1
|
Church C, Casteriano A, Muir YS, Krockenberger M, Vaz PK, Higgins DP, Wright BR. New insights into the range and transmission dynamics of a koala gammaherpesvirus, phascolarctid gammaherpesvirus 2. Sci Rep 2025; 15:6136. [PMID: 39979384 PMCID: PMC11842565 DOI: 10.1038/s41598-025-90626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
The recent classification of the koala to endangered across most of its range has emphasised the urgent need for enhanced disease surveillance. Little is known about the distribution and clinical significance of phascolarctid gammaherpesvirus 2 (PhaHV-2) outside the Australian states of Victoria and South Australia. PhaHV-2 may have significant impacts on koala wellbeing, justifying investigation into its distribution and impact. To better characterise virus distribution and factors associated with infection, we developed a novel quantitative polymerase chain reaction assay with a high sensitivity, specificity and throughput capacity, to facilitate rapid detection and quantification of PhaHV-2. We applied this assay to 157 predominantly clinically-derived, urogenital swab samples. Results indicated that the distribution of PhaHV-2 extends throughout the endangered New South Wales koala populations. Frequency of detection of PhaHV-2 was highest in South Australia (25%) and lowest in northern Qld (0%) and was more likely in older koalas than younger koalas. We corroborate previous findings of an association with presence of PhaHV-1 and find no evidence to support sex as a predictor for viral presence in clinically-derived samples. The capacity to rapidly detect mucosal shedding of PhaHV-2 will enable rapid isolation of affected individuals and aid further research into the pathophysiological impacts of this virus in koalas and the influence of co-infections.
Collapse
Affiliation(s)
- Chloe Church
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrea Casteriano
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Yasmine Ss Muir
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Mark Krockenberger
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Paola K Vaz
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Damien P Higgins
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Belinda R Wright
- Koala Health Hub, Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
2
|
A Possible Link between the Environment and Cryptococcus gattii Nasal Colonisation in Koalas ( Phascolarctos cinereus) in the Liverpool Plains, New South Wales. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084603. [PMID: 35457470 PMCID: PMC9028200 DOI: 10.3390/ijerph19084603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023]
Abstract
Cryptococcosis caused by yeasts of the Cryptococcus gattii species complex is an increasingly important mycological disease in humans and other mammals. In Australia, cases of C. gattii-related cryptococcosis are more prevalent in the koala (Phascolarctos cinereus) compared to humans and other animals, likely due to the close association that both C. gattii and koalas have with Eucalyptus species. This provides a cogent opportunity to investigate the epidemiology of spontaneous C. gattii infections in a free-living mammalian host, thereby offering insights into similar infections in humans. This study aimed to establish a link between nasal colonisation by C. gattii in free-ranging koalas and the tree hollows of Eucalyptus species, the key environmental source of the pathogen. We (i) detected and genotyped C. gattii from nine out of 169 free-ranging koalas and representative tree hollows within their home range in the Liverpool Plains, New South Wales, and (ii) examined potential environmental predictors of nasal colonisation in koalas and the presence of C. gattii in tree hollows. Phylogenetic analyses based on multi-locus sequence typing (MLST) revealed that the koalas were most likely colonised by the most abundant C. gattii genotypes found in the Eucalyptus species, or closely related genotypes. Importantly, the likelihood of the presence of C. gattii in tree hollows was correlated with increasing hollow size.
Collapse
|
3
|
Stephenson T, Speight N, Low WY, Woolford L, Tearle R, Hemmatzadeh F. Molecular Diagnosis of Koala Retrovirus (KoRV) in South Australian Koalas ( Phascolarctos cinereus). Animals (Basel) 2021; 11:ani11051477. [PMID: 34065572 PMCID: PMC8161083 DOI: 10.3390/ani11051477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Koala retrovirus (KoRV) is a significant threat to koalas across Australia. Koalas in northern koala populations (from New South Wales and Queensland) have KoRV inserted into their DNA and inherited to their offspring. Southern koala populations (from Victoria and South Australia) have KoRV infection spread through close contact of koalas. As such, there are koalas within South Australia that are not infected with KoRV. Accurate diagnosis of the infection of each koala is therefore fundamental for disease studies. Previous studies have shown differences in prevalence of different KoRV genes in the Mount Lofty Ranges Koala population; therefore, clarification is necessary. This study uses a large cohort (n = 216) and defines the diagnostic regions of the KoRV genome within the South Australian population. Using multiple molecular techniques, it demonstrates strong evidence for two clear groupings of koalas: KoRV positive and KoRV negative. Within this study, a population of 41% were shown to be KoRV positive and 57% were KoRV negative, with 2% inconclusive. This differentiation is of great importance when examining the clinical importance of KoRV infection within southern koalas. Abstract Koala retrovirus, a recent discovery in Australian koalas, is endogenised in 100% of northern koalas but has lower prevalence in southern populations, with lower proviral and viral loads, and an undetermined level of endogenisation. KoRV has been associated with lymphoid neoplasia, e.g., lymphoma. Recent studies have revealed high complexity in southern koala retroviral infections, with a need to clarify what constitutes positive and negative cases. This study aimed to define KoRV infection status in Mount Lofty Ranges koalas in South Australia using RNA-seq and proviral analysis (n = 216). The basis for positivity of KoRV was deemed the presence of central regions of the KoRV genome (gag 2, pol, env 1, and env 2) and based on this, 41% (89/216) koalas were positive, 57% (124/216) negative, and 2% inconclusive. These genes showed higher expression in lymph node tissue from KoRV positive koalas with lymphoma compared with other KoRV positive koalas, which showed lower, fragmented expression. Terminal regions (LTRs, partial gag, and partial env) were present in SA koalas regardless of KoRV status, with almost all (99.5%, 215/216) koalas positive for gag 1 by proviral PCR. Further investigation is needed to understand the differences in KoRV infection in southern koala populations.
Collapse
Affiliation(s)
- Tamsyn Stephenson
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Correspondence:
| | - Natasha Speight
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| | - Wai Yee Low
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Lucy Woolford
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
- Veterinary Diagnostics Laboratory, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia
| | - Rick Tearle
- The Davies Livestock Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (W.Y.L.); (R.T.)
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy 5371, Australia; (N.S.); (L.W.); (F.H.)
| |
Collapse
|
4
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-Like Receptor and Cytokine Responses to Infection with Endogenous and Exogenous Koala Retrovirus, and Vaccination as a Control Strategy. Curr Issues Mol Biol 2021; 43:52-64. [PMID: 33946297 PMCID: PMC8928999 DOI: 10.3390/cimb43010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Koala populations are currently declining and under threat from koala retrovirus (KoRV) infection both in the wild and in captivity. KoRV is assumed to cause immunosuppression and neoplastic diseases, favoring chlamydiosis in koalas. Currently, 10 KoRV subtypes have been identified, including an endogenous subtype (KoRV-A) and nine exogenous subtypes (KoRV-B to KoRV-J). The host’s immune response acts as a safeguard against pathogens. Therefore, a proper understanding of the immune response mechanisms against infection is of great importance for the host’s survival, as well as for the development of therapeutic and prophylactic interventions. A vaccine is an important protective as well as being a therapeutic tool against infectious disease, and several studies have shown promise for the development of an effective vaccine against KoRV. Moreover, CRISPR/Cas9-based genome editing has opened a new window for gene therapy, and it appears to be a potential therapeutic tool in many viral infections, which could also be investigated for the treatment of KoRV infection. Here, we discuss the recent advances made in the understanding of the immune response in KoRV infection, as well as the progress towards vaccine development against KoRV infection in koalas.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Department of Health, Chattogram City Corporation, Chattogram 4000, Bangladesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; (M.E.H.K.); (M.A.H.)
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
5
|
Peel E, Cheng Y, Djordjevic JT, O’Meally D, Thomas M, Kuhn M, Sorrell TC, Huston WM, Belov K. Koala cathelicidin PhciCath5 has antimicrobial activity, including against Chlamydia pecorum. PLoS One 2021; 16:e0249658. [PMID: 33852625 PMCID: PMC8046226 DOI: 10.1371/journal.pone.0249658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/22/2021] [Indexed: 11/18/2022] Open
Abstract
Devastating fires in Australia over 2019-20 decimated native fauna and flora, including koalas. The resulting population bottleneck, combined with significant loss of habitat, increases the vulnerability of remaining koala populations to threats which include disease. Chlamydia is one disease which causes significant morbidity and mortality in koalas. The predominant pathogenic species, Chlamydia pecorum, causes severe ocular, urogenital and reproductive tract disease. In marsupials, including the koala, gene expansions of an antimicrobial peptide family known as cathelicidins have enabled protection of immunologically naïve pouch young during early development. We propose that koala cathelicidins are active against Chlamydia and other bacteria and fungi. Here we describe ten koala cathelicidins, five of which contained full length coding sequences that were widely expressed in tissues throughout the body. Focusing on these five, we investigate their antimicrobial activity against two koala C. pecorum isolates from distinct serovars; MarsBar and IPTaLE, as well as other bacteria and fungi. One cathelicidin, PhciCath5, inactivated C. pecorum IPTaLE and MarsBar elementary bodies and significantly reduced the number of inclusions compared to the control (p<0.0001). Despite evidence of cathelicidin expression within tissues known to be infected by Chlamydia, natural PhciCath5 concentrations may be inadequate in vivo to prevent or control C. pecorum infections in koalas. PhciCath5 also displayed antimicrobial activity against fungi and Gram negative and positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Electrostatic interactions likely drive PhciCath5 adherence to the pathogen cell membrane, followed by membrane permeabilisation leading to cell death. Activity against E. coli was reduced in the presence of 10% serum and 20% whole blood. Future modification of the PhciCath5 peptide to enhance activity, including in the presence of serum/blood, may provide a novel solution to Chlamydia infection in koalas and other species.
Collapse
Affiliation(s)
- Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, New South Wales, Australia
| | - Denis O’Meally
- Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Mark Thomas
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Michael Kuhn
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, Michigan, United States of America
| | - Tania C. Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead, New South Wales, Australia
| | - Wilhelmina M. Huston
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
6
|
Quigley BL, Timms P. Helping koalas battle disease - Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev 2020; 44:583-605. [PMID: 32556174 PMCID: PMC8600735 DOI: 10.1093/femsre/fuaa024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022] Open
Abstract
The iconic Australian marsupial, the koala (Phascolarctos cinereus), has suffered dramatic population declines as a result of habitat loss and fragmentation, disease, vehicle collision mortality, dog attacks, bushfires and climate change. In 2012, koalas were officially declared vulnerable by the Australian government and listed as a threatened species. In response, research into diseases affecting koalas has expanded rapidly. The two major pathogens affecting koalas are Chlamydia pecorum, leading to chlamydial disease and koala retrovirus (KoRV). In the last eight years, these pathogens and their diseases have received focused study regarding their sources, genetics, prevalence, disease presentation and transmission. This has led to vast improvements in pathogen detection and treatment, including the ongoing development of vaccines for each as a management and control strategy. This review will summarize and highlight the important advances made in understanding and combating C. pecorum and KoRV in koalas, since they were declared a threatened species. With complementary advances having also been made from the koala genome sequence and in our understanding of the koala immune system, we are primed to make a significant positive impact on koala health into the future.
Collapse
Affiliation(s)
- Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast,
90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| |
Collapse
|
7
|
Acharya R, Wallis ZK, Keener RJ, Gillock ET. Preliminary PCR-Based Screening Indicates a Higher Incidence of Porcine Endogenous Retrovirus Subtype C (PERV-C) in Feral Versus Domestic Swine. ACTA ACUST UNITED AC 2019. [DOI: 10.1660/062.122.0309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rashmi Acharya
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| | - Zoey K. Wallis
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| | - Robert J. Keener
- 2. Department of Agriculture, Fort Hays State University, Hays, Kansas
| | - Eric T. Gillock
- 1. Department of Biological Sciences, Fort Hays State University, Hays, Kansas
| |
Collapse
|
8
|
Hashem MA, Kayesh MEH, Yamato O, Maetani F, Eiei T, Mochizuki K, Sakurai H, Ito A, Kannno H, Kasahara T, Amano Y, Tsukiyama-Kohara K. Coinfection with koala retrovirus subtypes A and B and its impact on captive koalas in Japanese zoos. Arch Virol 2019; 164:2735-2745. [PMID: 31486907 DOI: 10.1007/s00705-019-04392-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/04/2019] [Indexed: 01/25/2023]
Abstract
Koala retrovirus (KoRV) is unique among endogenous retroviruses because its endogenization is still active. Two major KoRV subtypes, KoRV-A and B, have been described, and KoRV-B is associated with disease and poses a health threat to koalas. Here, we investigated the co-prevalence of KoRV-A and KoRV-B, detected by type-specific PCR and sequencing, and their impact on the health of koalas in three Japanese zoos. We also investigated KoRV proviral loads and found varying amounts of genomic DNA (gDNA) in peripheral blood mononuclear cells (PBMCs). We found that 100% of the koalas examined were infected with KoRV-A and 60% (12/20) were coinfected with KoRV-B. The KoRV-A sequence was highly conserved, whereas the KoRV-B sequence varied among individuals. Interestingly, we observed possible vertical transmission of KoRV-B in one offspring in which the KoRV-B sequence was similar to that of the father but not the mother. Moreover, we characterized the KoRV growth patterns in concanavalin-A-stimulated PBMCs isolated from KoRV-B-coinfected or KoRV-B-uninfected koalas. We quantified the KoRV provirus in gDNA and the KoRV RNA copy numbers in cells and culture supernatants by real-time PCR at days 4, 7, and 14 post-seeding. As the study population is housed in captivity, a longitudinal study of these koalas may provide an opportunity to study the transmission mode of KoRV-B. In addition, we characterized KoRV isolates by infecting tupaia cells. The results suggested that tupaia may be used as an infection model for KoRV. Thus, this study may enhance our understanding of KoRV-B coinfection and transmission in the captive koalas.
Collapse
Affiliation(s)
- Md Abul Hashem
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Department of Health, Chittagong City Corporation, Chittagong, 4000, Bangladesh
| | - Mohammad Enamul Hoque Kayesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babugonj, Barishal, 8210, Bangladesh
| | - Osamu Yamato
- Department of Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | | | - Taiki Eiei
- Hirakawa Zoological Park, Kagoshima, Japan
| | | | | | - Ayaka Ito
- Hirakawa Zoological Park, Kagoshima, Japan
| | | | | | | | - Kyoko Tsukiyama-Kohara
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. .,Transboundary Animal Diseases Centre, Department of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
9
|
Altered immune parameters associated with Koala Retrovirus (KoRV) and Chlamydial infection in free ranging Victorian koalas (Phascolarctos cinereus). Sci Rep 2019; 9:11170. [PMID: 31371797 PMCID: PMC6673689 DOI: 10.1038/s41598-019-47666-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 07/18/2019] [Indexed: 01/29/2023] Open
Abstract
Koala Retrovirus (KoRV) has been widely speculated to cause immune suppression in koalas (Phascolarctos cinereus) and to underlie the koala's susceptibility to infectious disease, however evidence for immunomodulation is limited. The aim of this study is to determine whether immunophenotypic changes are associated with KoRV infection in free ranging Victorian koalas. qPCR was used to examine mRNA expression for Th1 (IFNγ), Th2-promoting (IL6, IL10) and Th17 (IL17A) cytokines, along with CD4 and CD8 in whole blood of koalas (n = 74) from Mt Eccles and Raymond Island in Victoria, Australia, with and without natural chlamydial infection. KoRV positive koalas had significantly lower levels of IL17A (p`0.023) and IFNγ (p = 0.044) gene expression along with a decreased CD4:CD8 gene expression ratio (p = 0.025) compared to negative koalas. No effect of chlamydial infection or combined effect of KoRV and chlamydial infection was detected in these populations. The decreased expression of IFNγ could make KoRV infected koalas more susceptible to persistent chlamydial infection, and a decrease in IL17A could make them more susceptible to gram negative bacterial, fungal and mycobacterial infection; but more tolerant of chlamydial infection.
Collapse
|
10
|
Molecular dynamics of koala retrovirus infection in captive koalas in Japan. Arch Virol 2019; 164:757-765. [DOI: 10.1007/s00705-019-04149-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
11
|
Norman AJ, Putnam AS, Ivy JA. Use of molecular data in zoo and aquarium collection management: Benefits, challenges, and best practices. Zoo Biol 2018; 38:106-118. [PMID: 30465726 DOI: 10.1002/zoo.21451] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/05/2018] [Accepted: 10/12/2018] [Indexed: 01/06/2023]
Abstract
The global zoo and aquarium community widely recognizes that its animal collections and cooperative breeding programs are facing a sustainability crisis. It has become commonly accepted that numerous priority species cannot be maintained unless new management strategies are adopted. While molecular data have the potential to greatly improve management across a range of scenarios, they have been generally underutilized by the zoo and aquarium community. This failure to effectively apply molecular data to collection management has been due, in part, to a paucity of resources within the community on which to base informed decisions about when the use of such data is appropriate and what steps are necessary to successfully integrate data into management. Here, we identify three broad areas of inquiry where molecular data can inform management: 1) taxonomic identification; 2) incomplete or unknown pedigrees; and 3) hereditary disease. Across these topics, we offer a discussion of the advantages, limitations, and considerations for applying molecular data to ex situ animal populations in a style accessible to zoo and aquarium professionals. Ultimately, we intend for this compiled information to serve as a resource for the community to help ensure that molecular projects directly and effectively benefit the long-term persistence of ex situ populations.
Collapse
Affiliation(s)
- Anita J Norman
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| | - Andrea S Putnam
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| | - Jamie A Ivy
- Department of Life Sciences, San Diego Zoo Global, San Diego, California
| |
Collapse
|
12
|
Abstract
Cancer is ubiquitous in wildlife, affecting animals from bivalves to pachyderms and cetaceans. Reports of increasing frequency demonstrate that neoplasia is associated with substantial mortality in wildlife species. Anthropogenic activities and global weather changes are shaping new geographical limitations for many species, and alterations in living niches are associated with visible examples of genetic bottlenecks, toxin exposures, oncogenic pathogens, stress and immunosuppression, which can all contribute to cancers in wild species. Nations that devote resources to monitoring the health of wildlife often do so for human-centric reasons, including for the prediction of the potential for zoonotic disease, shared contaminants, chemicals and medications, and for observing the effect of exposure from crowding and loss of habitat. Given the increasing human footprint on land and in the sea, wildlife conservation should also become a more important motivating factor. Greater attention to the patterns of the emergence of wildlife cancer is imperative because growing numbers of species are existing at the interface between humans and the environment, making wildlife sentinels for both animal and human health. Therefore, monitoring wildlife cancers could offer interesting and novel insights into potentially unique non-age-related mechanisms of carcinogenesis across species.
Collapse
Affiliation(s)
- Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA.
| | - Dalen Agnew
- Veterinary Diagnostic Laboratory, Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Michael K Keel
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
13
|
Waugh CA, Hanger J, Loader J, King A, Hobbs M, Johnson R, Timms P. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci Rep 2017; 7:134. [PMID: 28273935 PMCID: PMC5427818 DOI: 10.1038/s41598-017-00137-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
The virulence of chlamydial infection in wild koalas is highly variable between individuals. Some koalas can be infected (PCR positive) with Chlamydia for long periods but remain asymptomatic, whereas others develop clinical disease. Chlamydia in the koala has traditionally been studied without regard to coinfection with other pathogens, although koalas are usually subject to infection with koala retrovirus (KoRV). Retroviruses can be immunosuppressive, and there is evidence of an immunosuppressive effect of KoRV in vitro. Originally thought to be a single endogenous strain, a new, potentially more virulent exogenous variant (KoRV-B) was recently reported. We hypothesized that KoRV-B might significantly alter chlamydial disease outcomes in koalas, presumably via immunosuppression. By studying sub-groups of Chlamydia and KoRV infected koalas in the wild, we found that neither total KoRV load (either viraemia or proviral copies per genome), nor chlamydial infection level or strain type, was significantly associated with chlamydial disease risk. However, PCR positivity with KoRV-B was significantly associated with chlamydial disease in koalas (p = 0.02961). This represents an example of a recently evolved virus variant that may be predisposing its host (the koala) to overt clinical disease when co-infected with an otherwise asymptomatic bacterial pathogen (Chlamydia).
Collapse
Affiliation(s)
- Courtney A Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4558, Queensland, Australia.,Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jonathan Hanger
- Endeavour Veterinary Ecology, 1695 Pumicestone Rd, Toorbul, 4510, Queensland, Australia
| | - Joanne Loader
- Endeavour Veterinary Ecology, 1695 Pumicestone Rd, Toorbul, 4510, Queensland, Australia
| | - Andrew King
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Matthew Hobbs
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Rebecca Johnson
- Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, NSW, 2010, Australia
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4558, Queensland, Australia.
| |
Collapse
|
14
|
Transspecies Transmission of Gammaretroviruses and the Origin of the Gibbon Ape Leukaemia Virus (GaLV) and the Koala Retrovirus (KoRV). Viruses 2016; 8:v8120336. [PMID: 27999419 PMCID: PMC5192397 DOI: 10.3390/v8120336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 01/05/2023] Open
Abstract
Transspecies transmission of retroviruses is a frequent event, and the human immunodeficiency virus-1 (HIV-1) is a well-known example. The gibbon ape leukaemia virus (GaLV) and koala retrovirus (KoRV), two gammaretroviruses, are also the result of a transspecies transmission, however from a still unknown host. Related retroviruses have been found in Southeast Asian mice although the sequence similarity was limited. Viruses with a higher sequence homology were isolated from Melomys burtoni, the Australian and Indonesian grassland melomys. However, only the habitats of the koalas and the grassland melomys in Australia are overlapping, indicating that the melomys virus may not be the precursor of the GaLV. Viruses closely related to GaLV/KoRV were also detected in bats. Therefore, given the fact that the habitats of the gibbons in Thailand and the koalas in Australia are far away, and that bats are able to fly over long distances, the hypothesis that retroviruses of bats are the origin of GaLV and KoRV deserves consideration. Analysis of previous transspecies transmissions of retroviruses may help to evaluate the potential of transmission of related retroviruses in the future, e.g., that of porcine endogenous retroviruses (PERVs) during xenotransplantation using pig cells, tissues or organs.
Collapse
|