1
|
Mikkelsen L, Kovacs KM, Blanchet MA, Brodin G, Lydersen C. Interannual site fidelity by Svalbard walruses. Sci Rep 2024; 14:15822. [PMID: 38982120 PMCID: PMC11233647 DOI: 10.1038/s41598-024-66370-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
The Arctic is experiencing rapid reductions in sea ice, affecting all ice-dependant species. In the present study we examine interannual seasonal movements and habitat use in relation to sea ice coverage for one of the Arctic endemic marine mammals. We tagged 40 male walruses (Odobenus rosmarus) in the Svalbard Archipelago with custom-designed tusk-mounted GPS loggers. Twelve of these animals provided tracks that lasted 1-6 years. Eleven of the walruses displayed clear seasonal migratory behaviour between summer foraging areas and winter breeding areas. Individuals showed high inter-individual variation, but clear site fidelity, using the same areas in consecutive years despite variable sea ice conditions. The walruses swam 5225-10,406 km per year and travelled remarkably similar distances between years on an individual basis. The phenology of migration was not impacted by sea ice concentrations or daylight length but was consistent at the individual level, suggesting endogenous drivers. Sea ice concentrations influenced movement behaviour with animals showing more tortuous paths when in areas with heavy sea ice, possibly searching for polynyas where females reside. Ongoing climate change is expected to drastically change walrus habitat, and it remains to be seen if walruses will be able to shift from their fixed seasonal migratory routines.
Collapse
Affiliation(s)
- Lonnie Mikkelsen
- Norwegian Polar Institute, Framsenteret, Hjalmar Johansens Gate 14, 9296, Tromsø, Norway.
| | - Kit M Kovacs
- Norwegian Polar Institute, Framsenteret, Hjalmar Johansens Gate 14, 9296, Tromsø, Norway
| | - Marie-Anne Blanchet
- Norwegian Polar Institute, Framsenteret, Hjalmar Johansens Gate 14, 9296, Tromsø, Norway
| | - Gary Brodin
- Pathtrack Ltd, Unit 1, Chevin Mill, Leeds Road, Otley, LS21 1BT, UK
| | - Christian Lydersen
- Norwegian Polar Institute, Framsenteret, Hjalmar Johansens Gate 14, 9296, Tromsø, Norway
| |
Collapse
|
2
|
Lippold A, Harju M, Aars J, Blévin P, Bytingsvik J, Gabrielsen GW, Kovacs KM, Lyche JL, Lydersen C, Rikardsen AH, Routti H. Occurrence of emerging brominated flame retardants and organophosphate esters in marine wildlife from the Norwegian Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120395. [PMID: 36228858 DOI: 10.1016/j.envpol.2022.120395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
To understand the exposure and potential sources of emerging brominated flame retardants (EBFR) and organophosphate esters (OPEs) in marine wildlife from the Norwegian Arctic, we investigated concentrations of EBFRs in 157 tissue samples from nine species of marine vertebrates and OPEs in 34 samples from three whale species. The samples, collected from a wide range of species with contrasting areal use and diets, included blubber of blue whales, fin whales, humpback whales, white whales, killer whales, walruses and ringed seals and adipose tissue and plasma from polar bears, as well as adipose tissue from glaucous gulls. Tris(2-ethylhexyl) phosphate (TEHP) and tris(2-chloroisopropyl) phosphate (TCIPP) ranged from <0.61 to 164 and < 0.8-41 ng/g lipid weight, respectively, in blue whales and fin whales. All other EBRFs and OPEs were below the detection limit or detected only at low concentration. In addition to the baseline information on the occurrence of EBFRs and OPEs in marine wildlife from the Arctic, we provide an in-depth discussion regarding potential sources of the detected compounds. This information is important for future monitoring and management of EBFRs and OPEs.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | - Mikael Harju
- Norwegian Institute for Air Research, Fram Centre, Tromsø 9296, Norway
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | | | | | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | | | | | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway.
| |
Collapse
|
3
|
Boltunov A, Semenova V, Samsonov D, Boltunov N, Nikiforov V. Persistent organic pollutants in the Pechora Sea walruses. Polar Biol 2019. [DOI: 10.1007/s00300-019-02457-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Routti H, Diot B, Panti C, Duale N, Fossi MC, Harju M, Kovacs KM, Lydersen C, Scotter SE, Villanger GD, Bourgeon S. Contaminants in Atlantic walruses in Svalbard Part 2: Relationships with endocrine and immune systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:658-667. [PMID: 30611942 DOI: 10.1016/j.envpol.2018.11.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/26/2023]
Abstract
Marine mammals in the Barents Sea region have among the highest levels of contaminants recorded in the Arctic and the Atlantic walrus (Odobenus rosmarus rosmarus) is one of the most contaminated species within this region. We therefore investigated the relationships bewteen blubber concentrations of lipophilic persistent organic pollutants (POPs) and plasma concentrations of perfluoroalkyl substances (PFASs) and markers of endocrine and immune functions in adult male Atlantic walruses (n = 38) from Svalbard, Norway. To do so, we assessed plasma concentrations of five forms of thyroid hormones and transcript levels of genes related to the endocrine and immune systems as endpoints; transcript levels of seven genes in blubber and 23 genes in blood cells were studied. Results indicated that plasma total thyroxine (TT4) concentrations and ratio of TT4 and reverse triiodothyronine decreased with increasing blubber concentrations of lipophilic POPs. Blood cell transcript levels of genes involved in the function of T and B cells (FC like receptors 2 and 5, cytotoxic T-lymphocyte associated protein 4 and protein tyrosine phosphatase non-receptor type 22) were increased with plasma PFAS concentrations. These results suggest that changes in thyroid and immune systems in adult male walruses are linked to current levels of contaminant exposure.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway; University of Siena, Siena, Italy.
| | - Béatrice Diot
- UiT, The Arctic University of Norway, Tromsø, Norway
| | | | - Nur Duale
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Mikael Harju
- Norwegian Institute for Air Research, Fram Centre, Tromsø, Norway
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, Tromsø, Norway
| | | | | | | | | |
Collapse
|
5
|
Scotter SE, Tryland M, Nymo IH, Hanssen L, Harju M, Lydersen C, Kovacs KM, Klein J, Fisk AT, Routti H. Contaminants in Atlantic walruses in Svalbard part 1: Relationships between exposure, diet and pathogen prevalence. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:9-18. [PMID: 30317087 DOI: 10.1016/j.envpol.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
This study investigated relationships between organohalogen compound (OHC) exposure, feeding habits, and pathogen exposure in a recovering population of Atlantic walruses (Odobenus rosmarus rosmarus) from the Svalbard Archipelago, Norway. Various samples were collected from 39 free-living, apparently healthy, adult male walruses immobilised at three sampling locations during the summers of 2014 and 2015. Concentrations of lipophilic compounds (polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers) were analysed in blubber samples, and concentrations of perfluoroalkylated substances (PFASs) were determined in plasma samples. Stable isotopes of carbon and nitrogen were measured in seven tissue types and surveys for three infectious pathogens were conducted. Despite an overall decline in lipophilic compound concentrations since this population was last studied (2006), the contaminant pattern was similar, including extremely large inter-individual variation. Stable isotope ratios of carbon and nitrogen showed that the variation in OHC concentrations could not be explained by some walruses consuming higher trophic level diets, since all animals were found to feed at a similar trophic level. Antibodies against the bacteria Brucella spp. and the parasite Toxoplasma gondii were detected in 26% and 15% of the walruses, respectively. Given the absence of seal-predation, T. gondii exposure likely took place via the consumption of contaminated bivalves. The source of exposure to Brucella spp. in walruses is still unknown. Parapoxvirus DNA was detected in a single individual, representing the first documented evidence of parapoxvirus in wild walruses. Antibody prevalence was not related to contaminant exposure. Despite this, dynamic relationships between diet composition, contaminant bioaccumulation and pathogen exposure warrant continuing attention given the likelihood of climate change induced habitat and food web changes, and consequently OHC exposure, for Svalbard walruses in the coming decades.
Collapse
Affiliation(s)
- Sophie E Scotter
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway
| | - Morten Tryland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway
| | - Ingebjørg H Nymo
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, N-9019, Tromsø, Norway; Norwegian Veterinary Institute, Stakkevollveien 23, N-9010, Tromsø, Norway
| | - Linda Hanssen
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Mikael Harju
- Norwegian Institute for Air Research (NILU), Fram Centre, N-9296, Tromsø, Norway
| | | | - Kit M Kovacs
- Norwegian Polar Institute, FRAM Centre, N-9296, Tromsø, Norway
| | - Jörn Klein
- University College of Southeast Norway (USN), Post Box 235, N-3603, Kongsberg, Norway
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Heli Routti
- Norwegian Polar Institute, FRAM Centre, N-9296, Tromsø, Norway.
| |
Collapse
|