1
|
Strobel SM, Fischer EK, Womack MC. Consequences of developmental and growth-rate plasticity within and across life stages in wood frogs ( Rana sylvatica). ROYAL SOCIETY OPEN SCIENCE 2025; 12:250202. [PMID: 40370614 PMCID: PMC12077235 DOI: 10.1098/rsos.250202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 05/16/2025]
Abstract
Increased trait responsiveness to the environment can provide short-term benefits but may induce delayed costs. Anurans (frogs and toads) provide an excellent system to examine phenotypic plasticity and developmental carry-over effects given their ecologically distinct life stages, which have distinct development and growth opportunities. Previous research has predominantly assessed phenotype at metamorphosis rather than within and across life stages. To address this knowledge gap, we reared wood frogs (Rana sylvatica) at two densities and assessed morphology and survival at multiple larval and post-metamorphic timepoints. As expected, the high-density rearing environment depressed early larval size and survivorship and delayed metamorphosis. However, compensatory growth-rate plasticity enabled high-density tadpoles to metamorphose at a similar size as low-density tadpoles. Regardless of rearing density, larval duration was negatively correlated with metamorphic mass for the earliest developers and influenced post-metamorphic survivorship and morphology, but we found evidence for a trade-off between compensatory growth and later-life survival. Our results reinforce the need to sample at multiple timepoints and life stages to understand interactions between phenotype and developmental environment. More broadly, this study contributes to understanding trade-offs and compensation associated with phenotypic plasticity, which will become even more critical given accelerating rates of global environmental change.
Collapse
Affiliation(s)
- Sarah McKay Strobel
- Department of Biology, Utah State University, Logan, UT, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Eva K. Fischer
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
| | - Molly C. Womack
- Department of Biology, Utah State University, Logan, UT, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
2
|
Lundsgaard NU, Franklin CE, Cramp RL. Older Amphibian Larvae Are More Sensitive to Ultraviolet Radiation and Experience More Sublethal Carryover Effects Post-Metamorphosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:197-210. [PMID: 39526562 DOI: 10.1002/jez.2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Elevated ultraviolet radiation (UVR) is postulated as one of multiple, interrelated environmental stressors driving amphibian population declines globally. However, key knowledge gaps remain in elucidating the link between elevated UVR and amphibian declines in a changing climate, including whether timing and irradiance of UVR exposure in early life dictates the onset of detrimental carryover effects post-metamorphosis. In this study, striped marsh frog larvae (Limnodynastes peronii) were exposed to UVR at one of two different irradiances for up to 7 days, either as hatchlings (Gosner stage 23) or as older larvae (Gosner stage 25-28). These animals were then reared to metamorphosis in the absence of UVR to examine independent and interactive carryover effects throughout development. Older larvae were more sensitive to UVR than hatchlings, with 53.1% and 15.6% mortality in larvae exposed to high and low irradiance respectively, compared with no mortality of hatchlings in either irradiance treatment. Irradiance and timing of UVR exposure had interactive effects on larval body length, causing stunted growth patterns and a lack of compensatory growth following UVR exposure, particularly in animals exposed to high irradiance UVR later in development. Timing of UVR exposure also determined the severity of carryover effects into metamorphosis, including delayed metamorphosis and the first published account (to our knowledge) of latent UVR-induced depigmentation in an amphibian. These findings highlight how acute changes to the larval UVR exposure regime can impact on amphibian health later in life, with implications for our understanding of the effects of climate change on UVR-related amphibian declines.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
- Water Planning Ecology, Queensland Department of Environment, Science and Innovation, Dutton Park, Queensland, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
3
|
Lundsgaard NU, Hird C, Doody KA, Franklin CE, Cramp RL. Carryover effects from environmental change in early life: An overlooked driver of the amphibian extinction crisis? GLOBAL CHANGE BIOLOGY 2023; 29:3857-3868. [PMID: 37310166 DOI: 10.1111/gcb.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Coen Hird
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Kathleen A Doody
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
4
|
Ford J, Green DM. Inter-annual variation in amphibian larval interspecies interactions. Ecol Evol 2023; 13:e10221. [PMID: 37408624 PMCID: PMC10318579 DOI: 10.1002/ece3.10221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023] Open
Abstract
The outcomes of species interactions can vary by life stage, year, and surrounding environmental conditions. Amphibian species are expected to compete most strongly during their tadpole stage when they exist in the highest densities. Changes in arrival timing, surrounding aquatic communities, and yearly conditions could all affect the outcome of larval competition. In Long Point, Ontario, the Fowler's toad (Anaxyrus fowleri) is at the northern edge of its range and overlaps with the more common American toad (Anaxyrus americanus). Both species breed in ponds that encounter high inter-annual variation. To determine whether these species compete strongly, and if this effect was replicated across multiple years, we raised both species as tadpoles together and, apart, in mesocosms in 2018 and 2021. We measured survivorship to, weight at, and time to metamorphosis for both species in both years. We determined that the presence of American toad tadpoles consistently had a detrimental effect on Fowler's toad tadpoles, even though this effect presented itself differently across years. Our study suggests that competitive exclusion by American toads could be occurring at the edge of the Fowler's toad's range. This study further demonstrates the importance of studying communities across multiple years to understand the full scope of species interactions.
Collapse
Affiliation(s)
- Jessica Ford
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
| | | |
Collapse
|
5
|
Monroe DJ, Barny LA, Wu A, Minbiole KPC, Gabor CR. An integrated physiological perspective on anthropogenic stressors in the Gulf coast toad (Incilius nebulifer). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anthropogenic environmental change, including climate change and urbanization, results in warmer temperatures in both terrestrial and aquatic habitats and changes in community assemblages including invasive species introductions, among many other alterations. Anurans are particularly susceptible to these changes because generally they have a biphasic lifecycle and rely on aquatic and terrestrial habitats for survival. Changes such as warmer water temperature can result in direct and carryover effects, after metamorphosis that decrease fitness. However, Gulf Coast toads (Incilius (Bufo) nebulifer) are expanding their range, including into anthropogenically disturbed areas. We hypothesize that I. nebulifer copes with warmer water, reduced water levels, and invasive species by altering their physiology and/or behavior. Corticosterone is the primary glucocorticoid in amphibians, and it modulates many aspects of physiology and behavior, potentially including lipid storage and hop performance, during unpredictable (stressful) events. As a true toad, I. nebulifer also produces bufadienolide toxins that aid in its antipredator defense and may have tradeoffs with corticosterone. In a fully factorial design, we measured baseline corticosterone levels in tadpoles in response to two treatments: decreased water levels and increased water temperatures. After metamorphosis, we measured the corticosterone profile and other associated responses to exposure to the predatory red imported fire ant (Solenopsis invicta; RIFA). We found that tadpoles had elevated baseline corticosterone release rates when reared in warmer water and reduced water levels. Toadlets also had elevated baseline corticosterone release rates when exposed to any combination of two of the three treatments but when exposed to all three treatments toadlets instead showed elevated magnitude of their stress response. Predator avoidance (as measured by hop performance) was reduced after exposure to RIFA. Tadpoles from warmer water developed more quickly and were smaller in mass after metamorphosis. Toadlets had reduced production of two of the three detected bufadienolides and increased energy storage (lipids) after exposure to warmer water and reduced growth after exposure to reduced water levels. We found direct and carryover effects of common anthropogenic changes in I. nebulifer that may aid in their ability to persist despite these changes.
Collapse
|
6
|
Ruthsatz K, Dausmann KH, Peck MA, Glos J. Thermal tolerance and acclimation capacity in the European common frog (Rana temporaria) change throughout ontogeny. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:477-490. [PMID: 35226414 DOI: 10.1002/jez.2582] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Phenotypic plasticity may allow ectotherms with complex life histories such as amphibians to cope with climate-driven changes in their environment. Plasticity in thermal tolerance (i.e., shifts of thermal limits via acclimation to higher temperatures) has been proposed as a mechanism to cope with warming and extreme thermal events. However, thermal tolerance and, hence, acclimation capacity, is known to vary with life stage. Using the common frog (Rana temporaria) as a model species, we measured the capacity to adjust lower (CTmin ) and upper (CTmax ) critical thermal limits at different acclimation temperatures. We calculated the acclimation response ratio as a metric to assess the stage-specific acclimation capacity at each of seven consecutive ontogenetic stages and tested whether acclimation capacity was influenced by body mass and/or age. We further examined how acclimation temperature, body mass, age, and ontogenetic stage influenced CTmin and CTmax . In the temperate population of R. temporaria that we studied, thermal tolerance and acclimation capacity were affected by the ontogenetic stage. However, acclimation capacity at both thermal limits was well below 100% at all life stages tested. The lowest and highest acclimation capacity in thermal limits was observed in young and late larvae, respectively. The relatively low acclimation capacity of young larvae highlights a clear risk of amphibian populations to ongoing climate change. Ignoring stage-specific differences in thermal physiology may drastically underestimate the climate vulnerability of species, which will hamper successful conservation actions.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Zoology, Universität Hamburg, Hamburg, Germany
| | | | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg (Texel), The Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Kaczmarski M, Kaczmarek JM, Jankowiak Ł, Kolenda K, Tryjanowski P. Digit ratio in the common toad Bufo bufo: the effects of reduced fingers and of age dependency. ZOOLOGICAL LETTERS 2021; 7:5. [PMID: 33766147 PMCID: PMC7992345 DOI: 10.1186/s40851-021-00174-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Despite the growing number of studies describing digit ratio patterns in tetrapods, knowledge concerning certain basic issues is still scarce. In lower vertebrates such as tailless amphibians (Anura), the numbering of individual fingers on the forelimbs and their homology with the fingers of other vertebrates pose an unsolved problem. Based on reviewed data on anuran limb development, we argue that the correct finger numbering scheme should be based on the assumption that the first finger, not the fifth finger, was reduced on the forelimbs. We analyzed the digit ratio in the common toad (Bufo bufo, Bufonidae), a species characterized by well-developed sexual dimorphism whereby females are larger than males, using both numbering schemes present in the literature. RESULTS We found that the digit ratio on hindlimbs differed significantly between the sexes only in the cases of left 2D:3D, with lower digit ratios in females, and of left 3D:4D, with lower digit ratios in males. We found that sex was the only significant variable for forelimbs, differentiating 2D:3D on the left forelimb, with lower digit ratios in females; 2D:4D on the right forelimb, with lower digit ratios in males; and 3D:4D on both forelimbs, with lower digit ratios in males. These results relate to variant II reflecting the hypothesis that the first digit was reduced during phylogenesis. There was no relationship between the body size (SVL) of individuals and any digit ratio, excluding 2D:4D on the right forelimbs in models with age variables. Additionally, for a subset of data where individual age was known, the models indicated that age was linked to significant differences in 2D:4D and 3D:4D on the left hindlimbs, while age, SVL, and sex influenced 2D:4D on the right forelimbs. CONCLUSION We emphasize the importance of the problem of the correct numbering of forelimb digits in Anura and, under the assumption that it was the fifth digit that was reduced, argue that earlier results on digit ratio in this group should be interpreted with caution. The detected relationship between digit ratio and age in amphibians expands our knowledge, indicating that the age of individuals should be included in future digit ratio studies. This relationship may also apply to studies using digit ratio as a noninvasive indicator of endocrine disruption in amphibians.
Collapse
Affiliation(s)
- Mikołaj Kaczmarski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71c, PL 60-625 Poznań, Poland
| | - Jan M. Kaczmarek
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71c, PL 60-625 Poznań, Poland
| | - Łukasz Jankowiak
- Institute of Biology, University of Szczecin, Wąska 13, PL 71-415 Szczecin, Poland
| | - Krzysztof Kolenda
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Institute of Environmental Biology, University of Wrocław, Sienkiewicza 21, PL 50-335 Wrocław, Poland
| | - Piotr Tryjanowski
- Institute of Zoology, Poznań University of Life Sciences, Wojska Polskiego 71c, PL 60-625 Poznań, Poland
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| |
Collapse
|
8
|
Ruthsatz K, Dausmann KH, Paesler K, Babos P, Sabatino NM, Peck MA, Glos J. Shifts in sensitivity of amphibian metamorphosis to endocrine disruption: the common frog ( Rana temporaria) as a case study. CONSERVATION PHYSIOLOGY 2020; 8:coaa100. [PMID: 33343902 PMCID: PMC7735370 DOI: 10.1093/conphys/coaa100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 06/01/2023]
Abstract
Effective conservation actions require knowledge on the sensitivity of species to pollution and other anthropogenic stressors. Many of these stressors are endocrine disruptors (EDs) that can impair the hypothalamus-pituitary-thyroid axis and thus alter thyroid hormone (TH) levels with physiological consequences to wildlife. Due to their specific habitat requirements, amphibians are often sentinels of environmental degradation. We investigated how altered TH levels affected the bioenergetics of growth and development (i.e. age, size, metabolism, cardiac function and energy stores) before, during and after metamorphosis in the European common frog (Rana temporaria). We also determined how ontogenetic stage affected susceptibility to endocrine disruption and estimated juvenile performance. TH levels significantly affected growth and energetics at all developmental stages. Tadpoles and froglets exposed to high TH levels were significantly younger, smaller and lighter at all stages compared to those in control and low TH groups, indicating increased developmental and reduced growth rates. Across all ontogenetic stages tested, physiological consequences were rapidly observed after exposure to EDs. High TH increased heart rate by an average of 86% and reduced energy stores (fat content) by 33% compared to controls. Effects of exposure were smallest after the completion of metamorphosis. Our results demonstrate that both morphological and physiological traits of the European common frog are strongly impacted by endocrine disruption and that ontogenetic stage modulates the sensitivity of this species to endocrine disruption. Since endocrine disruption during metamorphosis can impair the physiological stress response in later life stages, long-term studies examining carry-over effects will be an important contribution to the conservation physiology of amphibians.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Kathrin H Dausmann
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Katharina Paesler
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Patricia Babos
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033 Hamburg, Germany
| | - Myron A Peck
- Institute of Marine Ecosystems and Fisheries Science, Universität Hamburg, Große Elbstraße 133, 22767 Hamburg, Germany
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59 1790, AB Den Burg, Netherlands
| | - Julian Glos
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| |
Collapse
|
9
|
Stiles RM, Terrell VCK, Maerz JC, Lannoo MJ. Density-Dependent Fitness Attributes and Carry-Over Effects in Crawfish Frogs (Rana areolata), a Species of Conservation Concern. COPEIA 2020. [DOI: 10.1643/ch-19-246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Rochelle M. Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, California 94132; . Send reprint requests to this address
| | - Vanessa C. K. Terrell
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, Georgia 30602; (VCKT) ; and (JCM)
| | - John C. Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 East Green Street, Athens, Georgia 30602; (VCKT) ; and (JCM)
| | - Michael J. Lannoo
- Indiana University School of Medicine–TH, 620 Chestnut Street, Terre Haute, Indiana 47809;
| |
Collapse
|
10
|
Ruthsatz K, Dausmann KH, Reinhardt S, Robinson T, Sabatino NM, Peck MA, Glos J. Post-metamorphic carry-over effects of altered thyroid hormone level and developmental temperature: physiological plasticity and body condition at two life stages in Rana temporaria. J Comp Physiol B 2020; 190:297-315. [PMID: 32144506 DOI: 10.1007/s00360-020-01271-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 01/08/2023]
Abstract
Environmental stress induced by natural and anthropogenic processes including climate change may threaten the productivity of species and persistence of populations. Ectotherms can potentially cope with stressful conditions such as extremes in temperature by exhibiting physiological plasticity. Amphibian larvae experiencing stressful environments display altered thyroid hormone (TH) status with potential implications for physiological traits and acclimation capacity. We investigated how developmental temperature (Tdev) and altered TH levels (simulating proximate effects of environmental stress) influence the standard metabolic rate (SMR), body condition (BC), and thermal tolerance in metamorphic and post-metamorphic anuran larvae of the common frog (Rana temporaria) reared at five constant temperatures (14-28 °C). At metamorphosis, larvae that developed at higher temperatures had higher maximum thermal limits but narrower ranges in thermal tolerance. Mean CTmax was 37.63 °C ± 0.14 (low TH), 36.49 °C ± 0.31 (control), and 36.43 °C ± 0.68 (high TH) in larvae acclimated to different temperatures. Larvae were able to acclimate to higher Tdev by adjusting their thermal tolerance, but not their SMR, and this effect was not impaired by altered TH levels. BC was reduced by 80% (metamorphic) and by 85% (post-metamorphic) at highest Tdev. The effect of stressful larval conditions (i.e., different developmental temperatures and, to some extent, altered TH levels) on SMR and particularly on BC at the onset of metamorphosis was carried over to froglets at the end of metamorphic climax. This has far reaching consequences, since body condition at metamorphosis is known to determine metamorphic success and, thus, is indirectly linked to individual fitness in later life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Kathrin H Dausmann
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Steffen Reinhardt
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Tom Robinson
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Nikita M Sabatino
- Department of Life Sciences, Hamburg University of Applied Sciences, Ulmenliet 20, 21033, Hamburg, Germany
| | - Myron A Peck
- Institute of Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
| | - Julian Glos
- Institute for Zoology, University of Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
11
|
Mueller CA, Bucsky J, Korito L, Manzanares S. Immediate and Persistent Effects of Temperature on Oxygen Consumption and Thermal Tolerance in Embryos and Larvae of the Baja California Chorus Frog, Pseudacris hypochondriaca. Front Physiol 2019; 10:754. [PMID: 31275167 PMCID: PMC6591441 DOI: 10.3389/fphys.2019.00754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023] Open
Abstract
The developmental environment has significant immediate effects on phenotypes, but it may also persistently or permanently shape phenotypes across life history. This study examined how developmental temperature influenced embryonic and larval phenotypes of Baja California chorus frog (Pseudacris hypochondriaca), an abundant amphibian in southern California and northern Baja California. We collected egg clutches from native ponds in northern San Diego County within 24 h of fertilization, and clutches were separated and distributed between constant temperatures of 10, 15, 20, and 25°C for incubation. Oxygen consumption rate (V˙O2), developmental stage, and embryo and yolk masses were measured throughout development. Time to 50% hatch, survival at 50% hatch, and hatch duration were determined. Development rate was strongly affected by temperature, with warmer temperatures reducing time to hatch and hatch duration. Survival to hatch was high across all temperatures, >90%. Mass-specific V˙O2 of embryos either remained constant or increased throughout development, and by hatching energy demand was significantly increased at higher temperatures. There were limited temperature effects on growth, with embryo and yolk dry mass similar between temperatures throughout embryonic development. To examine long-term effects of embryonic temperature, we reared hatchlings from each temperature until onset of larval feeding. Once feeding, larvae were acclimated to 20 or 25°C (>2 weeks). Following acclimation to 20 or 25°C, we measured larval mass-specific V˙O2 and critical thermal maximum (CTMax) at a common developmental stage (Gosner stages 32–36, “hindlimb toe differentiation”). Embryonic temperature had persistent effects on larval V˙O2 and CTMax, with warmer temperatures generally resulting in similar or higher V˙O2 and CTMax. This partially supported a “warmer is better” effect of embryonic incubation temperature. These results suggest that in a thermally robust amphibian species, temperature may program the phenotype during early development to construct traits in thermal tolerance and energy use that may persist. Overall, P. hypochondriaca displays a thermally robust phenotype, and it is possible that amphibians that possess a wider range of phenotypic plasticity will be relatively more successful mitigating effects of climate change.
Collapse
Affiliation(s)
- Casey A Mueller
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Julie Bucsky
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Lindsey Korito
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Samantha Manzanares
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| |
Collapse
|
12
|
Bredeweg EM, Urbina J, Morzillo AT, Garcia TS. Starting on the Right Foot: Carryover Effects of Larval Hydroperiod and Terrain Moisture on Post-metamorphic Frog Movement Behavior. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|