1
|
Yin K, Xu C, Zhao G, Xie H. Epigenetic Manipulation of Psychiatric Behavioral Disorders Induced by Toxoplasma gondii. Front Cell Infect Microbiol 2022; 12:803502. [PMID: 35237531 PMCID: PMC8882818 DOI: 10.3389/fcimb.2022.803502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii is known to have a complex life cycle and infect almost all kinds of warm-blooded animals around the world. The brain of the host could be persistently infected by cerebral cysts, and a variety of psychiatric disorders such as schizophrenia and suicide have been reported to be related with latent toxoplasmosis. The infected animals showed fear reduction and a tendency to be preyed upon. However, the mechanism of this “parasites manipulation” effects have not been elucidated. Here, we reviewed the recent infection prevalence of toxoplasmosis and the evidence of mental and behavioral disorders induced by T. gondii and discussed the related physiological basis including dopamine dysregulation and gamma-aminobutyric acid (GABA) pathway and the controversial opinion of the necessity for cerebral cysts existence. Based on the recent advances, we speculated that the neuroendocrine programs and neurotransmitter imbalance may play a key role in this process. Simultaneously, studies in the evaluation of the expression pattern of related genes, long noncoding RNAs (lncRNAs), and mRNAs of the host provides a new point for understanding the mechanism of neurotransmitter dysfunction induced by parasite manipulation. Therefore, we summarized the animal models, T. gondii strains, and behavioral tests used in the related epigenetic studies and the responsible epigenetic processes; pinpointed opportunities and challenges in future research including the causality evidence of human psychiatric disorders, the statistical analysis for rodent-infected host to be more vulnerable preyed upon; and identified responsible genes and drug targets through epigenetics.
Collapse
|
2
|
Ginsenoside Rh2 reduces depression in offspring of mice with maternal toxoplasma infection during pregnancy by inhibiting microglial activation via the HMGB1/TLR4/NF-κB signaling pathway. J Ginseng Res 2022; 46:62-70. [PMID: 35035240 PMCID: PMC8753429 DOI: 10.1016/j.jgr.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Background Maternal Toxoplasma gondii (T. gondii) infection during pregnancy has been associated with various mental illnesses in the offspring. Ginsenoside Rh2 (GRh2) is a major bioactive compound obtained from ginseng that has an anti-T. gondii effect and attenuates microglial activation through toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway. GRh2 also alleviated tumor-associated or lipopolysaccharide-induced depression. However, the effects and potential mechanisms of GRh2 on depression-like behavior in mouse offspring caused by maternal T. gondii infection during pregnancy have not been investigated. Methods We examined GRh2 effects on the depression-like behavior in mouse offspring, caused by maternal T. gondii infection during pregnancy, by measuring depression-like behaviors and assaying parameters at the neuronal and molecular level. Results We showed that GRh2 significantly improved behavioral measures: sucrose consumption, forced swim time and tail suspended immobility time of their offspring. These corresponded with increased tissue concentrations of 5-hydroxytryptamine and dopamine, and attenuated indoleamine 2,3-dioxygenase or enhanced tyrosine hydroxylase expression in the prefrontal cortex. GRh2 ameliorated neuronal damage in the prefrontal cortex. Molecular docking results revealed that GRh2 binds strongly to both TLR4 and high mobility group box 1 (HMGB1). Conclusion This study demonstrated that GRh2 ameliorated the depression-like behavior in mouse offspring of maternal T. gondii infection during pregnancy by attenuating the excessive activation of microglia and neuroinflammation through the HMGB1/TLR4/NF-κB signaling pathway. It suggests that GRh2 could be considered a potential therapy in preventing and treating psychiatric disorders in the offspring mice of mothers with prenatal exposure to T. gondii infection.
Collapse
|
3
|
Nayeri T, Sarvi S, Daryani A. Toxoplasmosis: Targeting neurotransmitter systems in psychiatric disorders. Metab Brain Dis 2022; 37:123-146. [PMID: 34476718 DOI: 10.1007/s11011-021-00824-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/14/2021] [Indexed: 12/30/2022]
Abstract
The most common form of the disease caused by Toxoplasma gondii (T. gondii) is latent toxoplasmosis due to the formation of tissue cysts in various organs, such as the brain. Latent toxoplasmosis is probably a risk factor in the development of some neuropsychiatric disorders. Behavioral changes after infection are caused by the host immune response, manipulation by the parasite, central nervous system (CNS) inflammation, as well as changes in hormonal and neuromodulator relationships. The present review focused on the exact mechanisms of T. gondii effect on the alteration of behavior and neurotransmitter levels, their catabolites and metabolites, as well as the interaction between immune responses and this parasite in the etiopathogenesis of psychiatric disorders. The dysfunction of neurotransmitters in the neural transmission is associated with several neuropsychiatric disorders. However, further intensive studies are required to determine the effect of this parasite on altering the level of neurotransmitters and the role of neurotransmitters in the etiology of host behavioral changes.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Virus MA, Ehrhorn EG, Lui LM, Davis PH. Neurological and Neurobehavioral Disorders Associated with Toxoplasma gondii Infection in Humans. J Parasitol Res 2021; 2021:6634807. [PMID: 34712493 PMCID: PMC8548174 DOI: 10.1155/2021/6634807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/15/2021] [Indexed: 01/17/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii is estimated to infect up to 30% of the world population, leading to lifelong chronic infection of the brain and muscle tissue. Although most latent T. gondii infections in humans have traditionally been considered asymptomatic, studies in rodents suggest phenotypic neurological changes are possible. Consequently, several studies have examined the link between T. gondii infection and diseases such as schizophrenia, epilepsy, depression, bipolar disorder, dysphoria, Alzheimer's disease, Parkinson's disease, and obsessive-compulsive disorder (OCD). To date, there is varying evidence of the relationship of T. gondii to these human neurological or neurobehavioral disorders. A thorough review of T. gondii literature was conducted to highlight and summarize current findings. We found that schizophrenia was most frequently linked to T. gondii infection, while sleep disruption showed no linkage to T. gondii infection, and other conditions having mixed support for a link to T. gondii. However, infection as a cause of human neurobehavioral disease has yet to be firmly established.
Collapse
Affiliation(s)
- Maxwell A. Virus
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Evie G. Ehrhorn
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - LeeAnna M. Lui
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| | - Paul H. Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
5
|
Laing C, Blanchard N, McConkey GA. Noradrenergic Signaling and Neuroinflammation Crosstalk Regulate Toxoplasma gondii-Induced Behavioral Changes. Trends Immunol 2020; 41:1072-1082. [PMID: 33214056 DOI: 10.1016/j.it.2020.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Infections of the nervous system elicit neuroimmune responses and alter neurotransmission, affecting host neurological functions. Chronic infection with the apicomplexan parasite Toxoplasma correlates with certain neurological disorders in humans and alters behavior in rodents. Here, we propose that the crosstalk between neurotransmission and neuroinflammation may underlie some of these cognitive changes. We discuss how T. gondii infection suppresses noradrenergic signaling and how the restoration of this pathway improves behavioral aberrations, suggesting that altered neurotransmission and neuroimmune responses may act in concert to perturb behavior. This interaction might apply to other infectious agents, such as viruses, that elicit cognitive changes. We hypothesize that neurotransmitter signaling in immune cells can contribute to behavioral changes associated with brain infection, offering opportunities for potential therapeutic targeting.
Collapse
Affiliation(s)
- Conor Laing
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), Inserm, CNRS, Université de Toulouse, Toulouse, France.
| | - Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
6
|
Ortiz-Guerrero G, Gonzalez-Reyes RE, de-la-Torre A, Medina-Rincón G, Nava-Mesa MO. Pathophysiological Mechanisms of Cognitive Impairment and Neurodegeneration by Toxoplasma gondii Infection. Brain Sci 2020; 10:brainsci10060369. [PMID: 32545619 PMCID: PMC7349234 DOI: 10.3390/brainsci10060369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite considered one of the most successful pathogens in the world, owing to its ability to produce long-lasting infections and to persist in the central nervous system (CNS) in most warm-blooded animals, including humans. This parasite has a preference to invade neurons and affect the functioning of glial cells. This could lead to neurological and behavioral changes associated with cognitive impairment. Although several studies in humans and animal models have reported controversial results about the relationship between toxoplasmosis and the onset of dementia as a causal factor, two recent meta-analyses have shown a relative association with Alzheimer’s disease (AD). AD is characterized by amyloid-β (Aβ) peptide accumulation, neurofibrillary tangles, and neuroinflammation. Different authors have found that toxoplasmosis may affect Aβ production in brain areas linked with memory functioning, and can induce a central immune response and neurotransmitter imbalance, which in turn, affect the nervous system microenvironment. In contrast, other studies have revealed a reduction of Aβ plaques and hyperphosphorylated tau protein formation in animal models, which might cause some protective effects. The aim of this article is to summarize and review the newest data in regard to different pathophysiological mechanisms of cerebral toxoplasmosis and their relationship with the development of AD and cognitive impairment. All these associations should be investigated further through clinical and experimental studies.
Collapse
Affiliation(s)
- Gloria Ortiz-Guerrero
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Rodrigo E. Gonzalez-Reyes
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - Alejandra de-la-Torre
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - German Medina-Rincón
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
| | - Mauricio O. Nava-Mesa
- GI en Neurociencias-NeURos, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111221, Colombia; (R.E.G.-R.); (A.d.-l.-T.); (G.M.-R.)
- Correspondence: ; Tel.: +57-1-2970200 (ext. 3354); Fax: +571-3440351
| |
Collapse
|
7
|
Abstract
Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Toxoplasma gondii is a ubiquitous, intracellular protozoan parasite with a broad range of intermediate hosts, including humans and rodents. In many hosts, T. gondii establishes a latent long-term infection by converting from its rapidly dividing or lytic form to its slowly replicating and encysting form. In humans and rodents, the major organ for encystment is the central nervous system (CNS), which has led many to investigate how this persistent CNS infection might influence rodent and human behavior and, more recently, neurodegenerative diseases. Given the interest in this topic, here we seek to take a global approach to the data for and against the effects of latent T. gondii on behavior and neurodegeneration and the proposed mechanisms that might underlie behavior modifications.
Collapse
|
8
|
Chen H, Guo Y, Qiu Y, Huang H, Lin C, Liu M, Chen X, Yang P, Wu K. Efficient genome engineering of Toxoplasma gondii using the TALEN technique. Parasit Vectors 2019; 12:112. [PMID: 30876436 PMCID: PMC6419828 DOI: 10.1186/s13071-019-3378-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aromatic amino acid hydroxylase 2 (AAH2) is a bradyzoite-specific upregulated protein that may alter host behaviour by altering the host dopaminergic pathway. To better understand the role of the parasite’s AAH2 in host-parasite interactions, we generated an AAH2 fluorescent marker strain of T. gondii using the TALEN technique. Methods We generated an AAH2 fluorescent marker strain of T. gondii, which was designated PRU/AAH2-eGFP, using the TALEN technique. This strain stably expressed pyrimethamine resistance for screening and expressed enhanced green fluorescent protein (eGFP)-tagged AAH2 in the bradyzoite stage. The bradyzoite conversion of PRU/AAH2-eGFP was observed both in vitro and in vivo. The fluorescence localization of AAH2 in mouse models of chronic infection was observed by a Bruker in vivo imaging system. Results Transgenic T. gondii was successfully generated by the TALEN system. The eGFP-tagged AAH2 could be detected by in vivo imaging. Conclusions This study verified the feasibility of using TALEN technology for T. gondii research and provided an in vivo imaging method for in vivo research of bradyzoite-stage proteins. Electronic supplementary material The online version of this article (10.1186/s13071-019-3378-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongmei Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yijia Guo
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yushu Qiu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Huanbin Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Changqing Lin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoguang Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Peiliang Yang
- Experimental Animal Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Kun Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Ashour DS, Saad AE, El Bakary RH, El Barody MA. Can the route of Toxoplasma gondii infection affect the ophthalmic outcomes? Pathog Dis 2019; 76:5037924. [PMID: 29912329 DOI: 10.1093/femspd/fty056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Ocular toxoplasmosis is the most common cause of retinochoroiditis worldwide in humans. Some studies highlighted the idea that ocular lesions differ according to the route of infection but none of them mimicked the natural route. The current study aimed to investigate the ophthalmic outcomes in congenital and oral routes of infection with Toxoplasma in experimental animals. Mice were divided into three groups; group I: congenital infection, group II: acquired oral infection and group III: non-infected. We used Me49 chronic low-virulence T. gondii strain. We found that retina is the most affected part in both modes of infections. However, the retinal changes are different and more pronounced in case of congenital infection. The congenitally infected mice showed retinal lesions e.g. total detachment of retinal pigment epithelium from the photoreceptor layer and irregular arrangement of retinal layers. More severe damage was observed in mice infected early in pregnancy. While the postnatal orally infected mice showed fewer changes. In conclusion, the routes of Toxoplasma infection affect the ophthalmic outcomes and this may be the case in human disease. Although both are vision threatening, it seems that the prognosis of postnatal acquired ocular toxoplasmosis is better than that of congenital disease.
Collapse
Affiliation(s)
- Dalia S Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt, Tanta 31527, Egypt
| | - Abeer E Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Egypt, Tanta 31527, Egypt
| | - Reda H El Bakary
- Histology Department, Faculty of Medicine, Tanta University, Egypt, Tanta 31527, Egypt
| | - Mohamed A El Barody
- Ophthalmology Department, National Eye Center, Cairo, Egypt, Cairo 11631 , Egypt
| |
Collapse
|
10
|
Castello A, Bruschetta G, Giunta RP, Marino AMF, Ferlazzo AM. The effect of Toxoplasma gondii on plasma serotonin concentration in sheep. Vet World 2018; 11:1500-1505. [PMID: 30532508 PMCID: PMC6247880 DOI: 10.14202/vetworld.2018.1500-1505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Toxoplasma gondii is an intracellular parasite that commonly infects warm-blooded animals, including humans. Virtually all species can be infected, but a species-specific variability is evident, in terms of both type and severity of the symptoms encountered. As serotonin (5-hydroxytryptamine [5-HT]) plays an important regulatory role in both physiological and immune responses, the aim of this research was to assess whether toxoplasmosis disease could affect plasma 5-HT concentration and/or hematochemical parameters in a particularly susceptible species to infection as sheep. Materials and Methods 5-HT plasma levels were analyzed in platelet-poor plasma fraction by enzyme-linked immunosorbent assay. Blood count and hematochemical parameters were evaluated. Total proteins (TPs), glucose (Glu), and lactate dehydrogenase were determined by a spectrophotometer. Results Results showed significantly higher levels in plasma 5-HT, monocytes, and TP and significantly lower levels of Glu, in infected sheep compared to the control group. Conclusion Results could support the hypothesis of an effect of toxoplasmosis infection on plasma 5-HT concentrations in sheep. More research is needed to assess the function of 5-HT in the regulation of infected sheep's immune responses.
Collapse
Affiliation(s)
- Annamaria Castello
- Italian National Reference Center for Toxoplasmosis (Ce.Tox) - Experimental Zooprophylactic Institute of Sicily (IZS), Via Passo Gravina 195, 95125 Catania, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| | - Renato Paolo Giunta
- Italian National Reference Center for Toxoplasmosis (Ce.Tox) - Experimental Zooprophylactic Institute of Sicily (IZS), Via Passo Gravina 195, 95125 Catania, Italy
| | - Anna Maria Fausta Marino
- Italian National Reference Center for Toxoplasmosis (Ce.Tox) - Experimental Zooprophylactic Institute of Sicily (IZS), Via Passo Gravina 195, 95125 Catania, Italy
| | - Alida Maria Ferlazzo
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy
| |
Collapse
|
11
|
Tyebji S, Seizova S, Hannan AJ, Tonkin CJ. Toxoplasmosis: A pathway to neuropsychiatric disorders. Neurosci Biobehav Rev 2018; 96:72-92. [PMID: 30476506 DOI: 10.1016/j.neubiorev.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that resides, in a latent form, in the human central nervous system. Infection with Toxoplasma drastically alters the behaviour of rodents and is associated with the incidence of specific neuropsychiatric conditions in humans. But the question remains: how does this pervasive human pathogen alter behaviour of the mammalian host? This fundamental question is receiving increasing attention as it has far reaching public health implications for a parasite that is very common in human populations. Our current understanding centres on neuronal changes that are elicited directly by this intracellular parasite versus indirect changes that occur due to activation of the immune system within the CNS, or a combination of both. In this review, we explore the interactions between Toxoplasma and its host, the proposed mechanisms and consequences on neuronal function and mental health, and discuss Toxoplasma infection as a public health issue.
Collapse
Affiliation(s)
- Shiraz Tyebji
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Simona Seizova
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| |
Collapse
|
12
|
Behavioral evaluation of BALB/c (Mus musculus) mice infected with genetically distinct strains of Toxoplasma gondii. Microb Pathog 2018; 126:279-286. [PMID: 30447421 DOI: 10.1016/j.micpath.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
In relation to behavioral changes in rodents infected with Toxoplasma gondii (T. gondii), it is believed that the genotype of the infecting strain can have some influence. In this sense, the present work has sought to evaluate the effect of chronic infection by genetically distinct cystogenic strains of T. gondii on the behavior of mice. For this, experimental models of infection with ME-49 (type II) and VEG (type III) strains were developed in isogenic BALB/c mice. ELISA test was performed to evaluate the humoral immune response and real-time PCR test to quantify parasites in the CNS. Behavioral tests such as passive avoidance, open-field and Y-maze tests were also used for, respectively, evaluation of learning and memory, locomotor activity and aversion to feline odor. The results showed that mice infected with VEG strain had higher total IgG level of anti-toxoplasma, higher tissue burden of T. gondii in the CNS, reduction in the long-term memory, lower activity (mobility) and lower aversion to cat urine and l-felinine than mice infected with ME-49 strain. The results suggest that different T. gondii genotypes have a differential impact on behavioral changes in infected mice.
Collapse
|
13
|
McFarland R, Wang ZT, Jouroukhin Y, Li Y, Mychko O, Coppens I, Xiao J, Jones-Brando L, Yolken RH, Sibley LD, Pletnikov MV. AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behav Brain Res 2018; 347:193-200. [PMID: 29555339 DOI: 10.1016/j.bbr.2018.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/10/2018] [Accepted: 03/14/2018] [Indexed: 01/25/2023]
Abstract
Infection with the protozoan parasite, Toxoplasma gondii (T. gondii), has been associated with the increased risk for several psychiatric disorders. The exact mechanisms of a hypothesized contribution of T. gondii infection are poorly understood. The T. gondii genome contains two aromatic amino acid hydroxylase genes (AAH1 and AAH2) that encode proteins that can produce L-DOPA. One popular hypothesis posits that these encoded enzymes might influence dopamine (DA) production and hence DA synaptic transmission, leading to neurobehavioral abnormalities in the infected host. Prior studies have shown that deletion of these genes does not alter DA levels in the brain or exploratory activity in infected mice. However, possible effects of AAH gene deficiency on infection-induced brain and behavior alterations that are directly linked to DA synaptic transmission have not been evaluated. We found that chronic T. gondii infection of BALB/c mice leads to blunted response to amphetamine or cocaine and decreased expression of Dopamine Transporter (DAT) and Vesicular Monoamine Transporter 2 (VMAT2). Deletion of AAH2 had no effects on these changes in infected mice. Both wild type and Δaah2 strains produced comparable levels of neuroinflammation. Our findings demonstrate that AAH2 is not required for T. gondii infection-produced DA-dependent neurobehavioral abnormalities.
Collapse
Affiliation(s)
- Ross McFarland
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zi Teng Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yan Jouroukhin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ye Li
- Stanley Neurovirology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Olga Mychko
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Isabelle Coppens
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Jianchun Xiao
- Stanley Neurovirology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lorraine Jones-Brando
- Stanley Neurovirology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Robert H Yolken
- Stanley Neurovirology Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mikhail V Pletnikov
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
14
|
Insights into the molecular basis of host behaviour manipulation by Toxoplasma gondii infection. Emerg Top Life Sci 2017; 1:563-572. [PMID: 33525856 DOI: 10.1042/etls20170108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Typically illustrating the 'manipulation hypothesis', Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T. gondii infection and changes in brain homeostasis. Moreover, it is barely known which among the brain regions governing fear and stress responses are preferentially affected during T. gondii infection. Studies aiming at an in-depth dissection of underlying molecular mechanisms occurring at the host and parasite levels will be discussed in this review. Addressing this reminiscent topic in the light of recent technical progress and new discoveries regarding fear response, olfaction and neuromodulator mechanisms could contribute to a better understanding of this complex host-parasite interaction.
Collapse
|
15
|
Afonso C, Paixão VB, Klaus A, Lunghi M, Piro F, Emiliani C, Di Cristina M, Costa RM. Toxoplasma-induced changes in host risk behaviour are independent of parasite-derived AaaH2 tyrosine hydroxylase. Sci Rep 2017; 7:13822. [PMID: 29062106 PMCID: PMC5653819 DOI: 10.1038/s41598-017-13229-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/20/2017] [Indexed: 01/21/2023] Open
Abstract
Toxoplasma gondii infects a broad range of hosts and can establish chronic infections with the formation of brain cysts. Infected animals show altered risk behaviour which has been suggested to increase capture probability of hosts, and thus enhance parasite transmission. It has been proposed that the ability of Toxoplasma cysts to secrete tyrosine hydroxylase could mediate these behavioural alterations. We tested the involvement of secreted tyrosine hydroxylase, coded by the parasite AaaH2 gene, in the development of alterations in mouse behaviour, by generating an AaaH2 deletion mutant parasite strain and testing its influence on behaviour. We found that both mice infected with wild type or AaaH2 mutant strains showed changes in risk behaviour. We confirmed these findings using factor analysis of the behaviour, which revealed that behavioural changes happened along a single dimension, and were observed in both infected groups. Furthermore, we developed a new behavioural paradigm in which animals are unpredictably trapped, and observed that both groups of infected animals perceive trapping but fail to adjust their behaviour to avoid further trapping. These results demonstrate that parasite-secreted AaaH2 TH is neither necessary for the generation of risky behaviour nor for the increased trappability observed during chronic Toxoplasma infection.
Collapse
Affiliation(s)
- Cristina Afonso
- Champalimaud Center for the Unknown, Champalimaud Neuroscience Programme, Av. Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
| | - Vitor B Paixão
- Champalimaud Center for the Unknown, Champalimaud Neuroscience Programme, Av. Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
| | - Andreas Klaus
- Champalimaud Center for the Unknown, Champalimaud Neuroscience Programme, Av. Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal
| | - Matteo Lunghi
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Building B, Via del Giochetto, 06122, Perugia, Italy
| | - Federica Piro
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Building B, Via del Giochetto, 06122, Perugia, Italy
| | - Carla Emiliani
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Building B, Via del Giochetto, 06122, Perugia, Italy
| | - Manlio Di Cristina
- University of Perugia, Department of Chemistry, Biology and Biotechnology, Building B, Via del Giochetto, 06122, Perugia, Italy.
| | - Rui M Costa
- Champalimaud Center for the Unknown, Champalimaud Neuroscience Programme, Av. Brasília, Doca de Pedrouços, 1400-038, Lisboa, Portugal.
| |
Collapse
|
16
|
Wang ZT, Verma SK, Dubey JP, Sibley LD. The aromatic amino acid hydroxylase genes AAH1 and AAH2 in Toxoplasma gondii contribute to transmission in the cat. PLoS Pathog 2017; 13:e1006272. [PMID: 28288194 PMCID: PMC5363998 DOI: 10.1371/journal.ppat.1006272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/23/2017] [Accepted: 03/06/2017] [Indexed: 01/08/2023] Open
Abstract
The Toxoplasma gondii genome contains two aromatic amino acid hydroxylase genes, AAH1 and AAH2 encode proteins that produce L-DOPA, which can serve as a precursor of catecholamine neurotransmitters. It has been suggested that this pathway elevates host dopamine levels thus making infected rodents less fearful of their definitive Felidae hosts. However, L-DOPA is also a structural precursor of melanins, secondary quinones, and dityrosine protein crosslinks, which are produced by many species. For example, dityrosine crosslinks are abundant in the oocyst walls of Eimeria and T. gondii, although their structural role has not been demonstrated, Here, we investigated the biology of AAH knockout parasites in the sexual reproductive cycle within cats. We found that ablation of the AAH genes resulted in reduced infection in the cat, lower oocyst yields, and decreased rates of sporulation. Our findings suggest that the AAH genes play a predominant role during infection in the gut of the definitive feline host.
Collapse
Affiliation(s)
- Zi T. Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shiv K. Verma
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, United States of America
| | - Jitender P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, Maryland, United States of America
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
17
|
Gajewski PD, Falkenstein M, Hengstler JG, Golka K. Reduced ERPs and theta oscillations underlie working memory deficits in Toxoplasma gondii infected seniors. Biol Psychol 2016; 120:35-45. [PMID: 27516127 DOI: 10.1016/j.biopsycho.2016.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023]
Abstract
Toxoplasma gondii is one of the most widespread infections in humans. Recent studies give evidence for memory deficits in infected older adults. To investigate working memory dysfunction in infected elderly, a double-blinded electrophysiological study was conducted. 84 persons derived from a sample of 131 healthy participants with the mean age of 70 years were assigned to two groups of 42 non-infected and 42 infected individuals. The outcome measures were behavioral performance, target and response-related ERPs, and time-frequency wavelets during performance in a n-back working-memory task. The infected individuals showed a reduced rate of detected targets and diminished P3b amplitude both in target-locked as well as response-locked data compared to the non-infected group. Time-frequency decomposition of the EEG-signals revealed lower evoked power in the theta frequency range in the target-locked as well as in the response-locked data in infected individuals. The reported effects were comparable with differences between healthy young and old adults described previously. Taking together, the reduced working-memory performance accompanied by an attenuated P3b and frontal theta activity may suggest neurotransmitter imbalance like dopamine and norepinephrine in T. gondii infected individuals. In face of a high prevalence of T. gondii infection and the increasing ratio of older population their accelerated memory decline may have substantial socioeconomic consequences.
Collapse
Affiliation(s)
- Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany.
| | - Michael Falkenstein
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Klaus Golka
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| |
Collapse
|
18
|
Lindsay DS. Presidential Address: My Time with the Parasites. J Parasitol 2015; 101:610-5. [PMID: 26312546 DOI: 10.1645/15-857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- David S Lindsay
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia 24061-0342
| |
Collapse
|
19
|
Reassessment of the role of aromatic amino acid hydroxylases and the effect of infection by Toxoplasma gondii on host dopamine. Infect Immun 2014; 83:1039-47. [PMID: 25547791 DOI: 10.1128/iai.02465-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii infection has been described previously to cause infected mice to lose their fear of cat urine. This behavioral manipulation has been proposed to involve alterations of host dopamine pathways due to parasite-encoded aromatic amino acid hydroxylases. Here, we report successful knockout and complementation of the aromatic amino acid hydroxylase AAH2 gene, with no observable phenotype in parasite growth or differentiation in vitro and in vivo. Additionally, expression levels of the two aromatic amino acid hydroxylases were negligible both in tachyzoites and in bradyzoites. Finally, we were unable to confirm previously described effects of parasite infection on host dopamine either in vitro or in vivo, even when AAH2 was overexpressed using the BAG1 promoter. Together, these data indicate that AAH enzymes in the parasite do not cause global or regional alterations of dopamine in the host brain, although they may affect this pathway locally. Additionally, our findings suggest alternative roles for the AHH enzymes in T. gondii, since AAH1 is essential for growth in nondopaminergic cells.
Collapse
|
20
|
Effect of Toxoplasma gondii infection on glucose metabolism in the brain of pregnant rats by [18F]FDG microPET imaging. J Radioanal Nucl Chem 2014. [DOI: 10.1007/s10967-014-3192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Worth AR, Andrew Thompson RC, Lymbery AJ. Reevaluating the evidence for Toxoplasma gondii-induced behavioural changes in rodents. ADVANCES IN PARASITOLOGY 2014; 85:109-42. [PMID: 24928181 DOI: 10.1016/b978-0-12-800182-0.00003-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ubiquitous protozoan parasite Toxoplasma gondii has been associated with behavioural changes in various hosts, including humans. In rodents, these behavioural changes are thought to represent adaptive manipulation by T. gondii to enhance transmission from intermediate hosts to the feline definitive host. In this review, we have tabulated evidence of changes in motor coordination, learning, memory, locomotion, anxiety, response to novelty and aversion to feline odour in rodents experimentally infected with T. gondii. In general, there was no consistent indication of the direction or magnitude of behavioural changes in response to infection. This may be due to the use, in these experimental studies, of different T. gondii strains, different host species and sexes and/or different methodologies to measure behaviour. A particular problem with studies of behavioural manipulation is likely to be the validity of behavioural tests, that is, whether they are actually measuring the traits that they were designed to measure. We suggest that future studies can be improved in three major ways. First, they should use multiple tests of behaviour, followed by multivariate data analysis to identify behavioural constructs such as aversion, anxiety and response to novelty. Second, they should incorporate longitudinal measurements on the behaviour of individual hosts before and after infection, so that within-individual and between-individual variances and covariances in behavioural traits can be estimated. Finally, they should investigate how variables such as parasite strain, host species and host sex interact with parasite infection to alter host behaviour, in order to provide a sound foundation for research concerning the proximate and ultimate mechanism(s) responsible for behavioural changes.
Collapse
Affiliation(s)
- Amanda R Worth
- Parasitology, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - R C Andrew Thompson
- Parasitology, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Alan J Lymbery
- Parasitology, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Freshwater Fish Group & Fish Health Unit, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Latent Toxoplasma gondii infection leads to deficits in goal-directed behavior in healthy elderly. Neurobiol Aging 2014; 35:1037-44. [DOI: 10.1016/j.neurobiolaging.2013.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022]
|
23
|
Abdoli A, Dalimi A, Arbabi M, Ghaffarifar F. Neuropsychiatric manifestations of latent toxoplasmosis on mothers and their offspring. J Matern Fetal Neonatal Med 2013; 27:1368-74. [PMID: 24156764 DOI: 10.3109/14767058.2013.858685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Toxoplasmosis is one of the most common parasitic diseases worldwide. It is estimated that approximately one-third of the world's population is latently infected. Infection generally occurs via oral the route and maternal transmission. Damage of the central nervous system is one of the most serious consequences of congenital toxoplasmosis. Moreover, recent investigations proposed that acute and sub-acute congenital toxoplasmosis as well as latent toxoplasmosis during pregnancy; play various roles in the etiology of different neuropsychiatric disorders in mothers and their offspring. This paper reviews new findings about the role of latent toxoplasmosis in the etiology of various neuropsychiatric disorders in mothers and their offspring.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology, Faculty of Medical Sciences, Kashan University of Medical Science , Kashan , Iran and
| | | | | | | |
Collapse
|
24
|
Xiao J, Li Y, Jones-Brando L, Yolken RH. Abnormalities of neurotransmitter and neuropeptide systems in human neuroepithelioma cells infected by three Toxoplasma strains. J Neural Transm (Vienna) 2013; 120:1631-9. [PMID: 23821371 DOI: 10.1007/s00702-013-1064-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/22/2013] [Indexed: 02/08/2023]
Abstract
Since Toxoplasma gondii can establish a persistent infection in the central nervous system in humans, we studied its effects on a host's neurotransmitter and neuropeptide systems (NNS). Using microarray technology, we have screened the expression of genes coding for NNS in human neuroepithelioma cells in response to representative strains of Toxoplasma to identify potential target genes. Transcripts that displayed expression levels distinct from uninfected controls were examined by RT-PCR and Western blot. Our results indicate the presence of disturbed NNS upon Toxoplasma infection and the extent of this disturbance varies considerably among the three strains. In cells infected by type I strain, three neurotransmitter systems (dopamine, glutamate and serotonin) and two neuropeptides (PROK2 and TAC1) displayed abnormalities relative to controls. Type III infection led to the change of a critical enzyme, TDO2, in the kynurenine pathway. No significant effects of type II infection were found in the NNS. These data may have implications for understanding the pathogenesis and heterogeneity of neurologic disturbances in toxoplasmosis.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA,
| | | | | | | |
Collapse
|
25
|
McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour - location, location, location? J Exp Biol 2013; 216:113-9. [PMID: 23225873 PMCID: PMC3515035 DOI: 10.1242/jeb.074153] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/18/2012] [Indexed: 12/17/2022]
Abstract
Parasite location has been proposed as an important factor in the behavioural changes observed in rodents infected with the protozoan Toxoplasma gondii. During the chronic stages of infection, encysted parasites are found in the brain but it remains unclear whether the parasite has tropism for specific brain regions. Parasite tissue cysts are found in all brain areas with some, but not all, prior studies reporting higher numbers located in the amygdala and frontal cortex. A stochastic process of parasite location does not, however, seem to explain the distinct and often subtle changes observed in rodent behaviour. One factor that could contribute to the specific changes is increased dopamine production by T. gondii. Recently, it was found that cells encysted with parasites in the brains of experimentally infected rodents have high levels of dopamine and that the parasite encodes a tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of this neurotransmitter. A mechanism is proposed that could explain the behaviour changes due to parasite regulation of dopamine. This could have important implications for T. gondii infections in humans.
Collapse
Affiliation(s)
- Glenn A McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | | | | | | |
Collapse
|
26
|
Strobl JS, Goodwin DG, Rzigalinski BA, Lindsay DS. Dopamine Stimulates Propagation ofToxoplasma gondiiTachyzoites in Human Fibroblast and Primary Neonatal Rat Astrocyte Cell Cultures. J Parasitol 2012; 98:1296-9. [DOI: 10.1645/ge-2760.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
27
|
Severance EG, Kannan G, Gressitt KL, Xiao J, Alaedini A, Pletnikov MV, Yolken RH. Anti-gluten immune response following Toxoplasma gondii infection in mice. PLoS One 2012; 7:e50991. [PMID: 23209841 PMCID: PMC3510169 DOI: 10.1371/journal.pone.0050991] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/29/2012] [Indexed: 12/22/2022] Open
Abstract
Gluten sensitivity may affect disease pathogenesis in a subset of individuals who have schizophrenia, bipolar disorder or autism. Exposure to Toxoplasma gondii is a known risk factor for the development of schizophrenia, presumably through a direct pathological effect of the parasite on brain and behavior. A co-association of antibodies to wheat gluten and to T. gondii in individuals with schizophrenia was recently uncovered, suggesting a coordinated gastrointestinal means by which T. gondii and dietary gluten might generate an immune response. Here, we evaluated the connection between these infectious- and food-based antigens in mouse models. BALB/c mice receiving a standard wheat-based rodent chow were infected with T. gondii via intraperitoneal, peroral and prenatal exposure methods. Significant increases in the levels of anti-gluten IgG were documented in all infected mice and in offspring from chronically infected dams compared to uninfected controls (repetitive measures ANOVAs, two-tailed t-tests, all p≤0.00001). Activation of the complement system accompanied this immune response (p≤0.002–0.00001). Perorally-infected females showed higher levels of anti-gluten IgG than males (p≤0.009) indicating that T. gondii-generated gastrointestinal infection led to a significant anti-gluten immune response in a sex-dependent manner. These findings support a gastrointestinal basis by which two risk factors for schizophrenia, T. gondii infection and sensitivity to dietary gluten, might be connected to produce the immune activation that is becoming an increasingly recognized pathology of psychiatric disorders.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kannan G, Pletnikov MV. Toxoplasma gondii and cognitive deficits in schizophrenia: an animal model perspective. Schizophr Bull 2012; 38:1155-61. [PMID: 22941742 PMCID: PMC3494063 DOI: 10.1093/schbul/sbs079] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Cognitive deficits are a core feature of schizophrenia. Epidemiological evidence indicates that microbial pathogens may contribute to cognitive impairment in patients with schizophrenia. Exposure to Toxoplasma gondii (T. gondii) has been associated with cognitive deficits in humans. However, the mechanisms whereby the parasite impacts cognition remain poorly understood. Animal models of T. gondii infection may aid in elucidating the underpinnings of cognitive dysfunction. Here, we (1) overview the literature on the association of T. gondii infection and cognitive impairment, (2) critically analyze current rodent models of cognitive deficits resulting from T. gondii infection, and (3) explore possible mechanisms whereby the parasite may affect cognitive function.
Collapse
Affiliation(s)
| | - Mikhail V. Pletnikov
- Department of Psychiatry and Behavioral Sciences, ,Solomon H. Snyder Department of Neuroscience, ,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD,To whom correspondence should be addressed; 600 North Wolfe, CMSC 8-121, Baltimore, MD 21287, US; tel: 410-502-3760, fax: 410-614-0013, e-mail:
| |
Collapse
|