1
|
Talebi R, Javadi Mamaghani A, Kheirandish F, Karimi A, Ebrahimzadeh F, Kazempour M, Zebardast N, Fallahi S. Molecular evaluation of Cryptosporidium spp. among breeding calves of Lorestan province Western Iran. Vet Med Sci 2023; 9:363-371. [PMID: 36534036 PMCID: PMC9857120 DOI: 10.1002/vms3.1024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Cryptosporidium spp. are opportunistic intestinal protozoans with global distribution and are of great importance as zoonotic protozoans are common to humans and domestic animals, including cattle and calves. Identification and detection of parasite species using precise methods including molecular methods can be an effective step in treating and controlling parasites. OBJECTIVES This study aimed to investigate the prevalence of Cryptosporidium among breeding calves of Khorramabad city, Lorestan province, Western Iran, using PCR. METHODS The faecal samples were taken from 181 healthy and diarrhoeal calves and after the Ziehl Neelsen Acid-fast staining and microscopic evaluation, the genomic DNA was extracted for molecular evaluations. To detect Cryptosporidium species, specific primers targeting the SAM-1 gene of Cryptosporidium and a commercial master mix were used for PCR. RESULTS Out of 181 faecal samples of breeding calves in Khorramabad city, 9 samples (5%) were positive for Cryptosporidium spp. using the PCR method. Statistical analysis of the data showed that there was no significant statistical relationship between Cryptosporidium infection of the calves and variables of age, breed, type of water consumption, clinical signs of diarrhoea, and sampling location, while parasite infection had a significant relationship with calf gender so that all Cryptosporidium positive samples were from male calves (p ≤ 0.05). CONCLUSIONS Considering the presence of Cryptosporidium infection, the region's traditional grazing system, and the close relationship between livestock and humans, there is a possibility of human infection in the region. So preventive measures such as periodic animal testing with sensitive and accurate diagnostic techniques including PCR, pharmacological treatment of livestock, water hygiene and the use of industrial grazing instead of traditional grazing to improve the hygiene of food consumed by livestock are recommended.
Collapse
Affiliation(s)
- Razieh Talebi
- Department of Medical Parasitology and MycologySchool of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Amirreza Javadi Mamaghani
- Department of Medical Parasitology and MycologySchool of MedicineLorestan University of Medical SciencesKhorramabadIran
- Hepatitis Research CenterSchool of MedicineLorestan University of Medical ScienceKhorramabadIran
| | - Farnaz Kheirandish
- Department of Medical Parasitology and MycologySchool of MedicineLorestan University of Medical SciencesKhorramabadIran
- Razi Herbal Medicines Research CenterSchool of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Azadeh Karimi
- Department of Medical Parasitology and MycologySchool of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Farzad Ebrahimzadeh
- Department of Biostatistics and Epidemiology, School of Health and NutritionLorestan University of Medical SciencesKhorramabadIran
| | - Mohamad Kazempour
- Department of ChemistryTabriz BranchIslamic Azad UniversityTabrizIran
| | - Nozhat Zebardast
- Cellular and Molecular Research CenterSchool of MedicineGuilan University of Medical SciencesRashtIran
| | - Shirzad Fallahi
- Department of Medical Parasitology and MycologySchool of MedicineLorestan University of Medical SciencesKhorramabadIran
- Hepatitis Research CenterSchool of MedicineLorestan University of Medical ScienceKhorramabadIran
| |
Collapse
|
2
|
Hijjawi N, Zahedi A, Al-Falah M, Ryan U. A review of the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East and North Africa (MENA) region. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105212. [PMID: 35065302 DOI: 10.1016/j.meegid.2022.105212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Cryptosporidium spp. and Giardia duodenalis are important protozoan parasites which are associated with diarrheal diseases in humans and animals worldwide. Relatively little is known about the molecular epidemiology of Cryptosporidium spp. and Giardia duodenalis in the Middle East Countries and North Africa (MENA region). Therefore, this review aimed to inspect published genotyping and subtyping studies on Cryptosporidium spp. and Giardia duodenalis in the MENA region. These studies indicate that both anthroponotic and zoonotic transmission of Cryptosporidium occurs with the predominance of zoonotic transmission in most countries. Seven Cryptosporidium species were identified in humans (C. parvum, C. hominis, Cryptosporidium meleagridis, C. felis, Cryptosporidium muris, C. canis and C. bovis), with C. parvum by far being the most prevalent species (reported in 95.4% of the retrieved studies). Among C. parvum gp60 subtype families, IIa and IId predominated, suggesting potential zoonotic transmission. However, in four MENA countries (Lebanon, Israel, Egypt and Tunisia), C. hominis was the predominant species with five subtype families reported including Ia, Ib, Id, If and Ie, all of which are usually anthroponotically transmitted between humans. In animals, the majority of studies were conducted mainly on livestock and poultry, 15 species were identified (C. parvum, C. hominis, C. muris, Cryptosporidium cuniculus, C. andersoni, C. bovis, C. meleagridis, C. baileyi, C. erinacei, C. ryanae, C. felis, C. suis, Cryptosporidium galli, C. xiaoi and C. ubiquitum) with C. parvum (IIa and IId subtypes) the dominant species in livestock and C. meleagridis and C. baileyi the dominant species in poultry. With G. duodenalis, five assemblages (A, B, C, E and F) were identified in humans and six (A, B, C, E, D and F) in animals in MENA countries with assemblages A and B commonly reported in humans, and assemblages A and E dominant in livestock. This review also identified a major knowledge gap in the lack of Cryptosporidium spp. and Giardia duodenalis typing studies in water and food sources in the MENA region. Of the few studies conducted on water sources (including drinking and tap water), ten Cryptosporidium species and four genotypes were identified, highlighting the potential role of water as the major route of Cryptosporidium spp. transmission in the region. In addition, three G. duodenalis assemblages (A, B and E) were detected in different water sources with AI, AII and BIV being the main sub-assemblages reported. More research is required in order to better understand the molecular diversity and transmission dynamics of Cryptsporidum spp. and Giardia duodenalis in humans, animals, water and food sources in MENA region.
Collapse
Affiliation(s)
- Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Applied Health Sciences, The Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan.
| | - Alizera Zahedi
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| | | | - Una Ryan
- The Centre of Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Bigot-Clivot A, La Carbona S, Cazeaux C, Durand L, Géba E, Le Foll F, Xuereb B, Chalghmi H, Dubey JP, Bastien F, Bonnard I, Palos Ladeiro M, Escotte-Binet S, Aubert D, Villena I, Geffard A. Blue mussel (Mytilus edulis)-A bioindicator of marine water contamination by protozoa: Laboratory and in situ approaches. J Appl Microbiol 2021; 132:736-746. [PMID: 34152060 DOI: 10.1111/jam.15185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/27/2022]
Abstract
AIMS The protozoan parasites Cryptosporidium spp., Giardia duodenalis and Toxoplasma gondii are identified as public health priorities and are present in a wide variety of environments including the marine ecosystem. The objective of this study was to demonstrate that the marine bivalve blue mussel (Mytilus edulis) can be used as a tool to monitor the contamination of marine waters by the three protozoa over time. METHODS AND RESULTS In order to achieve a proof of concept, mussels were exposed to three concentrations of G. duodenalis cysts and Cryptosporidium parvum/T. gondii oocysts for 21 days, followed by 21 days of depuration in clear water. Then, natural contamination by these protozoa was sought for in wild marine blue mussels along the northwest coast of France to validate their relevance as bioindicators in the field. Our results highlighted that: (a) blue mussels bioaccumulated the parasites for 21 days, according to the conditions of exposure, and parasites could still be detected during the depuration period (until 21 days); (b) the percentage of protozoa-positive M. edulis varied under the degree of protozoan contamination in water; (c) mussel samples from eight out of nine in situ sites were positive for at least one of the protozoa. CONCLUSIONS The blue mussel M. edulis can bioaccumulate protozoan parasites over long time periods, according to the degree of contamination of waters they are inhabiting, and can highlight recent but also past contaminations (at least 21 days). SIGNIFICANCE AND IMPACT OF THE STUDY Mytilus edulis is a relevant bioaccumulators of protozoan (oo)cysts in laboratory and field conditions, hence its potential use for monitoring parasite contamination in marine waters.
Collapse
Affiliation(s)
- Aurélie Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | | | | | - Loïc Durand
- ACTALIA Food Safety Department, Saint-Lô, France.,EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Elodie Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France.,EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Frank Le Foll
- UMR-I 02 SEBIO, University of Le Havre Normandie, Le Havre Cedex, France
| | - Benoit Xuereb
- UMR-I 02 SEBIO, University of Le Havre Normandie, Le Havre Cedex, France
| | - Houssem Chalghmi
- UMR-I 02 SEBIO, University of Le Havre Normandie, Le Havre Cedex, France
| | - Jitender P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - Fanny Bastien
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Isabelle Bonnard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Mélissa Palos Ladeiro
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - Sandie Escotte-Binet
- EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Dominique Aubert
- EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Isabelle Villena
- EA7510, ESCAPE, Epidémiosurveillance et CirculAtion des Parasites dans les Environnements, Faculté de Médecine, University of Reims Champagne Ardenne, Reims, France
| | - Alain Geffard
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| |
Collapse
|
4
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
5
|
da Cunha MJR, Cury MC, Santín M. Molecular characterization of Cryptosporidium spp. in poultry from Brazil. Res Vet Sci 2018; 118:331-335. [PMID: 29605466 DOI: 10.1016/j.rvsc.2018.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 11/29/2022]
Abstract
Cryptosporidiosis is an important zoonotic disease caused by Cryptosporidium. Infections in birds are mainly caused by C. meleagridis, C. baileyi, and C. galli. C. meleagridis is the third most common cause of cryptosporidiosis in humans and the only Cryptosporidium species known to infect both birds and mammals. One hundred and fifty-five fecal specimens from different poultry species (chicken, turkey, ostrich, helmeted guinea fowl, quail, pheasant, and emu) were collected at local markets in the state of Minas Gerais, Brazil. Twenty-three (14.8%) birds (20 chickens, 2 quails, and 1 turkey) were found Cryptosporidium-positive. This constitutes the first report of Cryptosporidium in turkeys from Brazil. Nucleotide sequence analysis identified C. meleagridis in chickens (15), a turkey (1), and a quail (1), C. baileyi in chickens (4) and a quail (1), and a mixed infection C. meleagridis/C. baileyi in a chicken (1). This is the first report of C. meleagridis in turkeys and quails from Brazil. Using the gp60 gene, three subtype families were identified, IIIa, IIIb and IIIg. Within subtype family IIIg, four subtypes were identified in chickens, two novel (IIIgA25G3R1 and IIIgA21G3R1) and two previously reported (IIIgA22G3R1 and IIIgA24G2R1). Within subtype family IIIb two subtypes were identified, IIIbA24G1R1 in a chicken and IIIbA23G1R1 in a quail. A novel subtype in the family IIIa was identified (IIIaA22G3R1) in a turkey. The finding of C. meleagridis subtypes previously identified in humans (IIIgA22G3R1, IIIbA24G1R1 and IIIbA23G1R1) indicates that they can be potentially zoonotic. Further subtyping studies that clarify genetic diversity of C. meleagridis are required to better understand host specificity, source of infection, and transmission dynamics of C. meleagridis.
Collapse
Affiliation(s)
- Maria Júlia Rodrigues da Cunha
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Building 173, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA; Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Parasitologia, Av. Pará, 1720, Campus Umuarama, 38400-902 Uberlândia, Minas Gerais, Brazil; CAPES Foundation, Ministry of Education of Brazil Caixa, Postal 250, 70040-020 Brasília, DF, Brazil
| | - Márcia Cristina Cury
- Universidade Federal de Uberlândia, Instituto de Ciências Biomédicas, Laboratório de Parasitologia, Av. Pará, 1720, Campus Umuarama, 38400-902 Uberlândia, Minas Gerais, Brazil
| | - Monica Santín
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, Building 173, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, USA.
| |
Collapse
|
6
|
Ramos AE, Muñoz M, Cortés-Vecino JA, Barato P, Patarroyo MA. A novel loop-mediated isothermal amplification-based test for detecting Neospora caninum DNA. Parasit Vectors 2017; 10:590. [PMID: 29187255 PMCID: PMC5707868 DOI: 10.1186/s13071-017-2549-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neospora caninum is a cyst-forming, coccidian parasite which is known to cause neurological disorders in dogs and abortion and neonatal mortality in cows and other livestock. This study reports the development of a loop-mediated isothermal amplification (LAMP) assay based on the Neospora caninum Nc-5 gene and compares its efficacy for detecting DNA to that of a semi-nested PCR test. RESULTS Six primers were designed based on the Nc-5 repeat region of N. caninum. Specific LAMP primers led to successful amplification of N. caninum DNA at 63 °C in 30 min. The LAMP assay was highly specific (i.e. it did not reveal cross-reactivity with other parasite species) and had a low N. caninum plasmid DNA limit of detection (1 fg), which is ten times higher than that for the semi-nested PCR. LAMP applicability was evaluated using a set of naturally-infected samples (59 from canine faeces and five from bovine abortions). Thirty-nine percent (25/64) of the naturally-infected samples were positive for N. caninum DNA by LAMP and 36% (23/64) by semi-nested PCR. However, the LAMP assay is much faster to perform than semi-nested PCR and provides results in 30 min. CONCLUSION The optimized reaction conditions described in this study resulted in a sensitive, specific and rapid technique for detecting N. caninum DNA. Considering the advantages of LAMP for detecting N. caninum DNA, further assays aimed at testing its usefulness on a wider range of field samples are recommended.
Collapse
Affiliation(s)
- Andrea Estefanía Ramos
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | - Marina Muñoz
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | | | - Paola Barato
- Corporación Patología Veterinaria (Corpavet), Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|
7
|
Koloren Z, Ayaz E. Genotyping of Cryptosporidium spp. in environmental water in Turkey. Acta Parasitol 2016; 61:671-679. [PMID: 27787219 DOI: 10.1515/ap-2016-0094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/23/2016] [Indexed: 11/15/2022]
Abstract
This research was undertaken to study the molecular detection and characterization of Cryptosporidium spp. in environmental water sources at Samsun and Giresun Provinces of The Black Sea in Turkey. Two-hundred forty and one-hundred eighty environmental samples were collected from a total of twenty and twenty-five sampling sites of Giresun and Samsun Provinces. One hundred twenty untreated drinking water samples were also detected for Cryptosporidium spp. in both investigated areas. 101 (%42), 92 (%38.3) of 240 and 74 (41.1%), 70 (38.8%) of 180 environmental samples have been found positive for Cryptosporidium spp. by Loop mediated isothermal amplification (LAMP) targeting the S-adenosyl-L-methionine synthetase (SAM) gene and nested PCR targeting small subunit (SSU)rRNA gene in Samsun and Giresun Provinces, respectively. Of the tested untreated drinking water samples collected from the investigated area, one sample was positive for Cryptosporidium spp. Six and twelve samples were clearly sequenced for the Cryptosporidium (SSU)rRNA gene among the highest positive samples selected from each of the twenty and twenty-five sampling sites of Giresun and Samsun Provinces, respectively. Genetic characterization of Cryptosporidium isolates from water samples represented Cryptosporidium bovis for five samples, Cryptosporidium parvum for six samples and one sample for Cryptosporidium felis in Samsun Province, where C. parvum for five samples and C. bovis for one sample were sequenced in Giresun Province. According to accessible information sources, this is the first research about genotyping of Cryptosporidium spp. in water samples collected from Samsun and Giresun Provinces of Turkey.
Collapse
|
8
|
Destura RV, Cena RB, Galarion MJH, Pangilinan CM, Arevalo GM, Alba ROC, Petronio JAG, Salem GM, Schwem B, Sevilleja JEAD. Advancing Cryptosporidium Diagnostics from Bench to Bedside. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0055-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|