1
|
Nespolo RF, Quintero-Galvis JF, Fontúrbel FE, Cubillos FA, Vianna J, Moreno-Meynard P, Rezende EL, Bozinovic F. Climate change and population persistence in a hibernating marsupial. Proc Biol Sci 2024; 291:20240266. [PMID: 38920109 DOI: 10.1098/rspb.2024.0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
Climate change has physiological consequences on organisms, ecosystems and human societies, surpassing the pace of organismal adaptation. Hibernating mammals are particularly vulnerable as winter survival is determined by short-term physiological changes triggered by temperature. In these animals, winter temperatures cannot surpass a certain threshold, above which hibernators arouse from torpor, increasing several fold their energy needs when food is unavailable. Here, we parameterized a numerical model predicting energy consumption in heterothermic species and modelled winter survival at different climate change scenarios. As a model species, we used the arboreal marsupial monito del monte (genus Dromiciops), which is recognized as one of the few South American hibernators. We modelled four climate change scenarios (from optimistic to pessimistic) based on IPCC projections, predicting that northern and coastal populations (Dromiciops bozinovici) will decline because the minimum number of cold days needed to survive the winter will not be attained. These populations are also the most affected by habitat fragmentation and changes in land use. Conversely, Andean and other highland populations, in cooler environments, are predicted to persist and thrive. Given the widespread presence of hibernating mammals around the world, models based on simple physiological parameters, such as this one, are becoming essential for predicting species responses to warming in the short term.
Collapse
Affiliation(s)
- Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
| | - Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile , Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
| | - Francisco E Fontúrbel
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso , Valparaíso, Chile
| | - Francisco A Cubillos
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Departamento de Biología y Química, Universidad de Santiago de Chile , Santiago, Chile
- Millennium Institute for Integrative Biology (iBio) , Santiago, Chile
| | - Juliana Vianna
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
- Departamento de Ecosistemas y Medio Ambiente, Millennium Institute Center for Genome Regulation (CRG), Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Paulo Moreno-Meynard
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Centro de Investigación en Ecosistemas de la Patagonia CIEP , Coyhaique, Chile
| | - Enrico L Rezende
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| | - Francisco Bozinovic
- Millenium Nucleus of Patagonian Limit of Life (LiLi) , Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES) , Santiago, Chile
- Pontificia Universidad Católica de Chile, Facultad de Ciencias Biológicas , Santiago, Chile
| |
Collapse
|
2
|
Fernández VP, Rodríguez-Gómez GB, Molina-Marín DA, Castaño-Villa GJ, Fontúrbel FE. Effects of landscape configuration on the occurrence and abundance of an arboreal marsupial from the Valdivian rainforest. REVISTA CHILENA DE HISTORIA NATURAL 2022. [DOI: 10.1186/s40693-022-00107-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Habitat fragmentation and degradation processes affect biodiversity by reducing habitat quantity and quality, with differential effects on the resident species. However, their consequences are not always noticeable as some ecological processes affected involve idiosyncratic responses among different animal groups. The Valdivian temperate rainforests of southern Chile are experiencing a rapid fragmentation and degradation process despite being a biodiversity hotspot. Deforestation is one of the main threats to these forests. There inhabits the arboreal marsupial Dromiciops gliroides, an iconic species from the Valdivian rainforest, it is the only extant representative of the ancient Microbiotheria order, and it is currently threatened by habitat loss. Here we tested the effects of habitat configuration on D. gliroides occurrence and abundance along 12 landscapes of southern Chile with different disturbance levels.
Methods
We estimated D. gliroides occurrence and abundance using camera traps and related those metrics with landscape configuration indices obtained from FRAGSTATS (i.e., forest %, connectivity, patch number, contiguity, and distance to the nearest patch) using Bayesian linear mixed models.
Results
We found that D. gliroides occurrence was not influenced by landscape configuration, while its abundance was positively influenced by forest contiguity.
Conclusions
Although this arboreal marsupial is present in disturbed forests, its restricted movement capabilities and high dependency on the forest three-dimensional structure may affect its long-term persistence. We urge to rethink native forest conservation and management policies to improve habitat connectivity with possible positive consequences for native fauna.
Collapse
|
3
|
Nespolo RF, Peña I, Mejías C, Ñunque A, Altamirano T, Bozinovic FF. Communal nesting is the optimal strategy for heat conservation in a social marsupial: lessons from biophysical models. J Exp Biol 2022; 225:284634. [PMID: 36420835 PMCID: PMC9720746 DOI: 10.1242/jeb.244606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022]
Abstract
Endothermy, understood as the maintenance of continuous and high body temperatures owing to the combination of metabolic heat production and an insulative cover, is severely challenged in small endotherms inhabiting cold environments. As a response, social clustering combined with nest use (=communal nesting) is a common strategy for heat conservation. To quantify the actual amount of energy that is saved by this strategy, we studied the social marsupial Dromiciops gliroides (monito del monte), an endemic species of the cold forests of southern South America. It is hypothesized that sociability in this marsupial was driven by cold conditions, but evidence supporting this hypothesis is unclear. Here, we used taxidermic models ('mannequins') to experimentally test the energetic benefits of clustering combined with nest use. To do this, we fitted and compared cooling curves of solitary and grouped mannequins, within and outside of a nest, at the typical winter ambient temperatures of their habitat (5°C). We found that the strategy that minimized euthermic cost of maintenance was the combination of nest use and clustering, thus supporting communal nesting as a social adaptation to cope with the cold. Considering the basal metabolic rate of monitos, our estimates suggest that the savings represents almost half of energy consumption per day (in resting conditions). This study shows how simple biophysical models could help to evaluate bioenergetic hypotheses for social behavior in cold-adapted endotherms.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile,Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile,Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile,Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile,Author for correspondence ()
| | - Isabella Peña
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile,Magister en Ecología Aplicada, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Abel Ñunque
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile,Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Tomás Altamirano
- ECOS (Ecology-Complexity-Society) Laboratory, Center for Local Development (CEDEL), Pontificia Universidad Católica de Chile, Villarrica Campus, La Araucanía Region, Chile,National Audubon Society and Cape Horn International Center for Global Change Studies and Biocultural Conservation, Universidad de Magallanes, Punta Arenas, Chile,Millennium Nucleus Center for the Socioeconomic Impact of Environmental Policies (CESIEP), Chile
| | - Francisco F. Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile,Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Vazquez MS, Schenone L, Rodriguez-Cabal MA, Amico GC. Modeling spatio-temporal activity dynamics of the small relict marsupial Dromiciops gliroides. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Brito Vera GA, Salas JA, Heimpel GE, Bulgarella M. Use of artificial nest boxes by two species of small, arboreal mammals in ecuadorian tropical dry forest. NEOTROPICAL BIODIVERSITY 2022. [DOI: 10.1080/23766808.2022.2031562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Gabriel A. Brito Vera
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad de Ciencias Naturales, Carrera de Biología, Universidad de Guayaquil, Ecuador
| | - Jaime A. Salas
- Facultad de Ciencias Naturales, Carrera de Biología, Universidad de Guayaquil, Ecuador
- Facultad de Ingeniería, Universidad Espíritu Santo, Escuela de Ciencias Ambientales, Ecuador
| | | | - Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| |
Collapse
|
6
|
Fontúrbel FE, Franco LM, Bozinovic F, Quintero‐Galvis JF, Mejías C, Amico GC, Vazquez MS, Sabat P, Sánchez‐Hernández JC, Watson DM, Saenz‐Agudelo P, Nespolo RF. The ecology and evolution of the monito del monte, a relict species from the southern South America temperate forests. Ecol Evol 2022; 12:e8645. [PMID: 35261741 PMCID: PMC8888251 DOI: 10.1002/ece3.8645] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.
Collapse
Affiliation(s)
- Francisco E. Fontúrbel
- Instituto de BiologíaPontificia Universidad Católica de ValparaísoValparaísoChile
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
| | - Lida M. Franco
- Facultad de Ciencias Naturales y MatemáticasUniversidad de IbaguéIbaguéColombia
| | - Francisco Bozinovic
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
| | | | - Carlos Mejías
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | | | | | - Pablo Sabat
- Departamento de Ciencias EcológicasFacultad de CienciasUniversidad de ChileSantiagoChile
| | | | - David M. Watson
- School of Agricultural, Environmental and Veterinary SciencesCharles Sturt UniversityAlburyNSWAustralia
| | - Pablo Saenz‐Agudelo
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Roberto F. Nespolo
- Millennium Nucleus of Patagonian Limit of Life (LiLi)SantiagoChile
- Departamento de EcologíaFacultad de Ciencias BiológicasCenter of Applied Ecology and Sustainability (CAPES)Pontificia Universidad Católica de ChileSantiagoChile
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
7
|
Vazquez MS, Rodriguez‐Cabal MA, Amico GC. The forest gardener: A marsupial with a key seed‐dispersing role in the Patagonian temperate forest. Ecol Res 2021. [DOI: 10.1111/1440-1703.12289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Miriam Soledad Vazquez
- Laboratorio Ecotono, INIBIOMA CONICET‐Universidad Nacional del Comahue Bariloche Argentina
| | - Mariano A. Rodriguez‐Cabal
- Grupo de Ecología de Invasiones, INIBIOMA CONICET‐Universidad Nacional del Comahue Bariloche Argentina
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - Guillermo C. Amico
- Laboratorio Ecotono, INIBIOMA CONICET‐Universidad Nacional del Comahue Bariloche Argentina
| |
Collapse
|
8
|
Nespolo RF, Fontúrbel FE, Mejias C, Contreras R, Gutierrez P, Oda E, Sabat P, Hambly C, Speakman JR, Bozinovic F. A Mesocosm Experiment in Ecological Physiology: The Modulation of Energy Budget in a Hibernating Marsupial under Chronic Caloric Restriction. Physiol Biochem Zool 2021; 95:66-81. [PMID: 34875208 DOI: 10.1086/717760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDuring the past 60 years, mammalian hibernation (i.e., seasonal torpor) has been interpreted as a physiological adaptation for energy economy. However, direct field comparisons of energy expenditure and torpor use in hibernating and active free-ranging animals are scarce. Here, we followed the complete hibernation cycle of a fat-storing hibernator, the marsupial Dromiciops gliroides, in its natural habitat. Using replicated mesocosms, we experimentally manipulated energy availability and measured torpor use, hibernacula use, and social clustering throughout the entire hibernation season. Also, we measured energy flow using daily food intake, daily energy expenditure (DEE), and basal metabolic rate (BMR) in winter. We hypothesized that when facing chronic caloric restriction (CCR), a hibernator should maximize torpor frequency to compensate for the energetic deficit, compared with individuals fed ad lib. (controls). However, being torpid at low temperatures could increase other burdens (e.g., cost of rewarming, freezing risks). Our results revealed that CCR animals, compared with control animals, did not promote heat conservation strategies (i.e., clustering and hibernacula use). Instead, they gradually increased torpor frequency and reduced DEE and, as a consequence, recovered weight at the end of the season. Also, CCR animals consumed food at a rate of 50.8 kJ d-1, whereas control animals consumed food at a rate of 98.4 kJ d-1. Similarly, the DEE of CCR animals in winter was 47.3±5.64 kJ d-1, which was significantly lower than control animals (DEE=88.0±5.84 kJ d-1). However, BMR and lean mass of CCR and control animals did not vary significantly, suggesting that animals maintained full metabolic capacities. This study shows that the use of torpor can be modulated depending on energy supply, thus optimizing energy budgeting. This plasticity in the use of heterothermy as an energy-saving strategy would explain the occurrence of this marsupial in a broad latitudinal and altitudinal range. Overall, this study suggests that hibernation is a powerful strategy to modulate energy expenditure in mammals from temperate regions.
Collapse
|
9
|
Vitali A, Sasal Y, Vázquez DP, Miguel MF, Rodríguez-Cabal MA. The disruption of a keystone interaction erodes pollination and seed dispersal networks. Ecology 2021; 103:e03547. [PMID: 34618911 DOI: 10.1002/ecy.3547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/17/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Understanding the impacts of global change on ecological communities is a major challenge in modern ecology. The gain or loss of particular species and the disruption of key interactions are both consequences and drivers of global change that can lead to the disassembly of ecological networks. We examined whether the disruption of a hummingbird-mistletoe-marsupial mutualism by the invasion of non-native species can have cascading effects on both pollination and seed dispersal networks in the temperate forest of Patagonia, Argentina. We focused on network motifs, subnetworks composed of a small number of species exhibiting particular patterns of interaction, to examine the structure and diversity of mutualistic networks. We found that the hummingbird-mistletoe-marsupial mutualism plays a critical role in the community by increasing the complexity of pollination and seed dispersal networks through supporting a high diversity of interactions. Moreover, we found that the disruption of this tripartite mutualism by non-native ungulates resulted in diverse indirect effects that led to less complex pollination and seed dispersal networks. Our results demonstrate that the gains and losses of particular species and the alteration of key interactions can lead to cascading effects in the community through the disassembly of mutualistic networks.
Collapse
Affiliation(s)
- Agustin Vitali
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET - Universidad Nacional del Comahue, Bariloche, Argentina
| | - Yamila Sasal
- Laboratorio Ecotono, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET - Universidad Nacional del Comahue, Bariloche, Argentina
| | - Diego P Vázquez
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET & Universidad Nacional de Cuyo, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - M Florencia Miguel
- Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET & Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mariano A Rodríguez-Cabal
- Grupo de Ecología de Invasiones, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA) - CONICET - Universidad Nacional del Comahue, Bariloche, Argentina.,Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
10
|
Intermediate levels of wood extraction may facilitate coexistence of an endemic arboreal marsupial and Indigenous communities. ORYX 2021. [DOI: 10.1017/s003060532000109x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractLand-use change is a major driver of biodiversity loss. Large-scale disturbances such as habitat loss, fragmentation and degradation are known to have negative consequences for native biota, but the effects of small-scale disturbances such as selective logging are less well known. We compared three sites with different regimes of selective logging performed by Indigenous communities in the South American temperate rainforest, to assess effects on the density and habitat selection patterns of the Near Threatened endemic arboreal marsupial Dromiciops gliroides. We used structured interviews to identify patterns of wood extraction, which was 0.22–2.55 m3 per ha per year. In the less disturbed site only two tree species were logged, in the intermediately disturbed sites eight species were logged at low intensity, and in the most disturbed site seven species were logged intensively. The site with intermediate disturbance had the highest fleshy-fruited plant diversity and fruit biomass values as a result of the proliferation of shade-intolerant plants. This site also had the highest density of D. gliroides. These findings are consistent with Connell's intermediate disturbance hypothesis, suggesting that coexistence of people with nature is possible if wood extraction volumes are moderate, increasing plant diversity. Indigenous communities have sustainably used natural resources for centuries, but current rates of land-use change are becoming a significant threat to both them and their natural resources.
Collapse
|
11
|
Quintero-Galvis JF, Saenz-Agudelo P, Celis-Diez JL, Amico GC, Vazquez S, Shafer ABA, Nespolo RF. The biogeography of Dromiciops in southern South America: Middle Miocene transgressions, speciation and associations with Nothofagus. Mol Phylogenet Evol 2021; 163:107234. [PMID: 34146676 DOI: 10.1016/j.ympev.2021.107234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023]
Abstract
The current distribution of the flora and fauna of southern South America is the result of drastic geological events that occurred during the last 20 million years, including marine transgressions, glaciations and active vulcanism. All these have been associated with fragmentation, isolation and subsequent expansion of the biota, south of 35°S, such as the temperate rainforest. This forest is mostly dominated by Nothofagus trees and is the habitat of the relict marsupial monito del monte, genus Dromiciops, sole survivor of the order Microbiotheria. Preliminary analyses using mtDNA proposed the existence of three main Dromiciops lineages, distributed latitudinally, whose divergence was initially attributed to recent Pleistocene glaciations. Using fossil-calibrated dating on nuclear and mitochondrial genes, here we reevaluate this hypothesis and report an older (Miocene) biogeographic history for the genus. We performed phylogenetic reconstructions using sequences from two mitochondrial DNA and four nuclear DNA genes in 159 specimens from 31 sites across Chile and Argentina. Our phylogenetic analysis resolved three main clades with discrete geographic distributions. The oldest and most differentiated clade corresponds to that of the northern distribution (35.2°S to 39.3°S), which should be considered a distinct species (D. bozinovici, sensu D'Elía et al. 2016). According to our estimations, this species shared a common ancestor with D. gliroides (southern clades) about ~13 million years ago. Divergence time estimates for the southern clades (39.6°S to 42.0°S) ranged from 9.57 to 6.5 Mya. A strong genetic structure was also detected within and between clades. Demographic analyses suggest population size stability for the northern clade (D. bozinovici), and recent demographic expansions for the central and southern clades. All together, our results suggest that the diversification of Dromiciops were initiated by the Middle Miocene transgression (MMT), the massive marine flooding that covered several lowlands of the western face of Los Andes between 37 and 48°S. The MMT resulted from an increase in global sea levels at the Miocene climatic optimum, which shaped the biogeographic origin of several species, including Nothofagus forests, the habitat of Dromiciops.
Collapse
Affiliation(s)
- Julian F Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Chile
| | - Pablo Saenz-Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Juan L Celis-Diez
- Pontificia Universidad Católica de Valparaíso Escuela de Agronomía Quillota, Chile
| | - Guillermo C Amico
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Soledad Vazquez
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Aaron B A Shafer
- Department of Forensic Science & Environmental Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago 6513677, Chile; Millenium Institute for Integrative Biology (iBio), Santiago, Chile.
| |
Collapse
|
12
|
Benítez-López A, Santini L, Gallego-Zamorano J, Milá B, Walkden P, Huijbregts MAJ, Tobias JA. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat Ecol Evol 2021; 5:768-786. [PMID: 33859376 DOI: 10.1038/s41559-021-01426-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Island faunas can be characterized by gigantism in small animals and dwarfism in large animals, but the extent to which this so-called 'island rule' provides a general explanation for evolutionary trajectories on islands remains contentious. Here we use a phylogenetic meta-analysis to assess patterns and drivers of body size evolution across a global sample of paired island-mainland populations of terrestrial vertebrates. We show that 'island rule' effects are widespread in mammals, birds and reptiles, but less evident in amphibians, which mostly tend towards gigantism. We also found that the magnitude of insular dwarfism and gigantism is mediated by climate as well as island size and isolation, with more pronounced effects in smaller, more remote islands for mammals and reptiles. We conclude that the island rule is pervasive across vertebrates, but that the implications for body size evolution are nuanced and depend on an array of context-dependent ecological pressures and environmental conditions.
Collapse
Affiliation(s)
- Ana Benítez-López
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands. .,Integrative Ecology Group, Estación Biológica de Doñana, Spanish National Research Council (CSIC), Sevilla, Spain.
| | - Luca Santini
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands.,Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.,Institute of Research on Terrestrial Ecosystems (CNR-IRET), National Research Council, Monterotondo (Rome), Italy
| | - Juan Gallego-Zamorano
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands
| | - Borja Milá
- Department of Biodiversity and Evolutionary Biology, National Museum of Natural Sciences, Spanish National Research Council (CSIC), Madrid, Spain
| | - Patrick Walkden
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Mark A J Huijbregts
- Department of Environmental Science, Institute for Wetland and Water Research, Radboud University, Nijmegen, The Netherlands
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Ascot, UK
| |
Collapse
|
13
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
14
|
Valladares-Gómez A, Celis-Diez JL, Sepúlveda-Rodríguez C, Inostroza-Michael O, Hernández CE, Palma RE. Genetic Diversity, Population Structure, and Migration Scenarios of the Marsupial "Monito del Monte" in South-Central Chile. J Hered 2020; 110:651-661. [PMID: 31420661 DOI: 10.1093/jhered/esz049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/06/2019] [Indexed: 01/11/2023] Open
Abstract
In this study, we quantified the 3 pivotal genetic processes (i.e., genetic diversity, spatial genetic structuring, and migration) necessary for a better biological understanding and management of the singular "living-fossil" and near-threatened mouse opossum marsupial Dromiciops gliroides, the "Monito del Monte," in south-central Chile. We used 11 microsatellite loci to genotype 47 individuals distributed on the mainland and northern Chiloé Island. Allelic richness, observed and expected heterozygosity, inbreeding coefficient, and levels of genetic differentiation were estimated. The genetic structure was assessed based on Bayesian clustering methods. In addition, potential migration scenarios were evaluated based on a coalescent theory framework and Bayesian approach to parameter estimations. Microsatellites revealed moderate to high levels of genetic diversity across sampled localities. Moreover, such molecular markers suggested that at least 2 consistent genetic clusters could be identified along the D. gliroides distribution ("Northern" and "Southern" cluster). However, general levels of genetic differentiation observed among localities and between the 2 genetic clusters were relatively low. Migration analyses showed that the most likely routes of migration of D. gliroides occurred 1) from the Southern cluster to the Northern cluster and 2) from the Mainland to Chiloé Island. Our results could represent critical information for future conservation programs and for a recent proposal about the taxonomic status of this unique mouse opossum marsupial.
Collapse
Affiliation(s)
- Alejandro Valladares-Gómez
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Juan L Celis-Diez
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Casilla 4-D, Quillota, Chile
| | - Constanza Sepúlveda-Rodríguez
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Oscar Inostroza-Michael
- Laboratorio de Ecología Evolutiva y Filoinformática, Facultad de Ciencias Naturales y Ocenográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cristián E Hernández
- Laboratorio de Ecología Evolutiva y Filoinformática, Facultad de Ciencias Naturales y Ocenográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - R Eduardo Palma
- Laboratorio de Biología Evolutiva, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| |
Collapse
|
15
|
Vazquez MS, Ibarra JT, Altamirano TA. Austral Opossum adjusts to life in second-growth forests by nesting outside cavities. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Soledad Vazquez
- INIBIOMA; CONICET-Universidad Nacional del Comahue; Bariloche Río Negro Argentina
| | - José Tomás Ibarra
- ECOS (Ecology-Complexity-Society) Laboratory; Center for Local Development (CEDEL); Pontificia Universidad Católica de Chile; Villarrica Campus La Araucanía Region Chile
- Millennium Nucleus Center for the Socioeconomic Impact of Environmental Policies (CESIEP) & Center of Applied Ecology and Sustainability (CAPES); Pontificia Universidad Católica de Chile; Santiago Chile
| | - Tomás A. Altamirano
- ECOS (Ecology-Complexity-Society) Laboratory; Center for Local Development (CEDEL); Pontificia Universidad Católica de Chile; Villarrica Campus La Araucanía Region Chile
| |
Collapse
|
16
|
Rodríguez-Gómez GB, Fontúrbel FE. Regional-scale variation on Dromiciops gliroides occurrence, abundance, and activity patterns along a habitat disturbance gradient. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AbstractHabitat structure may have a significant influence on the occurrence, abundance, and activity patterns of forest mammals. However, anthropogenic habitat disturbance changes habitat structure, which may alter those patterns of activity. We assessed occurrence, relative abundance, and activity patterns of Dromiciops gliroides, an arboreal marsupial endemic to the temperate rainforests of southern South America, contrasting four forest conditions at a regional scale: old-growth, second-growth, and logged forests, and abandoned exotic plantations. We conducted a camera-trap assessment in two consecutive austral summers across most of the Chilean range of D. gliroides, and compared habitat structure along a disturbance gradient. All structural features assessed differed among forest conditions. Dromiciops gliroides was present in all forest conditions, but its abundance decreased and activity got narrower as disturbance increased, being significantly lower in the exotic plantations. Activity patterns were variable among forest conditions and months, and were significantly more restricted temporally at exotic plantations. Although D. gliroides is tolerant to habitat disturbance, we show that structural alteration results in lower abundances and narrower activity patterns.
Collapse
Affiliation(s)
- Gloria B Rodríguez-Gómez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Santiago, Chile
| | - Francisco E Fontúrbel
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile (FEF)
| |
Collapse
|
17
|
Bennett DJ, Sutton MD, Turvey ST. How the past impacts the future: modelling the performance of evolutionarily distinct mammals through time. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190210. [PMID: 31679492 PMCID: PMC6863496 DOI: 10.1098/rstb.2019.0210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 11/12/2022] Open
Abstract
How does past evolutionary performance impact future evolutionary performance? This is an important question not just for macroevolutionary biologists who wish to chart the phenomena that describe deep-time changes in biodiversity but also for conservation biologists, as evolutionarily distinct species-which may be deemed 'low-performing' in our current era-are increasingly the focus of conservation efforts. Contrasting hypotheses exist to account for the history and future of evolutionarily distinct species: on the one hand, they may be relicts of large radiations, potentially 'doomed' to extinction; or they may be slow-evolving, 'living fossils', likely neither to speciate nor go extinct; or they may be seeds of future radiations. Here, we attempt to test these hypotheses in Mammalia by combining a molecular phylogenetic supertree with fossil record occurrences and measuring change in evolutionary distinctness (ED) at different time slices. With these time slices, we modelled future ED as a function of past ED. We find that past evolutionary performance does indeed have an impact on future evolutionary performance: the most evolutionarily isolated clades tend to become more evolutionarily distinct with time, indicating that low-performing clades tend to remain low-performing throughout their evolutionary history. This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'
Collapse
Affiliation(s)
- D. J. Bennett
- Gothenburg Global Biodiversity Centre, PO Box 461, 405 30 Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 461, 405 30 Gothenburg, Sweden
| | - M. D. Sutton
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2BP, UK
| | - S. T. Turvey
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
| |
Collapse
|
18
|
Altamirano TA, Honorato MT, Ibarra JT, de la Maza M, de Zwaan DR, Bonacic C, Martin K. Elevation has contrasting effects on avian and mammalian nest traits in the Andean temperate mountains. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Tomás A. Altamirano
- Department of Forest and Conservation Sciences; University of British Columbia; 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- Fauna Australis Wildlife Laboratory; Department of Ecosystems and The Environment; School of Agriculture and Forest Sciences; Pontificia Universidad Católica de Chile; Macul Santiago Chile
| | - María Teresa Honorato
- Fauna Australis Wildlife Laboratory; Department of Ecosystems and The Environment; School of Agriculture and Forest Sciences; Pontificia Universidad Católica de Chile; Macul Santiago Chile
| | - José Tomás Ibarra
- Fauna Australis Wildlife Laboratory; Department of Ecosystems and The Environment; School of Agriculture and Forest Sciences; Pontificia Universidad Católica de Chile; Macul Santiago Chile
- Centre for Local Development (CEDEL); Villarrica Campus, Pontificia Universidad Católica de Chile; Villarrica La Araucanía Region Chile
- Millennium Nucleus Centre for the Socioeconomic Impact of Environmental Policies (CESIEP); Pontificia Universidad Católica de Chile; Santiago Chile
| | - Mariano de la Maza
- Fauna Australis Wildlife Laboratory; Department of Ecosystems and The Environment; School of Agriculture and Forest Sciences; Pontificia Universidad Católica de Chile; Macul Santiago Chile
- Department of Biodiversity Conservation; National Forestry Service (CONAF); Santiago Chile
| | - Devin R. de Zwaan
- Department of Forest and Conservation Sciences; University of British Columbia; 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
| | - Cristián Bonacic
- Fauna Australis Wildlife Laboratory; Department of Ecosystems and The Environment; School of Agriculture and Forest Sciences; Pontificia Universidad Católica de Chile; Macul Santiago Chile
| | - Kathy Martin
- Department of Forest and Conservation Sciences; University of British Columbia; 2424 Main Mall Vancouver British Columbia V6T 1Z4 Canada
- Pacific Wildlife Research Centre; Environment and Climate Change Canada; Delta British Columbia Canada
| |
Collapse
|
19
|
|
20
|
Godoy-Güinao J, Díaz IA, Celis-Diez JL. Confirmation of arboreal habits in Dromiciops gliroides
: a key role in Chilean Temperate Rainforests. Ecosphere 2018. [DOI: 10.1002/ecs2.2424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Javier Godoy-Güinao
- Laboratorio de Biodiversidad y Ecología del Dosel; Instituto de Conservación; Biodiversidad y Territorio; Universidad Austral de Chile; Casilla 567, Valdivia Chile
- Fundación Mar Adentro; Av. El Golf 99, of. 901 Santiago Chile
| | - Iván A. Díaz
- Laboratorio de Biodiversidad y Ecología del Dosel; Instituto de Conservación; Biodiversidad y Territorio; Universidad Austral de Chile; Casilla 567, Valdivia Chile
- Fundación Mar Adentro; Av. El Golf 99, of. 901 Santiago Chile
| | - Juan L. Celis-Diez
- Escuela de Agronomía; Pontificia Universidad Católica de Valparaíso; Quillota Chile
| |
Collapse
|
21
|
Valladares-Gómez A, Celis-Diez JL, Palma RE, Manríquez GS. Cranial morphological variation of Dromiciops gliroides (Microbiotheria) along its geographical distribution in south-central Chile: A three-dimensional analysis. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Schneider NY, Gurovich Y. Morphology and evolution of the oral shield in marsupial neonates including the newborn monito del monte (Dromiciops gliroides, Marsupialia Microbiotheria) pouch young. J Anat 2017; 231:59-83. [PMID: 28620997 PMCID: PMC5472534 DOI: 10.1111/joa.12621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
Abstract
Newborn marsupials can be arranged into three grades of developmental complexity based on their external form, as well as based on their organ systems and their cytology. The dasyurids are considered the least developed marsupials at birth, while didelphids and peramelids are intermediate, and macropods are the most developed. Currently there is still little information on caenolestid and microbiotherid development at birth. Developmental stages can be graded as G1, G2 and G3, with G1 being the least developed at birth, and G3 the most developed. Marsupials are also characterized by having an extremely developed craniofacial region at birth compared with placentals. However, the facial region is also observed to vary in development between different marsupial groups at birth. The oral shield is a morphological structure observed in the oral region of the head during late embryological development, which will diminish shortly after birth. Morphological variation of the oral shield is observed and can be arranged by developmental complexity from greatly developed, reduced to vestigial. In its most developed state, the lips are fused, forming together with the rhinarium, a flattened ring around the buccal opening. In this study, we examine the external oral shield morphology in different species of newborn marsupials (dasyurids, peramelids, macropods and didelphids), including the newborn monito del monte young (Dromiciops gliroides - the sole survivor of the order Microbiotheria). The adaptive value of the oral shield structure is reviewed, and we discuss if this structure may be influenced by developmental stage of newborn, pouch cover, species relatedness, or other reproductive features. We observe that the oral shield structure is present in most species of Marsupialia and appears to be exclusively present in this infraclass. It has never been described in Monotremata or Eutherians. It is present in unrelated taxa (e.g. didelphids, dasyurids and microbiotherids). We observe that a well-developed oral shield may be related to ultra altricial development at birth, large litter size (more than two), and is present in most species that lack a pouch in reproductive adult females or have a less prominent or less developed pouch with some exceptions. We try to explore the evolution of the oral shield structure using existing databases and our own observations to reconstruct likely ancestral character states that can then be used to estimate the evolutionary origin of this structure and if it was present in early mammals. We find that a simple to develop oral shield structure (type 2-3) may have been present in marsupial ancestors as well as in early therians, even though this structure is not present in the extant monotremes. This in turn may suggest that early marsupials may have had a very simple pouch or lacked a pouch as seen in some living marsupials, such as some dasyurids, didelphids and caenolestids. The study's results also suggest that different morphological stages of the oral shield and hindlimb development may be influenced by species size and reproductive strategy, and possibly by yet unknown species-specific adaptations.
Collapse
Affiliation(s)
- Nanette Y. Schneider
- Centre des Sciences du Goût et de l'Alimentation (CSGA)UMR 6265 CNRS1324 INRAUniversité de Bourgogne‐Franche‐ComtéDijonFrance
| | - Yamila Gurovich
- CONICET y Centro de Investigación Esquel de Montaña y Estepa Patagonica (CIEMEP) Laboratorio de Investigaciones en Evolución y Biodiversidad (LIEB)Universidad Nacional de La Patagonia SJB (UNP)EsquelChubutArgentina
- Department of AnatomySchool of Medical SciencesThe University of New South Wales2052 New South WalesAustralia
| |
Collapse
|
23
|
Balazote Oliver A, Amico GC, Rivarola MD, Morales JM. Population dynamics of Dromiciops gliroides (Microbiotheriidae) in an austral temperate forest. J Mammal 2017. [DOI: 10.1093/jmammal/gyx051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Caviedes J, Ibarra JT. Influence of Anthropogenic Disturbances on Stand Structural Complexity in Andean Temperate Forests: Implications for Managing Key Habitat for Biodiversity. PLoS One 2017; 12:e0169450. [PMID: 28068349 PMCID: PMC5222397 DOI: 10.1371/journal.pone.0169450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022] Open
Abstract
Forest attributes and their abundances define the stand structural complexity available as habitat for faunal biodiversity; however, intensive anthropogenic disturbances have the potential to degrade and simplify forest stands. In this paper we develop an index of stand structural complexity and show how anthropogenic disturbances, namely fire, logging, livestock, and their combined presence, affect stand structural complexity in a southern Global Biodiversity Hotspot. From 2011 to 2013, we measured forest structural attributes as well as the presence of anthropogenic disturbances in 505 plots in the Andean zone of the La Araucanía Region, Chile. In each plot, understory density, coarse woody debris, number of snags, tree diameter at breast height, and litter depth were measured, along with signs of the presence of anthropogenic disturbances. Ninety-five percent of the plots showed signs of anthropogenic disturbance (N = 475), with the combined presence of fire, logging, and livestock being the most common disturbance (N = 222; 44% of plots). The lowest values for the index were measured in plots combining fire, logging, and livestock. Undisturbed plots and plots with the presence of relatively old fires (> 70 years) showed the highest values for the index of stand structural complexity. Our results suggest that secondary forests < 70-year post-fire event, with the presence of habitat legacies (e.g. snags and CWD), can reach a structural complexity as high as undisturbed plots. Temperate forests should be managed to retain structural attributes, including understory density (7.2 ± 2.5 # contacts), volume of CWD (22.4 ± 25.8 m3/ha), snag density (94.4 ± 71.0 stems/ha), stand basal area (61.2 ± 31.4 m2/ha), and litter depth (7.5 ± 2.7 cm). Achieving these values will increase forest structural complexity, likely benefiting a range of faunal species in South American temperate forests.
Collapse
Affiliation(s)
- Julián Caviedes
- Centre for Local Development, Education and Interculturality (CEDEL), Villarrica Campus, Pontificia Universidad Católica de Chile, Villarrica, La Araucanía Region, Chile
- Fauna Australis Wildlife Laboratory, Department of Ecosystems and Environment, School of Agriculture and Forest Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Tomás Ibarra
- Centre for Local Development, Education and Interculturality (CEDEL), Villarrica Campus, Pontificia Universidad Católica de Chile, Villarrica, La Araucanía Region, Chile
- Fauna Australis Wildlife Laboratory, Department of Ecosystems and Environment, School of Agriculture and Forest Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
D’Elía G, Hurtado N, D’Anatro A. Alpha taxonomy of Dromiciops (Microbiotheriidae) with the description of 2 new species of monito del monte. J Mammal 2016. [DOI: 10.1093/jmammal/gyw068] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
A previous study showed that Dromiciops gliroides has deep phylogeographic structure, with 3 allopatric and highly differentiated groups. Here, we constructed on that study by assessing the morphologic variation of D. gliroides. Our results show that along its distribution Dromiciops is morphologically highly variable and that the geographic pattern of morphologic variation matches the phylogeographic pattern. Taken together, morphological and molecular data indicate the existence of 2 unrecognized and unnamed species of monito del monte, which are here named and described. Cranial and dental features can easily distinguish species of Dromiciops. One of the new species is endemic of Chile, and the other new species occurs in Argentina and Chile. D. gliroides s.s. is restricted to the southern part of the genus distribution including Chiloé Island. We comment on the conservation significance of our findings and on the need of continuing with field- and collection-based research in order to characterize the richness of the Chilean mammal assemblage.
Un estudio previo mostró que Dromiciops gliroides tiene una marcada estructura filogeográfica con 3 grupos alopátridos bien diferenciados. Dado esos resultados, en el presente estudio analizamos la variación morfológica de D. gliroides. Nuestros resultados indican que D. gliroides es, a través de su distribución, altamente variable y que el patrón geográfico de la variación morfológica es congruente con el patrón filogeografico. Considerada en conjunto, la evidencia morfológica y molecular indica la existencia de dos especies de monito del monte que no han sido reconocidas, las que son aca descritas y nominadas. Las tres especies de Dromiciops se pueden distinguir fácilmente por características craneales y dentales. Una de las nuevas especies es endémica de Chile y la otra se distribuye en Argentina y Chile. D. gliroides s.s. se restringe a la porción sur del área distribucional del género, incluyendo la Isla de Chiloé. Cerramos el trabajo comentado sobre la necesidad de continuar realizando colectas y trabajo basado en colecciones con el fin de caracterizar la diversidad del ensamble de mamíferos de Chile.
Collapse
|
26
|
Gurovich Y, Stannard HJ, Old JM. The presence of the marsupial Dromiciops gliroides in Parque Nacional Los Alerces, Chubut, Southern Argentina, after the synchronous maturation and flowering of native bamboo and subsequent rodent irruption. REVISTA CHILENA DE HISTORIA NATURAL 2015. [DOI: 10.1186/s40693-015-0047-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
di Virgilio A, Amico GC, Morales JM. Behavioral traits of the arboreal marsupialDromiciops gliroidesduringTristerix corymbosusfruiting season. J Mammal 2014. [DOI: 10.1644/13-mamm-a-281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Fontúrbel FE, Franco M, Rodríguez-Cabal MA, Rivarola MD, Amico GC. Ecological consistency across space: a synthesis of the ecological aspects of Dromiciops gliroides in Argentina and Chile. Naturwissenschaften 2012; 99:873-81. [PMID: 22996392 DOI: 10.1007/s00114-012-0969-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 11/27/2022]
Abstract
Dromiciops gliroides is an arboreal marsupial found in the temperate forests of South America (36-43 °S). This species is the sole extant representative of the order Microbiotheria, and is a key seed disperser of many native plant species, including the keystone mistletoe Tristerix corymbosus. Here, we synthesized the current knowledge on the ecological aspects of this species, and compared the available information from Argentina and Chile. Population density (23 ± 2 (mean ± SE) individual/ha) and home range (1.6 ± 0.6 ha) appear to be relatively similar across a marked ecological gradient in the mainland, but lower densities (7 ± 2 individual/ha) and smaller home ranges (0.26 ± 0.04 ha) were detected at island sites. We detected regional variation in body condition in Chile, but there were no significant differences across a wider E-W gradient. Movement patterns fit a random walk model; such behavior might have important consequences in shaping plant's spatial patterns. Although our data suggest that D. gliroides is more tolerant to habitat disturbance than previously thought, its incapability to disperse across non-forested areas suggests that the rapid rate of habitat loss and fragmentation that characterizes southern temperate forests likely poses a serious threat to this species. These ecological similarities are surprising given that forests studied receive dramatically different rainfall and correspond to distinct forest types. The evidence synthetized here dispels some of the myths about this species but also stresses the need for more comprehensive ecological studies across its distribution range.
Collapse
Affiliation(s)
- Francisco E Fontúrbel
- Departamento de Ciencias Ecológicas, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile.
| | | | | | | | | |
Collapse
|