazig 44516, Egypt
| | - Shimaa M G Mansour
- Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Reham M ElBakrey
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Abd El-Shakour N Ismail
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt
| | - Amal A M Eid
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkia 44511, Egypt,
| |
Collapse
|
5
|
Spackman E, Stephens CB, Pantin-Jackwood MJ. The Effect of Infectious Bursal Disease Virus-Induced Immunosuppression on Vaccination Against Highly Pathogenic Avian Influenza Virus. Avian Dis 2019; 62:36-44. [PMID: 29620467 DOI: 10.1637/11769-110717-reg.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Poor efficacy of avian influenza virus (AIV) vaccines in chickens has been documented in the field in spite of good results in experimental settings. Although the causes are multifactorial and complex, one contributing factor may be prior infection with immunosuppressive viruses. In an effort to evaluate the role of immunosuppressive agents on AIV pathogenesis and vaccine efficacy, the effect of prior infection with infectious bursal disease virus (IBDV), a ubiquitous immunosuppressive virus of chickens, was evaluated. Specific-pathogen-free white Plymouth Rock chickens were exposed to variant E IBDV at 1 day of age and were subsequently vaccinated with an inactivated H7 AIV vaccine 2 wk later. Vaccinated chickens exposed to IBDV had a geometric mean antibody titer to AIV of 1:1.7 by hemagglutination inhibition assay compared to a geometric mean titer of 1:47.5 from chickens that were vaccinated but not exposed to IBDV. Three weeks postvaccination, the chickens were challenged with one of six different doses of highly pathogenic (HP) AIV homologous to the vaccine. Within challenge virus dose groups, vaccinated chickens exposed to IBDV had similar mortality rates to nonvaccinated chickens that were not exposed to IBDV. In contrast, vaccinated chickens that were not exposed to IBDV were protected from mortality. Exposure to IBDV also decreased the mean death time (2.3-3.7 days depending on dose) compared with vaccinated birds not exposed to IBDV (4-7 days depending on dose). Neither vaccination nor IBDV infection had an effect on mean bird infection dose with HPAIV, but the 50% bird lethal dose was reduced from >106 50% egg infective dose (EID50) in the vaccinated, IBDV-nonexposed group to 103.3 EID50 in the vaccinated group exposed to IBDV. These results are consistent with IBDV exposure contributing to poor vaccine efficacy in the field.
Collapse
Affiliation(s)
- Erica Spackman
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA 30605
| | - Christopher B Stephens
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA 30605
| | - Mary J Pantin-Jackwood
- Southeast Poultry Research Laboratory, United States National Poultry Research Center, United States Department of Agriculture, Agricultural Research Service, 934 College Station Rd., Athens, GA 30605
| |
Collapse
|
6
|
Dulwich KL, Giotis ES, Gray A, Nair V, Skinner MA, Broadbent AJ. Differential gene expression in chicken primary B cells infected ex vivo with attenuated and very virulent strains of infectious bursal disease virus (IBDV). J Gen Virol 2017; 98:2918-2930. [PMID: 29154745 DOI: 10.1099/jgv.0.000979] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae and is economically important to the poultry industry worldwide. IBDV infects B cells in the bursa of Fabricius (BF), causing immunosuppression and morbidity in young chickens. In addition to strains that cause classical Gumboro disease, the so-called 'very virulent' (vv) strain, also in circulation, causes more severe disease and increased mortality. IBDV has traditionally been controlled through the use of live attenuated vaccines, with attenuation resulting from serial passage in non-lymphoid cells. However, the factors that contribute to the vv or attenuated phenotypes are poorly understood. In order to address this, we aimed to investigate host cell-IBDV interactions using a recently described chicken primary B-cell model, where chicken B cells are harvested from the BF and cultured ex vivo in the presence of chicken CD40L. We demonstrated that these cells could support the replication of IBDV when infected ex vivo in the laboratory. Furthermore, we evaluated the gene expression profiles of B cells infected with an attenuated strain (D78) and a very virulent strain (UK661) by microarray. We found that key genes involved in B-cell activation and signalling (TNFSF13B, CD72 and GRAP) were down-regulated following infection relative to mock, which we speculate could contribute to IBDV-mediated immunosuppression. Moreover, cells responded to infection by expressing antiviral type I IFNs and IFN-stimulated genes, but the induction was far less pronounced upon infection with UK661, which we speculate could contribute to its virulence.
Collapse
Affiliation(s)
- Katherine L Dulwich
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Efstathios S Giotis
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Alice Gray
- The Pirbright Institute, Ash Road, Woking, GU24 0NF, UK
| | | | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
7
|
Mosley YYC, Wu CC, Lin TL. Infectious bursal disease virus as a replication-incompetent viral vector expressing green fluorescent protein. Arch Virol 2016; 162:23-32. [PMID: 27659678 DOI: 10.1007/s00705-016-3066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022]
Abstract
Infectious bursal disease virus (IBDV) has been established as a replication-competent viral vector capable of carrying an epitope at multiple loci in the genome. To enhance the safety and increase the insertion capacity of IBDV as a vector, a replication-incompetent IBDV vector was developed in the present study. The feasibility of replacing one of the viral gene loci, including pvp2, vp3, vp1, or the polyprotein vp243, with the sequence of green fluorescent protein (GFP) was explored. A method combining TCID50 and immunoperoxidase monolayer assay (IPMA) determined the most feasible locus for gene replacement to be pvp2. The genomic segment containing gfp at the pvp2 locus was able to be encapsidated into IBDV particles. Furthermore, the expression of GFP in GFP-IBDV infected cells was confirmed by Western blotting and GFP-IBDV particles showed similar morphology and size to that of wildtype IBDV by electron microscopy. By providing the deleted protein in trans in a packaging cell line (pVP2-DF1), replication-incompetent GFP-IBDV particles were successfully plaque-quantified. The gfp sequence from the plaque-forming GFP-IBDV in pVP2-DF1 was confirmed by RT-PCR and sequencing. To our knowledge, GFP-IBDV developed in the present study is the first replication-incompetent IBDV vector which expresses a foreign protein in infected cells without the capability to produce viral progeny. Additionally, such replication-incompetent IBDV vectors could serve as bivalent vaccine vectors for conferring protection against infections with IBDV and other economically important, or zoonotic, avian pathogens.
Collapse
Affiliation(s)
- Yung-Yi C Mosley
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA
| | - Ching Ching Wu
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tsang Long Lin
- ADDL, Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 406 South University Street, West Lafayette, IN, 47907-2065, USA.
| |
Collapse
|
8
|
Alkie TN, Rautenschlein S. Infectious bursal disease virus in poultry: current status and future prospects. VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 7:9-18. [PMID: 30050833 PMCID: PMC6055793 DOI: 10.2147/vmrr.s68905] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Infectious bursal disease virus (IBDV) affects immature B lymphocytes of the bursa of Fabricius and may cause significant immunosuppression. It continues to be a leading cause of economic losses in the poultry industry. IBDV, having a segmented double-stranded RNA genome, is prone to genetic variation. Therefore, IBDV isolates with different genotypic and phenotypic diversity exist. Understanding these features of the virus and the mechanisms of protective immunity elicited thereof is necessary for developing vaccines with improved efficacy. In this review, we highlighted the pattern of virus evolution and new developments in prophylactic strategies, mainly the development of new generation vaccines, which will continue to be of interest for research as well as field application in the future.
Collapse
Affiliation(s)
- Tamiru Negash Alkie
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Hannover, Germany,
| |
Collapse
|
9
|
Chaudhry M, Rashid HB, Thrusfield M, Welburn S, Bronsvoort BM. A case-control study to identify risk factors associated with avian influenza subtype H9N2 on commercial poultry farms in Pakistan. PLoS One 2015; 10:e0119019. [PMID: 25774768 PMCID: PMC4361405 DOI: 10.1371/journal.pone.0119019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
A 1:1 matched case-control study was conducted to identify risk factors for avian influenza subtype H9N2 infection on commercial poultry farms in 16 districts of Punjab, and 1 administrative unit of Pakistan. One hundred and thirty-three laboratory confirmed positive case farms were matched on the date of sample submission with 133 negative control farms. The association between a series of farm-level characteristics and the presence or absence of H9N2 was assessed by univariable analysis. Characteristics associated with H9N2 risk that passed the initial screening were included in a multivariable conditional logistic regression model. Manual and automated approaches were used, which produced similar models. Key risk factors from all approaches included selling of eggs/birds directly to live bird retail stalls, being near case/infected farms, a previous history of infectious bursal disease (IBD) on the farm and having cover on the water storage tanks. The findings of current study are in line with results of many other studies conducted in various countries to identify similar risk factors for AI subtype H9N2 infection. Enhancing protective measures and controlling risks identified in this study could reduce spread of AI subtype H9N2 and other AI viruses between poultry farms in Pakistan.
Collapse
Affiliation(s)
- Mamoona Chaudhry
- Division of Infection and Pathway Medicine, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
- * E-mail:
| | - Hamad B. Rashid
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Abdul Qadir Jilani Road, Lahore, Pakistan
| | - Michael Thrusfield
- The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, Scotland, United Kingdom
| | - Sue Welburn
- Division of Infection and Pathway Medicine, The University of Edinburgh Medical School, Edinburgh, Scotland, United Kingdom
| | - Barend MdeC. Bronsvoort
- The University of Edinburgh, Roslin Institute at the R(D)SVS, Easter Bush, Roslin, Midlothian, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
10
|
Eliciting specific humoral immunity from a plasmid DNA encoding infectious bursal disease virus polyprotein gene fused with avian influenza virus hemagglutinin gene. J Virol Methods 2014; 211:36-42. [PMID: 25445883 DOI: 10.1016/j.jviromet.2014.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 11/22/2022]
Abstract
DNA vaccine coding for infectious bursal disease virus (IBDV) polyprotein gene and that for avian influenza virus (AIV) hemagglutinin (HA) gene have been shown to induce immunity and provide protection against the respective disease. The present study was carried out to determine whether an IBDV polyprotein gene-based DNA fused with AIV HA gene could trigger immune response to both IBDV and AIV. After transfection, VP2 and HA were detected in the cytoplasm and at cell membrane, respectively, by immunofluorescent antibody double staining method, suggesting the fusion strategy did not affect the location of protein expression. VP4 cleavage between VP2 and HA was confirmed by Western blot, indicating the fusion strategy did not affect VP4 function in transfected cells. After vaccination in chickens, the DNA construct VP24-HA/pcDNA induced ELISA and virus neutralizing antibodies against VP2 and hemagglutination inhibition antibody against the HA subtype. The results indicated that a single plasmid construct carrying IBDV VP243 gene-based DNA fused with AIV HA gene can elicit specific antibody responses to both IBDV and AIV by DNA vaccination.
Collapse
|
11
|
Lee DH, Kwon JH, Park JK, Lee YN, Yuk SS, Lee JB, Park SY, Choi IS, Song CS. Characterization of low-pathogenicity H5 and H7 Korean avian influenza viruses in chickens. Poult Sci 2012; 91:3086-90. [DOI: 10.3382/ps.2012-02543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Chmielewski R, Swayne DE. Avian influenza: public health and food safety concerns. Annu Rev Food Sci Technol 2012; 2:37-57. [PMID: 22129374 DOI: 10.1146/annurev-food-022510-133710] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Avian influenza (AI) is a disease or asymptomatic infection caused by Influenzavirus A. AI viruses are species specific and rarely cross the species barrier. However, subtypes H5, H7, and H9 have caused sporadic infections in humans, mostly as a result of direct contact with infected birds. H5N1 high pathogenicity avian influenza (HPAI) virus causes a rapid onset of severe viral pneumonia and is highly fatal (60% mortality). Outbreaks of AI could have a severe economic and social impact on the poultry industry, trade, and public health. Surveillance data revealed that H5N1 HPAI has been detected in imported frozen duck meat from Asia, and on the surface and in contaminated eggs. However, there is no direct evidence that AI viruses can be transmitted to humans via the consumption of contaminated poultry products. Implementing management practices that incorporate biosecurity principles, personal hygiene, and cleaning and disinfection protocols, as well as cooking and processing standards, are effective means of controlling the spread of the AI viruses.
Collapse
Affiliation(s)
- Revis Chmielewski
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, Georgia 30605, USA.
| | | |
Collapse
|
13
|
Chen YY, Hsieh MK, Tung CY, Wu CC, Lin TL. Infectious bursal disease DNA vaccination conferring protection by delayed appearance and rapid clearance of invading viruses. Arch Virol 2011; 156:2241-50. [DOI: 10.1007/s00705-011-1127-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/17/2011] [Indexed: 11/29/2022]
|
14
|
Rauf A, Khatri M, Murgia MV, Jung K, Saif YM. Differential modulation of cytokine, chemokine and Toll like receptor expression in chickens infected with classical and variant infectious bursal disease virus. Vet Res 2011; 42:85. [PMID: 21749706 PMCID: PMC3146834 DOI: 10.1186/1297-9716-42-85] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023] Open
Abstract
Infectious bursal disease (IBD) is an important immunosuppressive disease of chickens. The causative agent, infectious bursal disease virus (IBDV), consists of two serotypes, 1 and 2. Serotype 1 consists of classic IBDV (cIBDV) and variant IBDV (vIBDV). Both of these strains vary in antigenicity and pathogenesis. The goal of this study was to compare the immunopathogenesis of cIBDV and vIBDV. Three-week-old specific pathogen free chickens were inoculated intraocularly with standard challenge strain (STC) (cIBDV) and a variant strain Indiana (IN) (vIBDV). The cIBDV produced more pronounced bursal damage, inflammatory response and infiltration of T cells as compared to vIBDV. There were significant differences in the expression of innate (IFN-α and IFN-β), proinflammatory cytokine and mediator (IL-6 and iNOS) in cIBDV- and vIBDV-infected bursas. The expression of chemokines genes, IL-8 and MIP-α was also higher in cIBDV-infected chickens during the early phase of infection. The expression of Toll like receptor 3 (TLR3) was downregulated at post inoculation days (PIDs) 3, 5, and 7 in the bursas of vIBDV-infected chickens whereas TLR3 was upregulated at PIDs 3 and 5 in cIBDV-infected bursas. In vIBDV-infected bursa, TLR7 expression was downregulated at PIDs 3 and 5 and upregulated at PID 7. However, TLR7 was upregulated at PIDs 3 and 7 in cIBDV-infected bursas. The expression of MyD88 was downregulated whereas TRIF gene expression was upregulated in cIBDV- and vIBDV-infected bursa. These findings demonstrate the critical differences in bursal lesions, infiltration of T cells, expression of cytokines, chemokines and TLRs in the bursa of cIBDV-and vIBDV-infected chickens.
Collapse
Affiliation(s)
- Abdul Rauf
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA.
| | | | | | | | | |
Collapse
|
15
|
Abstract
AbstractAvian influenza (AI) virus is one of the most important diseases of the poultry industry around the world. The virus has a broad host range in birds and mammals, although the natural reservoir is wild birds where it typically causes an asymptomatic to mild infection. The virus in poultry can cause a range of clinical diseases and is defined either as low pathogenic AI (LPAI) or highly pathogenic AI (HPAI) depending on the type of disease it causes in chickens. Viruses that replicate primarily on mucosal surfaces and cause mild disease with low mortality are termed LPAI. Viruses that replicate on mucosal surfaces and systemically and cause severe disease with a mortality rate of 75% or greater in experimentally infected chickens are referred to as HPAI. A virus that is highly pathogenic in chickens may infect but result in a completely different disease and replication pattern in other host species. Outbreaks of HPAI have been relatively uncommon around the world in the last 50 years and have had limited spread within a country or region with one major exception, Asian lineage H5N1 that was first identified in 1996. This lineage of virus has spread to over 60 countries and has become endemic in poultry in at least four countries. AI virus also represents a public health threat, with some infected humans having severe disease and with a high case fatality rate. AI remains a difficult disease to control because of the highly infectious nature of the virus and the interface of domestic and wild animals. A better understanding of the disease and its transmission is important for control.
Collapse
|