1
|
Song YY, Zhang XZ, Wang BN, Weng MM, Zhang ZY, Guo X, Zhang X, Wang ZQ, Cui J. Molecular characterization of a novel serine proteinase from Trichinella spiralis and its participation in larval invasion of gut epithelium. PLoS Negl Trop Dis 2023; 17:e0011629. [PMID: 37695792 PMCID: PMC10513378 DOI: 10.1371/journal.pntd.0011629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/21/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND A novel serine proteinase of Trichinells spiralis (TsSPc) has been identified in the excretion/secretion (ES) antigens, but its role in larval invasion is unclear. The aim of this study was to clone and express TsSPc, identify its biological and biochemical characteristics, and investigate its role on larval invasion of gut epithelium during T. spiralis infection. METHODOLOGY/PRINCIPAL FINDINGS TsSPc has a functional domain of serine proteinase, and its tertiary structure consists of three amino acid residues (His88, Asp139 and Ser229) forming a pocket like functional domain. Recombinant TsSPc (rTsSPc) was expressed and purified. The rTsSPc has good immunogenicity. On Western blot analysis, rTsSPc was recognized by infection serum and anti-rTsSPc serum, natural TsSPc in crude and ES antigens was identified by anti-rTsSPc serum. The results of qPCR, Western blot and indirect immunofluorescence test (IIFT) showed that TsSPc was expressed at diverse stage worms, and mainly localized at cuticle, stichosome and intrauterine embryos of this nematode. The rTsSPc had enzymatic activity of native serine protease, which hydrolyzed the substrate BAEE, casein and collagen I. After site directed mutation of enzymatic active sites of TsSPc, its antigenicity did not change but the enzyme activity was fully lost. rTsSPc specifically bound to intestinal epithelium cells (IECs) and the binding sites were mainly localized in cell membrane and cytoplasm. rTsSPc accelerated larval invasion of IECs, whereas anti-rTsSPc antibodies and TsSPc-specific dsRNA obviously hindered larval invasion. CONCLUSIONS TsSPc was a surface and secretory proteinase of the parasite, participated in larval invasion of gut epithelium, and may be considered as a candidate vaccine target molecule against Trichinella intrusion and infection.
Collapse
Affiliation(s)
- Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xin Zhuo Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Bo Ning Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Min Min Weng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Zhao Yu Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xin Guo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
2
|
Hu J, Sun M, Qi N, Abuzeid AM, Li J, Cai H, Lv M, Lin X, Liao S, Li G. Inhibitory effect of morin on aldolase 2 from Eimeria tenella. Int J Parasitol Drugs Drug Resist 2022; 20:1-10. [PMID: 35952522 PMCID: PMC9385451 DOI: 10.1016/j.ijpddr.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/14/2022]
Abstract
Eimeria tenella (E. tenella) is a protozoal parasite that can cause severe cecal lesions and death in chickens, seriously harming the chicken industry. Conventional control strategies mainly rely on anticoccidial drugs. However, the emerging problems of anticoccidial resistance and drug residues necessitate exploring potential drug targets for developing new anticoccidial drugs. Fructose-1,6-bisphosphate aldolase (ALD) is an essential enzyme for parasite energy metabolism that has been considered a potential drug target. In this study, we analyzed the molecular and biochemical properties of E. tenella ALD2 (EtALD2). EtALD2 mRNA expression was highest in second-generation merozoites, whereas the protein level was highest in unsporulated oocysts. Indirect immunofluorescence showed that EtALD2 was mainly distributed in sporozoite' cytoplasm. The natural product inhibitor (morin) was screened by computer-aided drug screening. Enzyme kinetic and inhibition kinetic assays showed that morin had a good inhibitory effect on EtALD2 activity (IC50 = 10.37 μM, Ki = 48.97 μM). In vitro inhibition assay demonstrated that morin had an inhibitory effect on E. tenella development, with an IC50 value of 3.98 μM and drug selection index of 177.49. In vivo, morin significantly improved cecal lesions (p < 0.05) and reduced oocyst excretion (p < 0.05) in E. tenella-infected chickens compared with the untreated group. The anticoccidial index of the group receiving 450 mg morin per kg feed was 162, showing a good anticoccidial effect. These findings suggest that EtALD2 could be a novel drug target for E. tenella treatment, and morin should be further evaluated as a therapeutic candidate for chicken coccidiosis.
Collapse
Affiliation(s)
- Junjing Hu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Mingfei Sun
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Nanshan Qi
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Asmaa M.I. Abuzeid
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Juan Li
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Haiming Cai
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Minna Lv
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Xuhui Lin
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China
| | - Shenquan Liao
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, PR China,Corresponding author.
| | - Guoqing Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510542, China,Corresponding author.
| |
Collapse
|
3
|
Abstract
Apicomplexans are important pathogens that cause severe infections in humans and animals. The biology and pathogeneses of these parasites have shown that proteins are intrinsically modulated during developmental transitions, physiological processes and disease progression. Also, proteins are integral components of parasite structural elements and organelles. Among apicomplexan parasites, Eimeria species are an important disease aetiology for economically important animals wherein identification and characterisation of proteins have been long-winded. Nonetheless, this review seeks to give a comprehensive overview of constitutively expressed Eimeria proteins. These molecules are discussed across developmental stages, organelles and sub-cellular components vis-à-vis their biological functions. In addition, hindsight and suggestions are offered with intention to summarise the existing trend of eimerian protein characterisation and to provide a baseline for future studies.
Collapse
|
4
|
Tucker MS, O’Brien CN, Jenkins MC, Rosenthal BM. Dynamically expressed genes provide candidate viability biomarkers in a model coccidian. PLoS One 2021; 16:e0258157. [PMID: 34597342 PMCID: PMC8486141 DOI: 10.1371/journal.pone.0258157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/18/2021] [Indexed: 11/29/2022] Open
Abstract
Eimeria parasites cause enteric disease in livestock and the closely related Cyclosporacayetanensis causes human disease. Oocysts of these coccidian parasites undergo maturation (sporulation) before becoming infectious. Here, we assessed transcription in maturing oocysts of Eimeria acervulina, a widespread chicken parasite, predicted gene functions, and determined which of these genes also occur in C. cayetanensis. RNA-Sequencing yielded ~2 billion paired-end reads, 92% of which mapped to the E. acervulina genome. The ~6,900 annotated genes underwent temporally-coordinated patterns of gene expression. Fifty-three genes each contributed >1,000 transcripts per million (TPM) throughout the study interval, including cation-transporting ATPases, an oocyst wall protein, a palmitoyltransferase, membrane proteins, and hypothetical proteins. These genes were enriched for 285 gene ontology (GO) terms and 13 genes were ascribed to 17 KEGG pathways, defining housekeeping processes and functions important throughout sporulation. Expression differed in mature and immature oocysts for 40% (2,928) of all genes; of these, nearly two-thirds (1,843) increased their expression over time. Eight genes expressed most in immature oocysts, encoding proteins promoting oocyst maturation and development, were assigned to 37 GO terms and 5 KEGG pathways. Fifty-six genes underwent significant upregulation in mature oocysts, each contributing at least 1,000 TPM. Of these, 40 were annotated by 215 GO assignments and 9 were associated with 18 KEGG pathways, encoding products involved in respiration, carbon fixation, energy utilization, invasion, motility, and stress and detoxification responses. Sporulation orchestrates coordinated changes in the expression of many genes, most especially those governing metabolic activity. Establishing the long-term fate of these transcripts in sporulated oocysts and in senescent and deceased oocysts will further elucidate the biology of coccidian development, and may provide tools to assay infectiousness of parasite cohorts. Moreover, because many of these genes have homologues in C. cayetanensis, they may prove useful as biomarkers for risk.
Collapse
Affiliation(s)
- Matthew S. Tucker
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Celia N. O’Brien
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Mark C. Jenkins
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
| | - Benjamin M. Rosenthal
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
5
|
Liang S, Dong H, Zhu S, Zhao Q, Huang B, Yu Y, Wang Q, Wang H, Yu S, Han H. Eimeria tenella Translation Initiation Factor eIF-5A That Interacts With Calcium-Dependent Protein Kinase 4 Is Involved in Host Cell Invasion. Front Cell Infect Microbiol 2021; 10:602049. [PMID: 33553005 PMCID: PMC7862772 DOI: 10.3389/fcimb.2020.602049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
Eimeria tenella is an apicomplexan, parasitic protozoan known to infect poultry worldwide. An important calcium-dependent protein kinase (CDPK) has been identified in plants, green algae, ciliates and apicomplexan, such as E. tenella. CDPKs are effector molecules involved in calcium signaling pathways, which control important physiological processes such as gliding motility, reproduction, and host cell invasion. Given that CDPKs are not found in the host, studying the functions of CDPKs in E. tenella may serve as a basis for developing new therapeutic drugs and vaccines. To assess the function of CDPK4 in E. tenella (EtCDPK4), a putative interactor, translation initiation factor eIF-5A (EteIF-5A), was screened by both co-immunoprecipitation (co-IP) and His pull-down assays followed by mass spectrometry. The interaction between EteIF-5A and EtCDPK4 was determined by bimolecular fluorescence complementation (BiFC), GST pull-down, and co-IP. The molecular characteristics of EteIF-5A were then analyzed. Quantitative real-time polymerase chain reaction and western blotting were used to determine the transcription and protein levels of EteIF-5A in the different developmental stages of E. tenella. The results showed that the transcription level of EteIF-5A mRNA was highest in second-generation merozoites, and the protein expression level was highest in unsporulated oocysts. Indirect immunofluorescence showed that the EteIF-5A protein was found throughout the cytoplasm of sporozoites, but not in the refractile body. As the invasion of DF-1 cells progressed, EteIF-5A fluorescence intensity increased in trophozoites, decreased in immature schizonts, and increased in mature schizonts. The secretion assay results, analyzed by western blotting, indicated that EteIF-5A was a secreted protein but not from micronemes. The results of invasion inhibition assays showed that rabbit anti-rEteIF-5A polyclonal antibodies effectively inhibited cell invasion by sporozoites, with an inhibition rate of 48%.
Collapse
Affiliation(s)
- Shanshan Liang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hui Dong
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shunhai Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qiping Zhao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bing Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yu Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingjie Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haixia Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shuilan Yu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hongyu Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
6
|
Wang Z, Huang B, Dong H, Zhao Q, Zhu S, Xia W, Xu S, Xie Y, Cui X, Tang M, Men Q, Yang Z, Li C, Zhu X, Han H. Molecular Characterization and Functional Analysis of a Novel Calcium-Dependent Protein Kinase 4 from Eimeria tenella. PLoS One 2016; 11:e0168132. [PMID: 27977727 PMCID: PMC5158193 DOI: 10.1371/journal.pone.0168132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/26/2016] [Indexed: 11/19/2022] Open
Abstract
Eimeria tenella is an obligate intracellular parasite that actively invades cecal epithelial cells of chickens. The basis of cell invasion is not completely understood, but some key molecules of host cell invasion have been discovered. This paper investigated the characteristics of calcium-dependent protein kinase 4 (EtCDPK4), a critical molecule in E. tenella invasion of host cells. A full-length EtCDPK4 cDNA was identified from E. tenella using rapid amplification of cDNA ends. EtCDPK4 had an open reading frame of 1803 bp encoding a protein of 600 amino acids. Quantitative real-time PCR and western blotting were used to explore differences in EtCDPK4 transcription and translation in four developmental stages of E. tenella. EtCDPK4 was expressed at higher levels in sporozoites, but translation was higher in second-generation merozoites. In vitro invasion inhibition assays explored whether EtCDPK4 was involved in invasion of DF-1 cells by E. tenella sporozoites. Polyclonal antibodies against recombinant EtCDPK4 (rEtCDPK4) inhibited parasite invasion, decreasing it by approximately 52%. Indirect immunofluorescence assays explored EtCDPK4 distribution during parasite development after E. tenella sporozoite invasion of DF-1 cells in vitro. The results showed that EtCDPK4 might be important in sporozoite invasion and development. To analyze EtCDPK4 functional domains according to the structural characteristics of EtCDPK4 and study the kinase activity of rEtCDPK4, an in vitro phosphorylation system was established. We verified that rEtCDPK4 was a protein kinase that was completely dependent on Ca2+ for enzyme activity. Specific inhibitors of rEtCDPK4 activity were screened by kinase activity in vitro. Some specific inhibitors were applied to assays of DF-1 cell invasion by E. tenella sporozoites to confirm that the inhibitors functioned in vitro. W-7, H-7, H-89, and myristoylated peptide inhibited DF-1 invasion by E. tenella sporozoites. The experimental results showed that EtCDPK4 may be involved in E. tenella invasion of chicken cecal epithelial cells.
Collapse
Affiliation(s)
- Ziwen Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Bing Huang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, PR China
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Weili Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Shuaibin Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Yuxiang Xie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Xiaoxia Cui
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Min Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Qifei Men
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Zhiyuang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Cong Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Xuelong Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai, PR China
| |
Collapse
|
7
|
Vrba V, Pakandl M. Host specificity of turkey and chicken Eimeria: controlled cross-transmission studies and a phylogenetic view. Vet Parasitol 2015; 208:118-24. [PMID: 25660426 DOI: 10.1016/j.vetpar.2015.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/25/2022]
Abstract
Protozoan parasites of the Eimeria genus have undergone extensive speciation and are now represented by a myriad of species that are specialised to different hosts. These species are highly host-specific and usually parasitise single host species, with only few reported exceptions. Doubts regarding the strict host specificity were frequent in the original literature describing coccidia parasitising domestic turkeys. The availability of pure characterised lines of turkey and chicken Eimeria species along with the recently developed quantitative PCR identification of these species allowed to investigate the issue of host specificity using well-controlled cross-transmission experiments. Seven species of gallinaceous birds (Gallus gallus, Meleagris gallopavo, Alectoris rufa, Perdix perdix, Phasianus colchicus, Numida meleagris and Colinus virginianus) were inoculated with six species and strains of turkey Eimeria and six species of chicken coccidia and production of oocysts was monitored. Turkey Eimeria species E. dispersa, E. innocua and E. meleagridis could complete their development in the hosts from different genera or even different families. Comparison of phylogenetic positions of these Eimeria species according to 18S rDNA and COI showed that the phylogeny cannot explain the observed patterns of host specificity. These findings suggest that the adaptation of Eimeria parasites to foreign hosts is possible and might play a significant role in the evolution and diversification of this genus.
Collapse
Affiliation(s)
- Vladimir Vrba
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohori-Chotoun, Jilove u Prahy 254 49, Czech Republic.
| | - Michal Pakandl
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Pohori-Chotoun, Jilove u Prahy 254 49, Czech Republic
| |
Collapse
|
8
|
Katrib M, Ikin RJ, Brossier F, Robinson M, Slapetova I, Sharman PA, Walker RA, Belli SI, Tomley FM, Smith NC. Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC Genomics 2012; 13:685. [PMID: 23216867 PMCID: PMC3770453 DOI: 10.1186/1471-2164-13-685] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 12/04/2012] [Indexed: 12/28/2022] Open
Abstract
Background Proteases regulate pathogenesis in apicomplexan parasites but investigations of proteases have been largely confined to the asexual stages of Plasmodium falciparum and Toxoplasma gondii. Thus, little is known about proteases in other Apicomplexa, particularly in the sexual stages. We screened the Eimeria tenella genome database for proteases, classified these into families and determined their stage specific expression. Results Over forty protease genes were identified in the E. tenella genome. These were distributed across aspartic (three genes), cysteine (sixteen), metallo (fourteen) and serine (twelve) proteases. Expression of at least fifteen protease genes was upregulated in merozoites including homologs of genes known to be important in host cell invasion, remodelling and egress in P. falciparum and/or T. gondii. Thirteen protease genes were specifically expressed or upregulated in gametocytes; five of these were in two families of serine proteases (S1 and S8) that are over-represented in the coccidian parasites, E. tenella and T. gondii, distinctive within the Apicomplexa because of their hard-walled oocysts. Serine protease inhibitors prevented processing of EtGAM56, a protein from E. tenella gametocytes that gives rise to tyrosine-rich peptides that are incorporated into the oocyst wall. Conclusion Eimeria tenella possesses a large number of protease genes. Expression of many of these genes is upregulated in asexual stages. However, expression of almost one-third of protease genes is upregulated in, or confined to gametocytes; some of these appear to be unique to the Coccidia and may play key roles in the formation of the oocyst wall, a defining feature of this group of parasites.
Collapse
Affiliation(s)
- Marilyn Katrib
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Broadway, N.S.W. 2007, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rieux A, Gras S, Lecaille F, Niepceron A, Katrib M, Smith NC, Lalmanach G, Brossier F. Eimeripain, a cathepsin B-like cysteine protease, expressed throughout sporulation of the apicomplexan parasite Eimeria tenella. PLoS One 2012; 7:e31914. [PMID: 22457711 PMCID: PMC3310820 DOI: 10.1371/journal.pone.0031914] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/17/2012] [Indexed: 11/29/2022] Open
Abstract
The invasion and replication of Eimeria tenella in the chicken intestine is responsible for avian coccidiosis, a disease that has major economic impacts on poultry industries worldwide. E. tenella is transmitted to naïve animals via shed unsporulated oocysts that need contact with air and humidity to form the infectious sporulated oocysts, which contain the first invasive form of the parasite, the sporozoite. Cysteine proteases (CPs) are major virulence factors expressed by protozoa. In this study, we show that E. tenella expresses five transcriptionally regulated genes encoding one cathepsin L, one cathepsin B and three cathepsin Cs. Biot-LC-LVG-CHN2, a cystatin derived probe, tagged eight polypeptides in unsporulated oocysts but only one in sporulated oocysts. CP-dependant activities were found against the fluorescent substrates, Z-FR-AMC and Z-LR-AMC, throughout the sporulation process. These activities corresponded to a cathepsin B-like enzyme since they were inhibited by CA-074, a specific cathepsin B inhibitor. A 3D model of the catalytic domain of the cathepsin B-like protease, based on its sequence homology with human cathepsin B, further confirmed its classification as a papain-like protease with similar characteristics to toxopain-1 from the related apicomplexan parasite, Toxoplasma gondii; we have, therefore, named the E. tenella cathepsin B, eimeripain. Following stable transfection of E. tenella sporozoites with a plasmid allowing the expression of eimeripain fused to the fluorescent protein mCherry, we demonstrated that eimeripain is detected throughout sporulation and has a punctate distribution in the bodies of extra- and intracellular parasites. Furthermore, CA-074 Me, the membrane-permeable derivative of CA-074, impairs invasion of epithelial MDBK cells by E. tenella sporozoites. This study represents the first characterization of CPs expressed by a parasite from the Eimeria genus. Moreover, it emphasizes the role of CPs in transmission and dissemination of exogenous stages of apicomplexan parasites.
Collapse
Affiliation(s)
- Anaïs Rieux
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
| | - Simon Gras
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
| | - Fabien Lecaille
- INSERM U618, Protéases et Vectorisation Pulmonaires, Université François Rabelais, Tours, France
| | - Alisson Niepceron
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
| | - Marilyn Katrib
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, Australia
| | - Nicholas C. Smith
- Queensland Tropical Health Alliance, Faculty of Medicine, Health and Molecular Sciences, James Cook University, Cairns, Australia
| | - Gilles Lalmanach
- INSERM U618, Protéases et Vectorisation Pulmonaires, Université François Rabelais, Tours, France
| | - Fabien Brossier
- INRA, UMR1282, Equipe Pathogenèse des Coccidioses, Infectiologie et Santé Publique, Nouzilly, France
- Université François Rabelais de Tours, UMR1282, Infectiologie et Santé Publique, Tours, France
- * E-mail:
| |
Collapse
|
10
|
Jiang L, Lin J, Han H, Zhao Q, Dong H, Zhu S, Huang B. Identification and partial characterization of a serine protease inhibitor (serpin) of Eimeria tenella. Parasitol Res 2011; 110:865-74. [PMID: 21842392 DOI: 10.1007/s00436-011-2568-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 07/20/2011] [Indexed: 02/07/2023]
Abstract
Serine protease inhibitors (serpins) mediate many biological processes, including immune responses to pathogenic infection. In this study, a member of the serpin superfamily was identified from the common poultry parasite Eimeria tenella by expressed sequence tag analysis and the rapid amplification of cDNA ends technique. The full-length cDNA was 1,918 bp and had an open reading frame of 1,248 bp encoding a polypeptide of 415 amino acids with the theoretical isoelectric point of 5.26 and predicted molecular weight of 45.5 kDa. Real-time quantitative PCR analysis revealed that the serpin gene was expressed at higher levels in sporozoites than in the other developmental stages (unsporulated oocysts, sporulated oocysts, and second-generation merozoites). The sequence encoding the mature protein was amplified by PCR, cloned into the pET28(a) vector, and expressed in Escherichia coli. Specific antiserum generated against the recombinant protein was prepared and used to determine invasion inhibition capacity and localization; the results suggested that the serpin may play an important role in invasion and survival of the sporoziotes in the host.
Collapse
Affiliation(s)
- Lianlian Jiang
- Key Laboratory for Animal Parasitology, Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai 200241, China
| | | | | | | | | | | | | |
Collapse
|
11
|
De Pablos LM, González G, Rodrigues R, García Granados A, Parra A, Osuna A. Action of a pentacyclic triterpenoid, maslinic acid, against Toxoplasma gondii. JOURNAL OF NATURAL PRODUCTS 2010; 73:831-834. [PMID: 20441162 DOI: 10.1021/np900749b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The action of maslinic acid (2alpha,3beta-dihydroxyolean-12-en-28-oic acid) (1), a pentacyclic derivative present in the pressed fruits of the olive (Olea europaea), has been studied against the tachyzoites of Toxoplasma gondii. The capability of tachyzoites to infect Vero cells treated with 1 was affected. The LD(50) values were 58.2 muM for the isolated tachyzoites and 236 muM for the noninfected Vero cells. Zymograms of the T. gondii proteases incubated with 1 showed a dosage-dependent inhibition of some of the proteases. The parasites treated with 1 showed gliding motility and ultrastructural alterations. The present findings suggest that protease activity of the parasite required for cell invasion is the action target for maslinic acid (1).
Collapse
Affiliation(s)
- Luis M De Pablos
- Biochemical and Molecular Parasitology Group, Biotechnology Institute, Campus de Fuentenueva, University of Granada, 18071, Granada, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Sasai K, Fetterer RH, Lillehoj H, Matusra S, Constantinoiu CC, Matsubayashi M, Tani H, Baba E. Characterization of monoclonal antibodies that recognize the Eimeria tenella microneme protein MIC2. J Parasitol 2009; 94:1432-4. [PMID: 18576850 DOI: 10.1645/ge-1558.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/14/2008] [Indexed: 11/10/2022] Open
Abstract
The apicomplexan pathogens of Eimeria cause coccidiosis, an intestinal disease of chickens, which has a major economic impact on the poultry industry. Members of the Apicomplexa share an assortment of unique secretory organelles (rhoptries, micronemes and dense granules) that mediate invasion of host cells and formation and modification of the parasitophorous vacuole. Among these, microneme protein 2 from Eimeria tenella(EtMIC2) has a putative function in parasite adhesion to the host cell to initiate the invasion process. To investigate the role of EtMIC2 in host parasite interactions, the production and characterization of 12 monoclonal antibodies (mabs) produced against recombinant EtMIC2 proteins is described. All mabs reacted with molecules belonging to the apical complex of sporozoites and merozoites of E. tenella, E. acervulina and E. maxima in an immunofluorescence assay. By Western blot analysis, the mabs identified a developmentally regulated protein of 42 kDa corresponding to EtMIC 2 and cross-reacted with proteins in developmental stages of E. acervulina. Collectively, these mabs are useful tools for the detailed investigation of the characterization of EtMIC2 related proteins in Eimeria species.
Collapse
Affiliation(s)
- Kazumi Sasai
- Department of Beterinary Internal Medicine, Division of beterinary Science, Graduate School of life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Fetterer RH, Miska KB, Jenkins MC, Barfield RC, Lillehoj H. Identification and characterization of a serpin from Eimeria acervulina. J Parasitol 2009; 94:1269-74. [PMID: 18576851 DOI: 10.1645/ge-1559.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 04/08/2008] [Indexed: 11/10/2022] Open
Abstract
Serpins are serine protease inhibitors that are widely distributed in metazoans but have not been previously characterized in Eimeria spp. A serpin from Eimeria acervulina was cloned, expressed and characterized. Random screening of an E.acervulina sporozoite cDNA library identified a single clone (D14) whose coding region shared high similarity to consensus structure of serpins. Clone D14 contained an entire open reading frame (ORF) consisting of 1,245 nts that encode a peptide 413 amino acids in length with a predicted molecular weight of 45.5 kDa and containing a signal peptide 28 residues in length. By Western blot analysis, polyclonal antiserum to the recombinant serpin (rbSp) recognized a major 55 kDa protein band in unsporulated oocysts and in oocysts sporulated up to 24 hr (fully sporulated). The anti-rbSp detected bands of 55 kDa and 48 kDa in sporozoites (SZ) and merozoites (MZ) respectively. Analysis of MZ secretion products revealed a single protein of 48 kDa which may correspond to secreted serpin. By immuno-staining the serpin was located in granules distributed throughout both the SZ and MZ but granules appeared to be concentrated in the parasite's anterior. Analysis of the structure predicts that the E. acervulina serpin should be an active inhibitor. However, rbSp was without inhibitory activity against common serine proteases. By Western blot analysis the endogenous serpin in MZ extracts did not form the expected high molecular weight complex when coincubated with either trypsin or subtilisin. The results demonstrate that E. acervulina contains a serpin gene and expresses a protein with structural properties similar to an active serine protease inhibitor. Although the function of the E. acervulina serpin remains unknown the results further suggest that serpin is secreted by the parasite where it may be involved in cell invasion and other basic developmental processes.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, U.S. Department of Agriculture, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, Maryland, USA.
| | | | | | | | | |
Collapse
|
14
|
Fetterer RH, Jenkins MC, Miska KB, Barfield RC. Characterization of the antigen SO7 during development of Eimeria tenella. J Parasitol 2008; 93:1107-13. [PMID: 18163345 DOI: 10.1645/ge-1171r.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The developmental expression of the antigen SO7, which has been previously shown to protect chickens against infection by several Eimeria species, was investigated. Using RT-PCR, mRNA for SO7 was found to be restricted primarily to unsporulated oocysts (0 hr). Western blot (WB) analysis with an antibody to recombinant SO7 (rbSO7) revealed expression of the protein from 6 to 72 hr (fully sporulated) of sporulation and in sporozoites (SZ). SO7 was absent in host-derived second-stage merozoites (MZ) and was present in culture-derived first-stage MZ but at a level of only 25% of that exhibited by SZ. During invasion of Madin-Darby bovine kidney (MDBK) cells by SZ in vitro, the level of SO7 within cells, as determined by WB analysis, remained relatively constant until 48 hr of development and then decreased by about 40% at the next time point (72 hr). The SO7 secreted into the culture media during in vitro development increased to a relative maximum at 48 hr and then decreased to about 20% of maximum at 72 hr. Immunostaining with anti-rbSO7 indicates that SO7 is highly concentrated in both refractile bodies (RB) of SZ, with some limited distribution in the apical complex. Anti-rbSO7 intensively stained the intracellular parasites and the first-stage schizonts during in vitro development of E. tenella in MDBK cells. Upon release from the schizonts, the first-stage merozoites stained with 1 or 2 bright spots typically at each end. The results suggest that SO7 is closely associated with the SZ RB and is developmentally regulated but may not play a direct role in cellular invasion.
Collapse
Affiliation(s)
- R H Fetterer
- Animal Parasitic Diseases Laboratory, Henry A. Wallace Beltsville Agricultural Research Center USDA/ARS, Beltsville, Maryland 20750, USA.
| | | | | | | |
Collapse
|