1
|
Gomez J, Coll M, Guarise C, Cifuente D, Masone D, Tello PF, Piñeyro MD, Robello C, Reta G, Sosa MÁ, Barrera P. New insights into the pro-oxidant mechanism of dehydroleucodine on Trypanosoma cruzi. Sci Rep 2024; 14:18875. [PMID: 39143185 PMCID: PMC11324952 DOI: 10.1038/s41598-024-69201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.
Collapse
Affiliation(s)
- Jessica Gomez
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Mauro Coll
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Carla Guarise
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
| | - Diego Cifuente
- Facultad de Química, Bioquímica y Farmacia, Instituto de Investigación en Tecnología Química, INTEQUI-CONICET., Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ingeniería, UNCuyo, 5500, Mendoza, Argentina
| | - Paula Faral- Tello
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - María Dolores Piñeyro
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Instituto Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Instituto Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de La República, 11800, Montevideo, Uruguay
| | - Guillermo Reta
- Facultad de Química, Bioquímica y Farmacia, Instituto de Investigación en Tecnología Química, INTEQUI-CONICET., Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - Miguel Ángel Sosa
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina
| | - Patricia Barrera
- Instituto de Histología y Embriología, IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (UNCuyo), 5500, Mendoza, Argentina.
- Facultad de Ciencias Exactas y Naturales, UNCuyo, 5500, Mendoza, Argentina.
| |
Collapse
|
2
|
Duda Ł, Kłosiński KK, Budryn G, Jaśkiewicz A, Kołat D, Kałuzińska-Kołat Ż, Pasieka ZW. Medicinal Use of Chicory (Cichorium intybus L.). Sci Pharm 2024; 92:31. [DOI: 10.3390/scipharm92020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025] Open
Abstract
The aim of this review is to discuss the numerous health-promoting properties of Cichorium intybus L. and bring together a range of publications to broaden knowledge and encourage further research and consideration of the plant use as treatment for a range of conditions. A comprehensive search of articles in Polish and English from 1986–2022 years was carried out in PubMed, Google Scholar and ScienceDirect using the keywords chicory, Cichorium intybus L., sesquiterpene lactones and their synonyms. Articles were checked for titles, abstracts, and full-text reviews. The first part of the review article discusses chicory, the countries in which it is found, its life cycle or modern cultivation methods, as well as its many uses, which will be discussed in more detail later in the article. The increased interest in plants as medicines or supplements is also briefly mentioned, as well as some limits that are associated with the medical use of plants. In the Results and Discussion section, there is a discussion of the numerous health-promoting properties of Cichorium intybus L. as a whole plant, with its collection of all the components, and we then examine the structure and the individual constituents of Cichorium intybus L. Among these, this article discusses those that can be utilized for causal applications in medicine, including sesquiterpene lactones and polyphenols, mainly known for their anti-cancer properties, although, in this article, their other health-promoting properties are also discussed. The article also examines inulin, a major component of Cichorium intybus L. The Discussion and the Conclusions sections propose directions for more detailed research and the range of factors that may affect specific results, which may have safety implications when used as supplements or medications.
Collapse
Affiliation(s)
- Łukasz Duda
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, B. Stefanowskiego 2/22, 90-537 Lodz, Poland
| | - Andrzej Jaśkiewicz
- Department of Sugar Industry and Food Safety Management, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Zbigniew Włodzimierz Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| |
Collapse
|
3
|
Jürgens FM, Robledo SM, Schmidt TJ. Evaluation of Pharmacokinetic and Toxicological Parameters of Arnica Tincture after Dermal Application In Vivo. Pharmaceutics 2022; 14:2379. [PMID: 36365196 PMCID: PMC9695956 DOI: 10.3390/pharmaceutics14112379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 10/29/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is classified as a neglected tropical disease by the World Health Organization. As the standard drugs for the treatment of this disease suffer from severe unwanted effects, new effective and safe therapeutic options are required. In our previous work, Arnica tincture showed promising antileishmanial effects in vitro and in vivo. For the potential treatment of human CL patients with Arnica tincture, data on the pharmacokinetic properties of the bioactive, antileishmanial compounds (the sesquiterpene lactone (STL) helenalin and its derivatives) are needed. Therefore, we studied the in vivo absorption of the bioactive compounds after the dermal application of Arnica tincture in rats. Moreover, we analyzed the blood plasma, urine, and feces of the animals by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS). Although the majority (84%) of the applied STLs (1.0 mg) were absorbed, the concentrations in the plasma, urine, and feces were below the limit of detection (0.3 ng/mL) in the samples for UHPLC-HRMS analysis. This result may be explained by extensive metabolism and slow permeation accompanied by the accumulation of STLs in the skin, as described in our previous work. Accordingly, the plasma concentration of STLs after the topical application of Arnica tincture was very far from a dose where toxicity could be expected. Additionally, tests for corrosive or irritant activity as well as acute and repeated-dose dermal toxicity did not show any positive results after the administration of the amounts of Arnica tincture that would be needed for the treatment of CL. Consequently, in the treatment of CL patients with Arnica tincture, no toxic effects are expected, other than the known sensitization potential of the STLs.
Collapse
Affiliation(s)
- Franziska M. Jürgens
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| | - Sara M. Robledo
- PECET-School of Medicine, University of Antioquia, Calle 70 # 52-21, Medellin 0500100, Colombia
| | - Thomas J. Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstrasse 48, D-48149 Münster, Germany
| |
Collapse
|
4
|
Zeouk I, Sifaoui I, López-Arencibia A, Reyes-Batlle M, Bethencourt-Estrella CJ, Bazzocchi IL, Bekhti K, Lorenzo-Morales J, Jiménez IA, Piñero JE. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomed Pharmacother 2020; 130:110518. [DOI: 10.1016/j.biopha.2020.110518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/19/2022] Open
|
5
|
Gürağaç Dereli FT, Ilhan M, Sobarzo-Sánchez E, Küpeli Akkol E. The investigation of the potential antidepressant-like activity of Xanthium orientale subsp. italicum (Moretti) Greuter in rodents. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112914. [PMID: 32360046 DOI: 10.1016/j.jep.2020.112914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ethnobotanical surveys revealed that Xanthiumorientale subsp. italicum (Moretti) Greuter has been used against central nervous system disorders in Turkish folk medicine. The aim of the present study is to verify the folkloric assertion on this plant. The compounds responsible for the activity were investigated using bioassay-guided fractionation procedures. MATERIALS AND METHODS The antidepressant activity of the aqueous, n-hexane, ethyl acetate (EtOAc), methanol (MeOH) extracts; fractions and isolated compounds from active MeOH extract were evaluated by using the in vitro MAO inhibition assay and three different in vivo models namely forced swimming test, tail suspension test, and antagonism of tetrabenazine-induced ptosis, hypothermia, and suppression of locomotor activity. The results were compared with control and reference groups, and active compounds of the plant have been determined. Through the bioassay-guided fractionation procedures, two compounds were isolated from the active fraction and their structures were elucidated by spectroscopic methods. RESULTS The MeOH extract of the plant was found to possess antidepressant-like activity. This extract was then subjected to chromatographic techniques. Isolated sesquiterpene lactones were elucidated as xanthatin (1) and xanthinosin (2), which were responsible for the antidepressant-like activity. CONCLUSIONS This study discovered the antidepressant potential of X. orientale subsp. italicum. Using bioassay-guided fractionation and isolation techniques, xanthatin (1) and xanthinosin (2) were determined as the main active components of the leaves.
Collapse
Affiliation(s)
- Fatma Tuğçe Gürağaç Dereli
- Department of Pharmacognosy, Faculty of Pharmacy, Süleyman Demirel University, Çünür, 32260, Isparta, Turkey
| | - Mert Ilhan
- Department of Pharmacognosy, Faculty of Pharmacy, Van Yüzüncü Yıl University, Tuşba, 65080, Van, Turkey
| | - Eduardo Sobarzo-Sánchez
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain; Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| |
Collapse
|
6
|
Caldas LA, Yoshinaga ML, Ferreira MJ, Lago JH, de Souza AB, Laurenti MD, Passero LFD, Sartorelli P. Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from Calea pinnatifida (Asteraceae). Bioorg Chem 2019; 83:348-353. [DOI: 10.1016/j.bioorg.2018.10.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/26/2023]
|
7
|
Drogosz J, Janecka A. Helenalin - A Sesquiterpene Lactone with Multidirectional Activity. Curr Drug Targets 2019; 20:444-452. [DOI: 10.2174/1389450119666181012125230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Abstract
Sesquiterpene lactones, secondary metabolites of plants, present in a large number of species
mostly from the Asteracea family, are used in the traditional medicine of many countries for the
treatment of various pathological conditions. They exert a broad range of activities, including antiinflammatory,
anti-bacterial and anti-cancer properties. The best-known sesquiterpene lactones which
are already used as drugs or are used in clinical trials are artemisinin, thapsigargin and parthenolide.
Yet another sesquiterpene lactone, helenalin, an active component of Arnica montana, known for its
strong anti-inflammatory activity, has been used for centuries in folk medicine to treat minor injuries.
Unfortunately, helenalin’s ability to cause allergic reactions and its toxicity to healthy tissues prevented
so far the development of this sesquiterpene lactone as an anticancer or anti-inflammatory drug.
Recently, the new interest in the biological properties, as well as in the synthesis of helenalin analogs
has been observed. This review describes helenalin's major biological activities, molecular mechanisms
of action, its toxicity and potential for further research.
Collapse
Affiliation(s)
- Joanna Drogosz
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Gürağaç Dereli FT, Ilhan M, Küpeli Akkol E. Discovery of new antidepressant agents: In vivo study on Anthemis wiedemanniana Fisch. & Mey. JOURNAL OF ETHNOPHARMACOLOGY 2018; 226:11-16. [PMID: 30031141 DOI: 10.1016/j.jep.2018.07.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many of the currently available antidepressants have serious adverse effects and are also expensive. Traditional medicines are major sources of original drugs, and their role in effective treatment is remarkable. In Turkish folk medicine, decoctions and infusions are prepared from the flowers of Anthemis wiedemanniana Fisch. & Mey. They exert antispasmodic and sedative effects and are also used for treating urinary inflammations. The present study was designed to evaluate the antidepressant activity of A. wiedemanniana, which is used against central nervous system disorders in Turkish folk medicine. MATERIALS AND METHODS n-Hexane, ethyl acetate, and methanol (MeOH) extracts were prepared from the flowers of the plant. The antidepressant potentials of these extracts were evaluated in mouse models using the forced swimming test, tail suspension test, and antagonism of tetrabenazine-induced ptosis, hypothermia, and suppression of locomotor activity. The results were compared with those in control and reference groups, and active constituents of the plant were determined. The MeOH extract of A. wiedemanniana was subjected to various chromatographic separation techniques, leading to the isolation and identification of the active component(s). RESULTS After confirmation of the antidepressant activity, the MeOH extract was subjected to successive solvent partitioning using solvents of increasing polarity, yielding four subextracts. Each subextract was tested on the same biological activity models. Fraction B was found to have the highest activity and subjected to further chromatographic separation. Isolated germacronolide-type sesquiterpene lactones were elucidated as tatridin A (1) and tanachin (1-epi-tatridin B) (2), which were responsible for the antidepressant activity of the flowers. CONCLUSIONS This study explored the antidepressant potential of A. wiedemanniana. Using bioassay-guided fractionation and isolation techniques, tatridin A and tanachin (1-epi-tatridin B) were determined as the main active components of the flowers. Further antidepressant mechanistic studies should be conducted for exploring the activity of these compounds against depression. This study can be an important step in the discovery of newer antidepressants.
Collapse
Affiliation(s)
| | - Mert Ilhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 6330 Ankara, Turkey; Department of Pharmacognosy, Faculty of Pharmacy, Yüzüncü Yıl University, Tuşba, 65080 Van, Turkey
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 6330 Ankara, Turkey.
| |
Collapse
|
9
|
Abood S, Eichelbaum S, Mustafi S, Veisaga ML, López LA, Barbieri M. Biomedical Properties and Origins of Sesquiterpene Lactones, with a Focus on Dehydroleucodine. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dehydroleucodine, a sesquiterpene lactone, belongs to the terpenoid class of secondary metabolites. Dehydroleucodine and other Artemisia-derived phytochemicals evolved numerous biodefenses that were first co-opted for human pharmacological use by traditional cultures in the Middle East, Asia, Europe and the Americas. Later, these phytochemicals were modified through the use of medicinal chemical techniques to increase their potency. All sesquiterpene lactones contain an α-methylene-γ-lactone group, which confers thiol reactivity, which is responsible, in part, for their therapeutic effects. A wide range of therapeutic uses of sequiterpene lactones has been found, including anti-adipogenic, cytoprotective, anti-microbial, anti-viral, anti-fungal, anti-malarial and, anti-migraine effects. Dehydroleucodine significantly inhibits differentiation of murine preadipocytes and also significantly decreases the accumulation of lipid content by a dramatic down regulation of adipogenic-specific transcriptional factors PPARγ and C-EBPα. Dehydroleucodine also inhibits secretion of matrix metalloprotease-2 (MMP-2), which is a known protease involved in migration and invasion of B16 cells. In addition to these anti-adipogenic and anti-cancer effects, dehydroleucodine effectively neutralizes several bacterial species, including Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Helicobacter pylori, methicillin resistant Staphylococcus aueus (MRSA) and S. epidermis (MRSE). The compound also inhibits the growth and secretion of several toxins of Pseudomonas aeruginosa, possesses gastro-protective qualities and possesses anti-parasitic properties against Trypanosoma cruzi, responsible for Chagas disease. Other sesquiterpene lactones, such as parthenolide, costunolide, and helanin, also possess significant therapeutic utility.
Collapse
Affiliation(s)
- Steven Abood
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Steven Eichelbaum
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Sushmita Mustafi
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
| | - Maria-Luisa Veisaga
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
| | - Luis A. López
- Laboratory of Cytoskeleton and Cell Cycle, Institute of Histology and Embryology, Faculty of Medicine, National University of Cuyo, 5500 Mendoza, Argentina
| | - Manuel Barbieri
- Department of Biological Sciences; Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute; Florida International University, Miami, FL 33199, USA
- Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL 33156, USA
- International Center of Tropical Botany, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
10
|
Investigation of the Anti-Leishmania (Leishmania) infantum Activity of Some Natural Sesquiterpene Lactones. Molecules 2017; 22:molecules22050685. [PMID: 28441357 PMCID: PMC6154613 DOI: 10.3390/molecules22050685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are neglected infectious diseases caused by parasites of the ‘protozoan’ genus Leishmania. Depending on the parasite species, different clinical forms are known as cutaneous, muco-cutaneous, and the visceral leishmaniasis (VL). VL is particularly fatal and the therapy presents limitations. In the search for new anti-leishmanial hit compounds, seven natural sesquiterpene lactones were evaluated against promastigotes and intracellular amastigotes of Leishmania (Leishmania) infantum, a pathogen causing VL. The pseudoguaianolides mexicanin I and helenalin acetate demonstrated the highest selectivity and potency against intracellular amastigotes. In addition, promastigotes treated with helenalin acetate were subject to an ultrastructural and biochemical investigation. The lethal action of the compound was investigated by fluorescence-activated cell sorting and related techniques to detect alterations in reactive oxygen species (ROS) content, plasma membrane permeability, and mitochondrial membrane potential. Helenalin acetate significantly reduced the mitochondrial membrane potential and the mitochondrial structural damage was also confirmed by transmission electron microscopy, displaying an intense organelle swelling. No alteration of plasma membrane permeability or ROS content could be detected. Additionally, helenalin acetate significantly increased the production of nitric oxide in peritoneal macrophages, probably potentiating the activity against the intracellular amastigotes. Helenalin acetate could hence be a useful anti-leishmanial scaffold for further optimization studies.
Collapse
|
11
|
Shoaib M, Shah I, Ali N, Adhikari A, Tahir MN, Shah SWA, Ishtiaq S, Khan J, Khan S, Umer MN. Sesquiterpene lactone! a promising antioxidant, anticancer and moderate antinociceptive agent from Artemisia macrocephala jacquem. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:27. [PMID: 28061778 PMCID: PMC5219761 DOI: 10.1186/s12906-016-1517-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/14/2016] [Indexed: 01/13/2023]
Abstract
Background Sesquiterpene lactones (STLs) make a diverse and huge group of bio-active constituents that have been isolated from several plant families. However, the greatest numbers are present in Asteraceae family having more than 3000 different reported structures. Recently several researchers have reported that STLs have significant antioxidant and anticancer potentials. Methods To investigate the antioxidant, anticancer and antinociceptive potentials of STLs, gravity column chromatography technique was used for isolation from the biologically rich chloroform fraction of Artemisia macrocephala Jacquem. The antioxidant activity of the isolated STLs was determined by DPPH and ABTS free radical scavenging activity, anticancer activity was determined on 3 T3, HeLa and MCF-7 cells by MTT assay while the antinociceptive activity was determined through acetic acid induced writhings, tail immersion method and formalin induced nociception method. Results The results showed that the STLs of Artemisia macrocephala possesses promising antioxidant activity and also it decreased the viability of 3 T3, HeLa and MCF-7 cells and mild to moderate antinociceptive activity. Conclusion Sesquiterpenes lactones (STLs) are widely present in numerous genera of the family Asteraceae (compositae). They are described as the active constituents used in traditional medicine for the treatment of various diseases. The present study reveals the significant potentials of STL and may be used as an alternative for the management of cancer. Anyhow, the isolated compound is having no prominent antinociceptive potentials. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1517-y) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Herrera Acevedo C, Scotti L, Feitosa Alves M, Formiga Melo Diniz MDF, Scotti MT. Computer-Aided Drug Design Using Sesquiterpene Lactones as Sources of New Structures with Potential Activity against Infectious Neglected Diseases. Molecules 2017; 22:molecules22010079. [PMID: 28054952 PMCID: PMC6155652 DOI: 10.3390/molecules22010079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/30/2022] Open
Abstract
This review presents an survey to the biological importance of sesquiterpene lactones (SLs) in the fight against four infectious neglected tropical diseases (NTDs)—leishmaniasis, schistosomiasis, Chagas disease, and sleeping sickness—as alternatives to the current chemotherapies that display several problems such as low effectiveness, resistance, and high toxicity. Several studies have demonstrated the great potential of some SLs as therapeutic agents for these NTDs and the relationship between the protozoal activities with their chemical structure. Recently, Computer-Aided Drug Design (CADD) studies have helped increase the knowledge of SLs regarding their mechanisms, the discovery of new lead molecules, the identification of pharmacophore groups and increase the biological activity by employing in silico tools such as molecular docking, virtual screening and Quantitative-Structure Activity Relationship (QSAR) studies.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil.
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil.
| | - Mateus Feitosa Alves
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil.
| | | | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900 João Pessoa, PB, Brazil.
| |
Collapse
|
13
|
Lozano E, Strauss M, Spina R, Cifuente D, Tonn C, Rivarola H, Sosa M. The in vivo trypanocidal effect of the diterpene 5-epi-icetexone obtained from Salvia gilliesii. Parasitol Int 2016; 65:23-26. [DOI: 10.1016/j.parint.2015.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/30/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
|
14
|
An abietane diterpene from Salvia cuspidata and some new derivatives are active against Trypanosoma cruzi. Bioorg Med Chem Lett 2015; 25:5481-4. [DOI: 10.1016/j.bmcl.2015.10.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022]
|
15
|
A Novel Insight into Dehydroleucodine Mediated Attenuation of Pseudomonas aeruginosa Virulence Mechanism. BIOMED RESEARCH INTERNATIONAL 2015; 2015:216097. [PMID: 26640783 PMCID: PMC4658400 DOI: 10.1155/2015/216097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Increasing resistance of Pseudomonas aeruginosa (P. aeruginosa) to conventional treatments demands the search for novel therapeutic strategies. In this study, the antimicrobial activity of dehydroleucodine (DhL), a sesquiterpene lactone obtained from Artemisia (A.) douglasiana, was screened against several pathogenic virulence effectors of P. aeruginosa. In vitro, minimum inhibitory concentration of DhL was determined against P. aeruginosa strains PAO1, PA103, PA14, and multidrug resistant clinical strain, CDN118. Results showed that DhL was active against each strain where PAO1 and PA103 showed higher susceptibility (MIC 0.48 mg/mL) as compared to PA14 (MIC 0.96 mg/mL) and CDN118 (MIC 0.98 mg/mL). Also, when PAO1 strain was grown in the presence of DhL (MIC50, 0.12 mg/mL), a delay in the generation time was noticed along with significant inhibition of secretory protease and elastase activities, interruption in biofilm attachment phase in a stationary culture, and a significant decline in Type III effector ExoS. At MIC50, DhL treatment increased the sensitivity of P. aeruginosa towards potent antibiotics. Furthermore, treatment of P. aeruginosa with DhL prevented toxin-induced apoptosis in macrophages. These observations suggest that DhL activity was at the bacterial transcriptional level. Hence, antimicrobial activity of DhL may serve as leads in the development of new anti-Pseudomonas pharmaceuticals.
Collapse
|
16
|
Jimenez V, Kemmerling U, Paredes R, Maya JD, Sosa MA, Galanti N. Natural sesquiterpene lactones induce programmed cell death in Trypanosoma cruzi: a new therapeutic target? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1411-8. [PMID: 25022207 DOI: 10.1016/j.phymed.2014.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Chagas disease or American Trypanosomiasis is caused by the flagellated protozoan parasite Trypanosoma cruzi (T. cruzi) and is recognized by the WHO as one of the world's 17 neglected tropical diseases. Only two drugs (Benznidazol, Bz and Nifurtimox, Nx) are currently accepted for treatment, however they cause severe adverse effects and their efficacy is still controversial. It is then important to explore for new drugs. PURPOSE Programmed cell death (PCD) in parasites offers interesting new therapeutic targets. The aim of this work was to evaluate the induction of PCD in T. cruzi by two natural sesquiterpene lactones (STLs), dehydroleucodine (DhL) and helenalin (Hln) as compared with the two conventional drugs, Bz and Nx. MATERIAL AND METHODS Hln and DhL were isolated from aerial parts of Gaillardia megapotamica and Artemisia douglassiana Besser, respectively. Purity of compounds (greater than 95%) was confirmed by (13)C-nuclear magnetic resonance, melting point analysis, and optical rotation. Induction of PCD in T. cruzi epimastigotes and trypomastigotes by DhL, Hln, Bz and Nx was assayed by phosphatidylserine exposure at the parasite surface and by detection of DNA fragmentation using the TUNEL assay. Trypanocidal activity of natural and synthetic compounds was assayed by measuring parasite viability using the MTT method. RESULTS The two natural STLs, DhL and Hln, induce programmed cell death in both, the replicative epimastigote form and the infective trypomastigote form of T. cruzi. Interestingly, the two conventional antichagasic drugs (Bz and Nx) do not induce programmed cell death. A combination of DhL and either Bz or Nx showed an increased effect of natural compounds and synthetic drugs on the decrease of parasite viability. CONCLUSION DhL and Hln induce programmed cell death in T. cruzi replicative epimastigote and infective trypomastigote forms, which is a different mechanism of action than the conventional drugs to kill the parasite. Therefore DhL and Hln may offer an interesting option for the treatment of Chagas disease, alone or in combination with conventional drugs.
Collapse
Affiliation(s)
- V Jimenez
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - U Kemmerling
- Programa de Anatomía y Biología del Desarrollo, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - R Paredes
- Laboratorio de Salud de Ecosistemas, Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile
| | - J D Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - M A Sosa
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - N Galanti
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
17
|
Amorim MHR, Gil da Costa RM, Lopes C, Bastos MMSM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2014; 43:559-79. [PMID: 23875764 DOI: 10.3109/10408444.2013.813905] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sesquiterpene lactones (STLs) present a wide range of biological activities, mostly based on their alkylating capabilities, which underlie their therapeutic potential. These compounds are the active constituents of a variety of plants, frequently used as herbal remedies. STLs such as artemisinin and its derivatives are in use as first-line antimalarials while others, such as parthenolide, have recently reached cancer clinical trials. However, the toxicological profile of these compounds must be thoroughly characterized, since the same properties that make STL useful medicines can also cause severe toxicity. STL-containing plants have long been known to induce a contact dermatitis in exposed farm workers, and also to cause several toxic syndromes in farm animals. More recently, concerns are been raised regarding the genotoxic potential of these compounds and the embryotoxicity of artemisinins. A growing number of STLs are being reported to be mutagenic in different in vitro and in vivo assays. As yet no systematic studies have been published, but the genotoxicity of STLs seems to depend not so much on direct DNA alkylation as on oxidative DNA damage and other partially elucidated mechanisms. As the medicinal use of these compounds increases, further studies of their toxic potential are needed, especially those focusing on the structural determinants of genotoxicity and embryotoxicity.
Collapse
Affiliation(s)
- M Helena R Amorim
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
18
|
In vitro and in vivoactivity of the chloroaryl-substituted imidazole viniconazole againstTrypanosoma cruzi. Parasitology 2013; 141:367-73. [DOI: 10.1017/s0031182013001601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SUMMARYChagas disease (CD) is caused by the intracellular protozoan parasiteTrypanosoma cruziand affects more than 10 million people in poor areas of Latin America. There is an urgent need for alternative drugs with better safety, broader efficacy, lower costs and shorter time of administration. Thus the biological activity of viniconazole, a chloroaryl-substituted imidazole was investigated usingin vitroandin vivoscreening models ofT. cruziinfection. Ultrastructural findings demonstrated that the most frequent cellular damage was associated with plasma membrane (blebs and shedding events), Golgi (swelling aspects) and the appearance of large numbers of vacuoles suggesting an autophagic process. Our data demonstrated that although this compound is effective against bloodstream and intracellular forms (16 and 24 μm, respectively)in vitro, it does not presentin vivoefficacy. Due to the urgent need for novel agents againstT. cruzi, the screening of natural and synthetic products must be further supported with the aim of finding more selective and affordable drugs for CD.
Collapse
|
19
|
Activities of psilostachyin A and cynaropicrin against Trypanosoma cruzi in vitro and in vivo. Antimicrob Agents Chemother 2013; 57:5307-14. [PMID: 23939901 DOI: 10.1128/aac.00595-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In vitro and in vivo activities against Trypanosoma cruzi were evaluated for two sesquiterpene lactones: psilostachyin A and cynaropicrin. Cynaropicrin had previously been shown to potently inhibit African trypanosomes in vivo, and psilostachyin A had been reported to show in vivo effects against T. cruzi, albeit in another test design. In vitro data showed that cynaropicrin was more effective than psilostachyin A. Ultrastructural alterations induced by cynaropicrin included shedding events, detachment of large portions of the plasma membrane, and vesicular bodies and large vacuoles containing membranous structures, suggestive of parasite autophagy. Acute toxicity studies showed that one of two mice died at a cynaropicrin dose of 400 mg/kg of body weight given intraperitoneally (i.p.). Although no major plasma biochemical alterations could be detected, histopathology demonstrated that the liver was the most affected organ in cynaropicrin-treated animals. Although cynaropicrin was as effective as benznidazole against trypomastigotes in vitro, the treatment (once or twice a day) of T. cruzi-infected mice (up to 50 mg/kg/day cynaropicrin) did not suppress parasitemia or protect against mortality induced by the Y and Colombiana strains. Psilostachyin A (0.5 to 50 mg/kg/day given once a day) was not effective in the acute model of T. cruzi infection (Y strain), reaching 100% animal mortality. Our data demonstrate that although it is very promising against African trypanosomes, cynaropicrin does not show efficacy compared to benznidazole in acute mouse models of T. cruzi infection.
Collapse
|
20
|
Natural Sesquiterpene Lactones Induce Oxidative Stress in Leishmania mexicana. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:163404. [PMID: 23861697 PMCID: PMC3687511 DOI: 10.1155/2013/163404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/20/2013] [Indexed: 11/17/2022]
Abstract
Leishmaniasis is a worldwide parasitic disease, caused by monoflagellate parasites of the genus Leishmania. In the search for more effective agents against these parasites, the identification of molecular targets has been attempted to ensure the efficiency of drugs and to avoid collateral damages on the host's cells. In this work, we have investigated some of the mechanisms of action of a group of natural sesquiterpene lactones that are effective against Leishmania mexicana mexicana promastigotes. We first observed that the antiproliferative effect of mexicanin I (Mxc), dehydroleucodine (DhL), psilostachyin (Psi), and, at lesser extent, psilostachyin C (Psi C) is blocked by 1.5 mM reduced glutathione. The reducing agent was also able to reverse the early effect of the compounds, suggesting that lactones may react with intracellular sulfhydryl groups. Moreover, we have shown that all the sesquiterpene lactones, except Psi C, significantly decreased the endogenous concentration of glutathione within the parasite. Consistent with these findings, the active sesquiterpene lactones increased between 2.7 and 5.4 times the generation of ROS by parasites. These results indicate that the induction of oxidative stress is at least one of the mechanisms of action of DhL, Mxc, and Psi on parasites while Psi C would act by another mechanism.
Collapse
|
21
|
Somaweera H, Lai GC, Blackeye R, Littlejohn B, Kirksey J, Aguirre RM, Lapena V, Pasqua A, Hintz MM. Ethanolic Extracts of California Mugwort ( Artemisia douglasiana Besser) Are Cytotoxic against Normal and Cancerous Human Cells. J Herb Med 2013; 3:47-51. [PMID: 24073389 DOI: 10.1016/j.hermed.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
California mugwort (Artemisia douglasiana Besser) is used by many tribes throughout California to treat a variety of conditions, including colds, allergies, and pain. California mugwort is also utilized as women's medicine. Its use is on the rise outside of Native communities, often without the guidance of a traditional healer or experienced herbalist. Because it has been shown to have antiproliferative activity against plant and animal cells, we investigated whether California mugwort extracts have an effect on normal human cells as well as estrogen receptor positive (ER+) and estrogen receptor negative (ER-) human breast cancer cells. Ethanolic and aqueous extracts of A. douglasiana leaves were tested for cytotoxicity against unstimulated normal human peripheral blood mononuclear cells (hPBMC), as well as against an ER+ human breast cancer cell line (BT-474) and an ER- human breast cancer cell line (MDA-MB-231). An ethanolic leaf extract killed hPBMC, BT-474, and MDA-MB-231 cells with IC50 values of 23.6 ± 0.3, 27 ± 5, and 37 ± 4 μg/ml, respectively. An aqueous extract killed hPBMC with an IC50 value of 60 ± 10 μg/ml, but had no effect on the two cancer cell lines at concentrations up to 100 μg/ml. The results of this study indicate that the cytotoxicity of California mugwort extends to normal human cells, as well as cancerous cells. Therefore, until further is known about the safety of this medicine, caution should be taken when consuming extracts of California mugwort, whether as a tincture or as a tea.
Collapse
Affiliation(s)
- Himali Somaweera
- Department of Chemistry, California State University, Sacramento, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lozano E, Barrera P, Salinas R, Vega I, Nieto M, Tonn C, Kemmerling U, Mortara RA, Sosa MA. Sesquiterpene lactones and the diterpene 5-epi-icetexone affect the intracellular and extracellular stages of Trypanosoma cruzi. Parasitol Int 2012; 61:628-33. [PMID: 22735296 DOI: 10.1016/j.parint.2012.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 06/05/2012] [Accepted: 06/18/2012] [Indexed: 11/24/2022]
Abstract
Chagas disease is a major health problem in Latin America and is caused by the parasitic protozoan Trypanosoma cruzi. Although many drugs have been used to alleviate the disease, these have been ineffective in the chronic phase and have also presented numerous side effects on patients. In this study we tested the effect of three sesquiterpene lactones (dehydroleucodine, helenalin and mexicanin) and a diterpene (5-epi-icetexone) on parasites (Y-strain) grown in host cells. At 48 h of treatment, the number of amastigotes inside the cells was lower than in the controls. This effect was observable at concentrations of 1.5-3.8 μM, which are of low cytotoxicity to host cells. In addition, the compounds caused a decrease in the percentage of infected cells. The treatments also reduced the presence of trypomastigotes in the extracellular medium. In all cases, helenalin was the most potent. The number of parasites per cell at 24h indicates the occurrence of multiple infection, which would also be affected by the compounds. However, we should not discard an effect on the proliferation and survival of parasites within the host cells. On the other hand, an additional effect on the differentiation of parasites and/or the survival of extracellular trypomastigotes might be possible. We conclude that these compounds are very effective against T. cruzi possibly by multiple mechanisms.
Collapse
Affiliation(s)
- Esteban Lozano
- Laboratorio de Biología y Fisiología Celular, Dr. Francisco Bertini, Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kidane A, Houdijk JGM, Athanasiadou S, Tolkamp BJ, Kyriazakis I. Effects of maternal protein nutrition and subsequent grazing on chicory (Cichorium intybus) on parasitism and performance of lambs. J Anim Sci 2010; 88:1513-21. [PMID: 20023143 DOI: 10.2527/jas.2009-2530] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Forty-eight 4- to 5-yr-old Blackface x Bluefaced Leicester (Mule) ewes and their 24-d-old twin lambs were used to assess the effects of maternal protein nutrition and subsequent grazing on chicory (Cichorium intybus) on performance and parasitism. The experiment consisted of 2 grazing periods: safe pasture period and experimental pasture period. During an adaptation period of 66 d, ewes were infected through oral dosing with Teladorsagia circumcincta infective larvae (3 d per wk) and were supplemented with protein (HP) or not (LP) for the last 45 d of this period. At the end of this period, ewes and their lambs were turned out onto a parasitologically safe pasture; all ewes continued to be dosed with parasite (once a week), and HP ewes received protein supplementation for the first 35 d. Ewes and lambs grazed the safe pasture for an additional 43 d after termination of protein supplementation and of oral dosing with parasites. Ewes and their lambs were then moved onto newly established experimental pastures sown with chicory or grass/clover (Lolium perenne/Trifolium repens). During the safe pasture period, HP ewes had decreased fecal egg counts (FEC) compared with LP ewes, whereas HP lambs had temporarily less (P < 0.05) FEC, decreased (P < 0.001) plasma pepsinogen concentrations, and grew faster (P = 0.028) than LP lambs. Lambs grazing chicory had consistently less (P < 0.001) FEC and grew faster (P = 0.013) than lambs grazing grass/clover but had greater (P < 0.001) concentrations of pepsinogen. Pasture larvae counts were decreased (P = 0.07) for the chicory compared with the grass/clover plots. There were no interactions (P > 0.10) between maternal nutrition and grazed forage type on performance or parasitological measurements. Our results suggest that increased maternal protein nutrition and subsequent grazing of chicory independently improve lamb performance and reduce lamb parasitism.
Collapse
Affiliation(s)
- A Kidane
- Animal Health, Scottish Agricultural College, West Mains Road, Edinburgh, EH9 3JG, Scotland.
| | | | | | | | | |
Collapse
|
24
|
|