1
|
Taylor ERJF, Tullis IDC, Vojnovic B, Petersson K. Megavoltage photon FLASH for preclinical experiments. Med Phys 2025. [PMID: 40387520 DOI: 10.1002/mp.17891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND FLASH radiotherapy using megavoltage (MV) photon beams should enable greater therapeutic efficacy, target deep seated tumors, and provide insights into mechanisms within FLASH. PURPOSE In this study, we aim to show how to facilitate ultra-high dose rates (FLASH) with MV photons over a field size of 12-15 mm, using a 6 MeV (nominal) preclinical electron linear accelerator (linac). Our intention is to utilize this setup to deliver FLASH with MV photons in future preclinical experiments. METHODS: An electron linear accelerator operating at a pulse repetition frequency of 300 Hz, a tungsten target, and a beam hardening filter were used, in conjunction with beam tuning and source-to-surface distance (SSD) reduction. Depth dose curves, beam profiles, and average dose rates were determined using EBT-XD Gafchromic film, and an Advanced Markus ionization chamber was used to measure the photon charge output. RESULTS A 0.55 mm thick tungsten target, in combination with a 6 mm thick copper hardening filter were found to produce photon FLASH dose rates, with minimal electron contamination, delivering dose rates > 40 Gy/s over fields of 12-15 mm. Beam flatness and symmetry were comparable in horizontal and vertical planes. CONCLUSION Ultra-high average dose rate beams have been achieved with MV photons for preclinical irradiation fields, enabling future preclinical FLASH radiation experiments.
Collapse
Affiliation(s)
| | | | | | - Kristoffer Petersson
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Lin B, Du H, Hao X, Liang Y, Xu H, Tang W, Li J, Zhang Y, Du XB. The influence of beam parameters on FLASH effect. Front Oncol 2025; 15:1431700. [PMID: 40330828 PMCID: PMC12052903 DOI: 10.3389/fonc.2025.1431700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/28/2025] [Indexed: 05/08/2025] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH-RT) is typically defined as an external beam radiotherapy that utilizes a dose rate of 40 Gy/s or higher, compared with conventional dose rate radiotherapy (≤0.1 Gy/s). The primary advantage of FLASH-RT lies in its ability to minimize damage to organs at risk surrounding the cancer while preserving the anti-tumor effect. This phenomenon, known as the FLASH effect, has been widely studied in various bodily systems. However, recent publication of negative research findings related to FLASH-RT warrant a reassessment of whether this definition is accurate. Therefore, this review aims to critically examine how various beam parameters impact the manifestation of the FLASH effect. Following extensive literature review, we propose that an average dose rate of 40 Gy/s to be the lowest dose that triggers the FLASH effect. Beyond this threshold, different organs, including the brain, lungs, intestine, and skin, required varying minimum single total doses to trigger FLASH effects, with a trend of enhanced FLASH-RT protective effects as the single total doses increased. Moreover, single or multiple pulses and the characteristic parameters of the pulse structure, including single pulse dosage, pulse width, pulse interval, pulse frequency, and total irradiation time, were found to also impact the FLASH effect.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Huan Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Xiaofei Hao
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jie Li
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Yu Zhang
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
| | - Xiao Bo Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, Sichuan, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Jansen J, Kimbler A, Drayson O, Lanz B, Mosso J, Grilj V, Petit B, Franco-Perez J, Simon A, Limoli CL, Vozenin MC, Stark C, Ballesteros-Zebadua P. Ex vivo brain MRI to assess conventional and FLASH brain irradiation effects. Radiother Oncol 2025; 208:110894. [PMID: 40233872 DOI: 10.1016/j.radonc.2025.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND AND PURPOSE The FLASH effect expands the therapeutic ratio of tumor control to normal tissue toxicity observed after delivery of ultra-high (>100 Gy/s FLASH-RT) vs. conventional dose rate radiation (CONV-RT). In this first exploratory study, we assessed whether ex vivo Magnetic Resonance Imaging (MRI) could reveal long-term differences after FLASH-RT and CONV-RT whole-brain irradiation. MATERIALS AND METHODS Female C57BL/6 mice were divided into three groups: control (non-irradiated), conventional (CONV-RT 0.1 Gy/s), and ultra-high dose rates (FLASH-RT 1 pulse, 5.5 x 10^6 Gy/s), and received 10 Gy of whole-brain irradiation in a single fraction at 10 weeks of age. Mice were evaluated by Novel Object Recognition cognitive testing at 10 months post-irradiation and were sampled at 13 months post-irradiation. Ex vivo brains were imaged with a 14.1 Tesla/26 cm magnet with a multimodal MRI protocol, including T2-weighted TurboRare (T2W) and diffusion-weighted imaging (DWI) sequences. RESULTS In accordance with previous results, cognitive tests indicated that animals receiving CONV-RT exhibited a decline in cognitive function, while FLASH-RT performed similarly to the controls. Ex vivo MRI showed decreased hippocampal mean intensity in the CONV-RT mice compared to controls, but not in the FLASH-RT group. Comparing CONV-RT to control, we found significant changes in multiple whole-brain diffusion metrics, including the mean Apparent Diffusion Coefficient (ADC) and Mean Apparent Propagator (MAP) metrics. By contrast, no significant diffusion changes were found between the FLASH-RT and control groups. In an exploratory analysis, compared to controls, regional diffusion metrics were primarily altered in the basal forebrain and the insular cortex after conventional radiation therapy (CONV-RT), and to a lesser extent after flash radiation therapy (FLASH-RT). CONCLUSION This study presents initial evidence that ex vivo MRI uncovered changes in the brain after CONV-RT but not after FLASH-RT. The study indicates the potential use of ex vivo MRI to analyze the brain radiation responses at different dose rates.
Collapse
Affiliation(s)
- Jeannette Jansen
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Adam Kimbler
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Olivia Drayson
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Bernard Lanz
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Jessie Mosso
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland; Animal Imaging and Technology, EPFL, Lausanne, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics (IRA)/CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Benoit Petit
- Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland
| | - Javier Franco-Perez
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico
| | - Aaron Simon
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, USA
| | - Marie-Catherine Vozenin
- Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland; LiRR- Laboratory of Innovation in Radiobiology Applied to Radiotherapy/Faculty of Medicine/University of Geneva, Geneva, Switzerland
| | - Craig Stark
- Department of Radiation Oncology, University of California, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Paola Ballesteros-Zebadua
- Laboratory of Radiation Oncology/Radiation Oncology Service/Department of Oncology/CHUV, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Laboratorio de Física Médica, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City, Mexico.
| |
Collapse
|
4
|
Manring HR, Fleming JL, Meng W, Gamez ME, Blakaj DM, Chakravarti A. FLASH Radiotherapy: From In Vivo Data to Clinical Translation. Hematol Oncol Clin North Am 2025; 39:237-255. [PMID: 39828472 DOI: 10.1016/j.hoc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Delivery of radiotherapy (RT) at ultra-high dose rates or FLASH radiotherapy (FLASH-RT) is an emerging treatment option for patients with cancer that could increase survival outcomes and quality of life. In vivo data across a multitude of normal tissues and associated tumors have been published demonstrating the FLASH effect while bringing attention to the need for additional research. Combination of FLASH-RT with other treatment options including spatially fractionated RT, immunotherapy, and usage in the setting of reirradiation could also provide additional benefit. Phase I clinical trials have shown promising results, yet research is warranted before routine clinical use of FLASH-RT.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Wei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mauricio E Gamez
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
5
|
Effarah HH, Reutershan T, Seggebruch MWL, Algots M, Amador A, Baulch J, Drayson OGG, Hartemann FV, Hwang Y, Lagzda A, Raksi F, Limoli CL, Barty CPJ. Preparations for Ultra-High Dose Rate 25-90 MeV Electron Radiation Experiments with a Compact, High-Peak-Current, X-band Linear Accelerator. Radiat Res 2025; 203:223-235. [PMID: 40084756 DOI: 10.1667/rade-24-00120.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/05/2025] [Indexed: 03/16/2025]
Abstract
The Distributed Charge Compton Source (DCCS) developed by Lumitron Technologies, Inc. has produced a 25-MeV electron beam with 1.7-nC macrobunches at a 100-Hz repetition rate from a compact, high-gradient X-band (11.424 GHz) accelerator. The DCCS is currently being commissioned to produce 100-MeV-class electrons, well within the very high energy electron (VHEE) energy regime, with macrobunch charges of up to 25 nC at repetition rates up to 400 Hz. The DCCS is also designed to produce imaging X rays through Laser Compton scattering. This work aims to describe the preparations for the first dosimetry experimental campaign using this accelerator system at energies ranging from 25 MeV to 90 MeV through hardware development and Monte Carlo (TOPAS) simulation studies. A significant goal of these preparations is to configure the machine so that it can be used to both image with X rays and subsequently treat with VHEEs without movement of the animal model under study. At ultra-high dose rates, this X-ray image-guided electron source could be used to investigate dose-rate dependent differential sparing of normal and malignant biological tissue, known as the FLASH effect. An indium-tin-oxide-coated, 100-μm-thick diamond window was obtained and installed in a custom flange assembly to act as the electron/X-ray vacuum exit window. Simulations at 25 MeV suggest that a scattering foil and collimator can shape the output of the accelerator to produce a 12-mm-diameter, flat-field, circular beam with a 1.7-nC macrobunch charge. This corresponds to an entrance dose of 10 Gy in less than 100 ms. These initial results highly motivate an experimental campaign toward investigating VHEE FLASH using the DCCS at Lumitron Technologies, Inc.
Collapse
Affiliation(s)
- Haytham H Effarah
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Trevor Reutershan
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Michael W L Seggebruch
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Martin Algots
- Lumitron Technologies, Inc., Irvine, 92617 California
| | | | - Janet Baulch
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | | | - Yoonwoo Hwang
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Agnese Lagzda
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Ferenc Raksi
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | - Christopher P J Barty
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| |
Collapse
|
6
|
Zhu H, Liu S, Qiu J, Hu A, Zhou W, Wang J, Gu W, Zhu Y, Zha H, Xiang R, Li J, Qiu R, Zhao C, Huang P, Deng X. Instantaneous dose rate as a crucial factor in reducing mortality and normal tissue toxicities in murine total-body irradiation: a comparative study of dose rate combinations. Mol Med 2025; 31:79. [PMID: 40011844 PMCID: PMC11866584 DOI: 10.1186/s10020-025-01135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
PURPOSE The ultra-high dose rate (UHDR) radiation shows promise in eradicating tumors while reducing normal tissue toxicities. However, the biological outcomes of UHDR are influenced by various factors, particularly the mean dose rate and instantaneous dose rate. Additionally, the UHDR response at large field sizes is lacking. This study aimed to explore the impact of different dose rate combinations on gastrointestinal biological outcomes following total-body irradiations (TBI) and to examine the involved molecular signaling pathways. METHOD Female C57BL6/J mice received 10 Gy TBI using three modes: ultra-high mean and ultra-high instantaneous dose rate irradiation (HH mode), low mean and ultra-high instantaneous dose rate irradiation (LH mode), and low mean and low instantaneous dose rate irradiation (LL mode). Mice were euthanized at 3 h and 48 h post irradiation to assess acute normal tissue damage and perform transcriptome sequencing. Furthermore, a subset of mice was monitored for 30 days to evaluate survival. RESULTS We found that when the instantaneous dose rate is sufficiently high (> 105 Gy/s), both ultra-high or low mean dose rate irradiation reduced mice mortality, myelosuppression, DNA damage, and cell apoptosis. The survival probabilities 30 days after 10 Gy TBI were 4/7, 4/6, and 0/6 in the HH, LH, and LL groups, respectively. Myelosuppression was lower at 3 h and 48 h post HH and LH irradiations than LL irradiation. The better regulated inflammatory response was evident at 48 h post HH and LH irradiation compared to LL irradiation. Additionally, DNA damages and cell apoptosis in the intestinal tissue were significantly reduced after HH and LH irradiations compared to LL irradiation. Transcriptome sequencing of intestinal tissues revealed that HH irradiation activated immune response pathways and suppressed mitochondrial related pathways compared to LL irradiation. CONCLUSION Our findings underscore the pivotal role of instantaneous dose rate in reducing radiation damages. When the instantaneous dose rate is sufficiently high (> 105 Gy/s), both ultra-high or low mean dose rate irradiation (HH and LH mode) reduced mice mortality, myelosuppression, DNA damage, and cell apoptosis. Understanding these dose rate effects and biological responses are crucial for optimizing radiotherapy strategies and exploring the potential benefits of UHDR irradiation.
Collapse
Affiliation(s)
- Hongyu Zhu
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Yuexiu District, Guangzhou City, 510060, Guangdong province, China
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou, 510060, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiaqi Qiu
- Beijing Huaqingjia High Energy Electron Technology Corporation Limited, Beijing, 100091, China
| | - Ankang Hu
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Wanyi Zhou
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- Beijing Huaqingjia High Energy Electron Technology Corporation Limited, Beijing, 100091, China
| | - Weihang Gu
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Yinuo Zhu
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Hao Zha
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Rong Xiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junli Li
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Rui Qiu
- Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Chong Zhao
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaowu Deng
- Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Yuexiu District, Guangzhou City, 510060, Guangdong province, China.
- United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co., Ltd, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Castelli L, Camazzola G, Fuss MC, Boscolo D, Krämer M, Tozzini V, Durante M, Scifoni E. Probing Spatiotemporal Effects of Intertrack Recombination with a New Implementation of Simultaneous Multiple Tracks in TRAX-CHEM. Int J Mol Sci 2025; 26:571. [PMID: 39859287 PMCID: PMC11765274 DOI: 10.3390/ijms26020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Among the most investigated hypotheses for a radiobiological explanation of the mechanism behind the FLASH effect in ultra-high dose rate radiotherapy, intertrack recombination between particle tracks arriving at a close spatiotemporal distance has been suggested. In the present work, we examine these conditions for different beam qualities and energies, defining the limits of both space and time where a non-negligible chemical effect is expected. To this purpose the TRAX-CHEM chemical track structure Monte Carlo code has been extended to handle several particle tracks at the same time, separated by pre-defined spatial and temporal distances. We analyzed the yields of different radicals as compared to the non-interacting track conditions and we evaluated the difference. We find a negligible role of intertrack for spatial distances larger than 1 μm, while for temporal distances up to μs, a non-negligible interaction is observed especially at higher LET. In addition, we emphasize the non-monotonic behavior of some relative yield as a function of the time separation, in particular of H2O2, due to the onset of a different reaction involving solvated electrons besides well-known OH· recombination.
Collapse
Affiliation(s)
- Lorenzo Castelli
- Department of Physics, University of Trento, 38121 Trento, Italy;
- Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy
- Istituto Nanoscienze-CNR, NEST-SNS, 56127 Pisa, Italy
| | - Gianmarco Camazzola
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Martina C. Fuss
- Department of Medical Physics, MedAustron, 2700 Wiener Neustadt, Austria
| | - Daria Boscolo
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Michael Krämer
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Valentina Tozzini
- Istituto Nanoscienze-CNR, NEST-SNS, 56127 Pisa, Italy
- INFN, 56127 Pisa, Italy
| | - Marco Durante
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Application, TIFPA, 38123 Povo, Italy
| |
Collapse
|
8
|
Liu K, Holmes S, Khan AU, Hooten B, DeWerd L, Schüler E, Beddar S. Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy. Med Phys 2024; 51:9275-9289. [PMID: 39311014 DOI: 10.1002/mp.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Reference dosimetry in ultra-high dose rate (UHDR) beamlines is significantly hindered by limitations in conventional ionization chamber design. In particular, conventional chambers suffer from severe charge collection efficiency (CCE) degradation in high dose per pulse (DPP) beams. PURPOSE The aim of this study was to optimize the design and performance of parallel plate ion chambers for use in UHDR dosimetry applications, and evaluate their potential as reference class chambers for calibration purposes. Three chamber designs were produced to determine the influence of the ion chamber response on electrode separation, field strength, and collection volume on the ion chamber response under UHDR and ultra-high dose per pulse (UHDPP) conditions. METHODS Three chambers were designed and produced: the A11-VAR (0.2-1.0 mm electrode gap, 20 mm diameter collector), the A11-TPP (0.3 mm electrode gap, 20 mm diameter collector), and the A30 (0.3 mm electrode gap, 5.4 mm diameter collector). The chambers underwent full characterization using an UHDR 9 MeV electron beam with individually varied beam parameters of pulse repetition frequency (PRF, 10-120 Hz), pulse width (PW, 0.5-4 µs), and pulse amplitude (0.01-9 Gy/pulse). The response of the ion chambers was evaluated as a function of the DPP, PRF, PW, dose rate, electric field strength, and electrode gap. RESULTS The chamber response was found to be dependent on DPP and PW, and these dependencies were mitigated with larger electric field strengths and smaller electrode spacing. At a constant electric field strength, we measured a larger CCE as a function of DPP for ion chambers with a smaller electrode gap in the A11-VAR. For ion chambers with identical electrode gap (A11-TPP and A30), higher electric field strengths were found to yield better CCE at higher DPP. A PW dependence was observed at low electric field strengths (500 V/mm) for DPP values ranging from 1 to 5 Gy at PWs ranging from 0.5 to 4 µs, but at electric field strengths of 1000 V/mm and higher, these effects become negligible. CONCLUSION This study confirmed that the CCE of ion chambers depends strongly on the electrode spacing and the electric field strength, and also on the DPP and the PW of the UHDR beam. A significant finding of this study is that although chamber performance does depend on PW, the effect on the CCE becomes negligible with reduced electrode spacing and increased electric field. A CCE of ≥95% was achieved for DPPs of up to 5 Gy with no observable dependence on PW using the A30 chamber, while still achieving an acceptable performance in conventional dose rate beams, opening up the possibility for this type of chamber to be used as a reference class chamber for calibration purposes of electron FLASH beamlines.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | | | - Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Hooten
- Standard Imaging Inc., Middleton, Wisconsin, USA
| | - Larry DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
9
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
10
|
Chappuis F, Tran HN, Jorge PG, Zein SA, Kyriakou I, Emfietzoglou D, Bailat C, Bochud F, Incerti S, Desorgher L. Investigating ultra-high dose rate water radiolysis using the Geant4-DNA toolkit and a Geant4 model of the Oriatron eRT6 electron linac. Sci Rep 2024; 14:26707. [PMID: 39496703 PMCID: PMC11535405 DOI: 10.1038/s41598-024-76769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Ultra-high dose rate FLASH radiotherapy, a promising cancer treatment approach, offers the potential to reduce healthy tissue damage during radiotherapy. As the mechanisms underlying this process remain unknown, several hypotheses have been proposed, including the altered production of radio-induced species under ultra-high dose rate (UHDR) conditions. This study explores realistic irradiation scenarios with various dose-per-pulse and investigates the role of pulse temporal structure. Using the Geant4 toolkit and its Geant4-DNA extension, we modeled the Oriatron eRT6 linac, a FLASH-validated electron beam, and conducted simulations covering four distinct dose-per-pulse scenarios - 0.17 Gy, 1 Gy, 5 Gy, and 10 Gy - all featuring a 1.8 µs pulse duration. Results show close agreement between simulated and experimental dose profiles in water, validating the eRT6 model for Geant4-DNA simulations. We observed important changes in the temporal evolution of certain species, such as the earlier fall in hydroxyl radicals ([Formula: see text]) and reduced production and lifetime of superoxide ([Formula: see text]) with higher dose-per-pulse levels. The pulse temporal structure did not influence the long-term evolution of species. Our findings encourage further investigation into different irradiation types, such as multi-pulse configurations, and emphasize the need to add components in water to account for relevant cellular processes.
Collapse
Affiliation(s)
- Flore Chappuis
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, CH-1007, Switzerland
| | - Hoang Ngoc Tran
- University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Gradignan, F-33170, France
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, CH-1007, Switzerland
| | - Sara A Zein
- University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Gradignan, F-33170, France
| | - Ioanna Kyriakou
- Medical Physics Laboratory, Department of Medicine, University of Ioannina, Ioannina, EL-45110, Greece
| | - Dimitris Emfietzoglou
- Medical Physics Laboratory, Department of Medicine, University of Ioannina, Ioannina, EL-45110, Greece
| | - Claude Bailat
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, CH-1007, Switzerland
| | - François Bochud
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, CH-1007, Switzerland
| | - Sébastien Incerti
- University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Gradignan, F-33170, France
| | - Laurent Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, CH-1007, Switzerland.
| |
Collapse
|
11
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
12
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
15
|
Sørensen BS, Kanouta E, Ankjærgaard C, Kristensen L, Johansen JG, Sitarz MK, Andersen CE, Grau C, Poulsen P. Proton FLASH: Impact of Dose Rate and Split Dose on Acute Skin Toxicity in a Murine Model. Int J Radiat Oncol Biol Phys 2024; 120:265-275. [PMID: 38750904 DOI: 10.1016/j.ijrobp.2024.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE Preclinical studies have shown a preferential normal tissue sparing effect of FLASH radiation therapy with ultra-high dose rates. The aim of the present study was to use a murine model of acute skin toxicity to investigate the biologic effect of varying dose rates, time structure, and introducing pauses in the dose delivery. METHODS AND MATERIALS The right hind limbs of nonanaesthetized mice were irradiated in the entrance plateau of a pencil beam scanning proton beam with 39.3 Gy. Experiment 1 was with varying field dose rates (0.7-80 Gy/s) without repainting, experiment 2 was with varying field dose rates (0.37-80 Gy/s) with repainting, and in experiment 3, the dose was split into 2, 3, 4, or 6 identical deliveries with 2-minute pauses. In total, 320 mice were included, with 6 to 25 mice per group. The endpoints were skin toxicity of different levels up to 25 days after irradiation. RESULTS The dose rate50, which is the dose rate to induce a response in 50% of the animals, depended on the level of skin toxicity, with the higher toxicity levels displaying a FLASH effect at 0.7-2 Gy/s. Repainting resulted in higher toxicity for the same field dose rate. Splitting the dose into 2 deliveries reduced the FLASH effect, and for 3 or more deliveries, the FLASH effect was almost abolished for lower grades of toxicity. CONCLUSIONS The dose rate that induced a FLASH effect varied for different skin toxicity levels, which are characterized by a differing degree of sensitivity to radiation dosage. Conclusions on a threshold for the dose rate needed to obtain a FLASH effect can therefore be influenced by the dose sensitivity of the used endpoint. Splitting the total dose into more deliveries compromised the FLASH effect. This can have an impact for fractionation as well as for regions where 2 or more FLASH fields overlap within the same treatment session.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Eleni Kanouta
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Line Kristensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Experimental Clinical Oncology, Aarhus University, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob G Johansen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Mateusz Krzysztof Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | | | - Cai Grau
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU
| | - Per Poulsen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Health, AU; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Chow JCL, Ruda HE. Mechanisms of Action in FLASH Radiotherapy: A Comprehensive Review of Physicochemical and Biological Processes on Cancerous and Normal Cells. Cells 2024; 13:835. [PMID: 38786057 PMCID: PMC11120005 DOI: 10.3390/cells13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The advent of FLASH radiotherapy (FLASH-RT) has brought forth a paradigm shift in cancer treatment, showcasing remarkable normal cell sparing effects with ultra-high dose rates (>40 Gy/s). This review delves into the multifaceted mechanisms underpinning the efficacy of FLASH effect, examining both physicochemical and biological hypotheses in cell biophysics. The physicochemical process encompasses oxygen depletion, reactive oxygen species, and free radical recombination. In parallel, the biological process explores the FLASH effect on the immune system and on blood vessels in treatment sites such as the brain, lung, gastrointestinal tract, skin, and subcutaneous tissue. This review investigated the selective targeting of cancer cells and the modulation of the tumor microenvironment through FLASH-RT. Examining these mechanisms, we explore the implications and challenges of integrating FLASH-RT into cancer treatment. The potential to spare normal cells, boost the immune response, and modify the tumor vasculature offers new therapeutic strategies. Despite progress in understanding FLASH-RT, this review highlights knowledge gaps, emphasizing the need for further research to optimize its clinical applications. The synthesis of physicochemical and biological insights serves as a comprehensive resource for cell biology, molecular biology, and biophysics researchers and clinicians navigating the evolution of FLASH-RT in cancer therapy.
Collapse
Affiliation(s)
- James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
17
|
Horst F, Bodenstein E, Brand M, Hans S, Karsch L, Lessmann E, Löck S, Schürer M, Pawelke J, Beyreuther E. Dose and dose rate dependence of the tissue sparing effect at ultra-high dose rate studied for proton and electron beams using the zebrafish embryo model. Radiother Oncol 2024; 194:110197. [PMID: 38447870 DOI: 10.1016/j.radonc.2024.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE A better characterization of the dependence of the tissue sparing effect at ultra-high dose rate (UHDR) on physical beam parameters (dose, dose rate, radiation quality) would be helpful towards a mechanistic understanding of the FLASH effect and for its broader clinical translation. To address this, a comprehensive study on the normal tissue sparing at UHDR using the zebrafish embryo (ZFE) model was conducted. METHODS One-day-old ZFE were irradiated over a wide dose range (15-95 Gy) in three different beams (proton entrance channel, proton spread out Bragg peak and 30 MeV electrons) at UHDR and reference dose rate. After irradiation the ZFE were incubated for 4 days and then analyzed for four different biological endpoints (pericardial edema, curved spine, embryo length and eye diameter). RESULTS Dose-effect curves were obtained and a sparing effect at UHDR was observed for all three beams. It was demonstrated that proton relative biological effectiveness and UHDR sparing are both relevant to predict the resulting dose response. Dose dependent FLASH modifying factors (FMF) for ZFE were found to be compatible with rodent data from the literature. It was found that the UHDR sparing effect saturates at doses above ∼ 50 Gy with an FMF of ∼ 0.7-0.8. A strong dose rate dependence of the tissue sparing effect in ZFE was observed. The magnitude of the maximum sparing effect was comparable for all studied biological endpoints. CONCLUSION The ZFE model was shown to be a suitable pre-clinical high-throughput model for radiobiological studies on FLASH radiotherapy, providing results comparable to rodent models. This underlines the relevance of ZFE studies for FLASH radiotherapy research.
Collapse
Affiliation(s)
- Felix Horst
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Leonhard Karsch
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elisabeth Lessmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany.
| |
Collapse
|
18
|
Tang R, Yin J, Liu Y, Xue J. FLASH radiotherapy: A new milestone in the field of cancer radiotherapy. Cancer Lett 2024; 587:216651. [PMID: 38342233 DOI: 10.1016/j.canlet.2024.216651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/13/2024]
Abstract
Radiotherapy plays a pivotal role in the control and eradication of tumors, but it can also induce radiation injury to surrounding normal tissues while targeting tumor cells. In recent years, FLASH-Radiotherapy (FLASH-RT) has emerged as a cutting-edge research focus in the field of radiation therapy. By delivering high radiation doses to the treatment target in an ultra-short time, FLASH-RT produces the FLASH effect, which reduces the toxicity to normal tissues while achieving comparable tumor control efficacy to conventional radiotherapy. This review provides a brief overview of the development history of FLASH-RT and its impact on tumor control. Additionally, it focuses on introducing the protective effects and molecular mechanisms of this technology on various normal tissues, as well as exploring its synergistic effects when combined with other tumor therapies. Importantly, this review discusses the challenges faced in translating FLASH-RT into clinical practice and outlines its promising future applications.
Collapse
Affiliation(s)
- Rui Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China; Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianqiong Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Disaster Medical Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Clements N, Esplen N, Bateman J, Robertson C, Dosanjh M, Korysko P, Farabolini W, Corsini R, Bazalova-Carter M. Mini-GRID radiotherapy on the CLEAR very-high-energy electron beamline: collimator optimization, film dosimetry, and Monte Carlo simulations. Phys Med Biol 2024; 69:055003. [PMID: 38295408 DOI: 10.1088/1361-6560/ad247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Objective.Spatially-fractionated radiotherapy (SFRT) delivered with a very-high-energy electron (VHEE) beam and a mini-GRID collimator was investigated to achieve synergistic normal tissue-sparing through spatial fractionation and the FLASH effect.Approach.A tungsten mini-GRID collimator for delivering VHEE SFRT was optimized using Monte Carlo (MC) simulations. Peak-to-valley dose ratios (PVDRs), depths of convergence (DoCs, PVDR ≤ 1.1), and peak and valley doses in a water phantom from a simulated 150 MeV VHEE source were evaluated. Collimator thickness, hole width, and septal width were varied to determine an optimal value for each parameter that maximized PVDR and DoC. The optimized collimator (20 mm thick rectangular prism with a 15 mm × 15 mm face with a 7 × 7 array of 0.5 mm holes separated by 1.1 mm septa) was 3D-printed and used for VHEE irradiations with the CERN linear electron accelerator for research beam. Open beam and mini-GRID irradiations were performed at 140, 175, and 200 MeV and dose was recorded with radiochromic films in a water tank. PVDR, central-axis (CAX) and valley dose rates and DoCs were evaluated.Main results.Films demonstrated peak and valley dose rates on the order of 100 s of MGy/s, which could promote FLASH-sparing effects. Across the three energies, PVDRs of 2-4 at 13 mm depth and DoCs between 39 and 47 mm were achieved. Open beam and mini-GRID MC simulations were run to replicate the film results at 200 MeV. For the mini-GRID irradiations, the film CAX dose was on average 15% higher, the film valley dose was 28% higher, and the film PVDR was 15% lower than calculated by MC.Significance.Ultimately, the PVDRs and DoCs were determined to be too low for a significant potential for SFRT tissue-sparing effects to be present, particularly at depth. Further beam delivery optimization and investigations of new means of spatial fractionation are warranted.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Joseph Bateman
- Department of Physics, University of Oxford, Oxford, United Kingdom
| | | | - Manjit Dosanjh
- Department of Physics, University of Oxford, Oxford, United Kingdom
- CERN, Geneva, Switzerland
| | - Pierre Korysko
- Department of Physics, University of Oxford, Oxford, United Kingdom
- CERN, Geneva, Switzerland
| | | | | | | |
Collapse
|
20
|
Oesterle R, Bailat C, Buhlmann D, Bochud F, Grilj V. Construction and dosimetric characterization of a motorized scanning-slit system for electron FLASH experiments. Med Phys 2024; 51:1396-1404. [PMID: 37439505 PMCID: PMC10787038 DOI: 10.1002/mp.16610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Beam scanning is a useful technique for the treatment of large tumors when the primary beam size is limited, which is the case with radiation beams used in FLASH radiotherapy. PURPOSE To optimize beam scanning as a dose delivery method for FLASH radiotherapy, it is necessary to first understand the effects of beam scanning on the FLASH effect. To do so, biological FLASH experiments need to be done using defined beam parameters with beam scanning and compared to the situation without beam scanning. In this regard, we propose implementation of a simple slit scanning system with an electron FLASH beam to obtain a scanned radiation field that closely resembles a static field. METHODS A pulsed electron linear accelerator (linac) was used in combination with a scanning slit system in order to simulate a scanned electron beam. Three configurations that produced homogeneous lateral profiles and high enough doses per pulse for FLASH experiments were established. The optimal scanning parameters were found for each configuration by examining the flatness of the obtained lateral dose profiles. Using the optimal scanning parameters, the scanned FLASH beams were dosimetrically characterized and compared to non-scanned open field beam. RESULTS A final electron FLASH beam scanning configuration was found for a 1 mm wide slit at a distance of 350 mm from the linac and a 2 mm wide slit at distances of 350 and 490 mm from the linac. The lateral profiles for these final configurations were found to have a homogeneity that is comparable to the open field profiles. The percentage depth dose (PDD) values found for these final configurations closely matched (by a few percentage) the PDD of the open field beam. CONCLUSIONS Three electron FLASH beam scanning configurations achieved by the motorized slit system were found to produce radiation fields similar to a non-scanned open field electron beam. These final configurations can therefore be used in future biological FLASH experiments to compare to non-scanned beam experiments in order to optimize beam scanning as a technique permitting the treatment of larger tumors with FLASH radiotherapy.
Collapse
Affiliation(s)
- Roxane Oesterle
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Damien Buhlmann
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Francois Bochud
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
21
|
Lang X, Hu Z, Zhao Z, Zhou K, Xu Z, Li M, Mao R, Luo F, Huang C, Kang X, Li J, Liu X, Zhou L, Xiao G. Preliminary study of low-pressure ionization chamber for online dose monitoring in FLASH carbon ion radiotherapy. Phys Med Biol 2024; 69:025008. [PMID: 38064745 DOI: 10.1088/1361-6560/ad13d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024]
Abstract
The FLASH effect of carbon ion therapy has recently attracted significant attention from the scientific community. However, the radiobiological mechanism of the effect and the exact therapeutic conditions are still under investigation. Therefore, the dosimetry accuracy is critical for testing hypotheses about the effect and quantifying FLASH Radiotherapy. In this paper, the FLASH ionization chamber at low-pressure was designed, and its dose rate dependence was verified with the Faraday cup. In addition, the dose response was tested under the air pressure of the ionization chamber of 10 mbar, 80 mbar and 845 mbar, respectively. The results showed that when the pressure was 10 mbar, the dose linearity was verified and calibrated at the dose rate of ∼50 Gy s-1, and the residuals were less than 2%. In conclusion, the FLASH ionization chamber is a promising instrument for online dose monitoring.
Collapse
Affiliation(s)
- Xinle Lang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Zhengguo Hu
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Zulong Zhao
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Kai Zhou
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Zhiguo Xu
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Min Li
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Ruishi Mao
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Faming Luo
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| | - Chuan Huang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xincai Kang
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Juan Li
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Xiaotao Liu
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Libin Zhou
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
| | - Guoqing Xiao
- Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou 730000, Gansu, People's Republic of China
- University of Chinese Academy of Sciences, School of Nuclear Science and Technology, Beijing 100049, People's Republic of China
| |
Collapse
|
22
|
Metzkes-Ng J, Brack FE, Kroll F, Bernert C, Bock S, Bodenstein E, Brand M, Cowan TE, Gebhardt R, Hans S, Helbig U, Horst F, Jansen J, Kraft SD, Krause M, Leßmann E, Löck S, Pawelke J, Püschel T, Reimold M, Rehwald M, Richter C, Schlenvoigt HP, Schramm U, Schürer M, Seco J, Szabó ER, Umlandt MEP, Zeil K, Ziegler T, Beyreuther E. The DRESDEN PLATFORM is a research hub for ultra-high dose rate radiobiology. Sci Rep 2023; 13:20611. [PMID: 37996453 PMCID: PMC10667545 DOI: 10.1038/s41598-023-46873-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The recently observed FLASH effect describes the observation of normal tissue protection by ultra-high dose rates (UHDR), or dose delivery in a fraction of a second, at similar tumor-killing efficacy of conventional dose delivery and promises great benefits for radiotherapy patients. Dedicated studies are now necessary to define a robust set of dose application parameters for FLASH radiotherapy and to identify underlying mechanisms. These studies require particle accelerators with variable temporal dose application characteristics for numerous radiation qualities, equipped for preclinical radiobiological research. Here we present the DRESDEN PLATFORM, a research hub for ultra-high dose rate radiobiology. By uniting clinical and research accelerators with radiobiology infrastructure and know-how, the DRESDEN PLATFORM offers a unique environment for studying the FLASH effect. We introduce its experimental capabilities and demonstrate the platform's suitability for systematic investigation of FLASH by presenting results from a concerted in vivo radiobiology study with zebrafish embryos. The comparative pre-clinical study was conducted across one electron and two proton accelerator facilities, including an advanced laser-driven proton source applied for FLASH-relevant in vivo irradiations for the first time. The data show a protective effect of UHDR irradiation up to [Formula: see text] and suggests consistency of the protective effect even at escalated dose rates of [Formula: see text]. With the first clinical FLASH studies underway, research facilities like the DRESDEN PLATFORM, addressing the open questions surrounding FLASH, are essential to accelerate FLASH's translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Florian Kroll
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Constantin Bernert
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Bock
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Elisabeth Bodenstein
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - René Gebhardt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies (CRTD), TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence - Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Uwe Helbig
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Horst
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jeannette Jansen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | - Mechthild Krause
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | - Christian Richter
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Dresden, Germany
| | | | - Ulrich Schramm
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joao Seco
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Emília Rita Szabó
- ELI ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary
- Department of Oncotherapy, University of Szeged, Szeged, Hungary
| | - Marvin E P Umlandt
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Karl Zeil
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Ziegler
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- TUD Dresden University of Technology, Dresden, Germany
| | - Elke Beyreuther
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
23
|
Vanreusel V, Gasparini A, Galante F, Mariani G, Pacitti M, Colijn A, Reniers B, Yalvac B, Vandenbroucke D, Peeters M, Leblans P, Felici G, Verellen D, de Freitas Nascimento L. Optically stimulated luminescence system as an alternative for radiochromic film for 2D reference dosimetry in UHDR electron beams. Phys Med 2023; 114:103147. [PMID: 37804712 DOI: 10.1016/j.ejmp.2023.103147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/18/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Radiotherapy is part of the treatment of over 50% of cancer patients. Its efficacy is limited by the radiotoxicity to the healthy tissue. FLASH-RT is based on the biological effect that ultra-high dose rates (UHDR) and very short treatment times strongly reduce normal tissue toxicity, while preserving the anti-tumoral effect. Despite many positive preclinical results, the translation of FLASH-RT to the clinic is hampered by the lack of accurate dosimetry for UHDR beams. To date radiochromic film is commonly used for dose assessment but has the drawback of lengthy and cumbersome read out procedures. In this work, we investigate the equivalence of a 2D OSL system to radiochromic film dosimetry in terms of dose rate independency. The comparison of both systems was done using the ElectronFlash linac. We investigated the dose rate dependence by variation of the (1) modality, (2) pulse repetition frequency, (3) pulse length and (4) source to surface distance. Additionally, we compared the 2D characteristics by field size measurements. The OSL calibration showed transferable between conventional and UHDR modality. Both systems are equally independent of average dose rate, pulse length and instantaneous dose rate. The OSL system showed equivalent in field size determination within 3 sigma. We show the promising nature of the 2D OSL system to serve as alternative for radiochromic film in UHDR electron beams. However, more in depth characterization is needed to assess its full potential.
Collapse
Affiliation(s)
- Verdi Vanreusel
- Research in Dosimetric Applications, SCK CEN, Boeretang 200, 2400 Mol, Belgium; CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium.
| | - Alessia Gasparini
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium
| | - Federica Galante
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Giulia Mariani
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Matteo Pacitti
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Arnaud Colijn
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Brigitte Reniers
- NuTeC, CMK, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Burak Yalvac
- NuTeC, CMK, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | | | | | - Paul Leblans
- Agfa N.V., Septestraat 27, 2640 Mortsel, Belgium
| | - Giuseppe Felici
- Sordina IORT Technologies S.p.A., Via dell'Industria, 1/A, 04011 Aprilia, Latina, Italy
| | - Dirk Verellen
- CORE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Iridium Netwerk, Oosterveldlaan 22, 2610 Wilrijk, Belgium
| | | |
Collapse
|
24
|
Jo HJ, Oh T, Lee YR, Kang GS, Park HJ, Ahn GO. FLASH Radiotherapy: A FLASHing Idea to Preserve Neurocognitive Function. Brain Tumor Res Treat 2023; 11:223-231. [PMID: 37953445 PMCID: PMC10641319 DOI: 10.14791/btrt.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
FLASH radiotherapy (FLASH RT) is a technique to deliver ultra-high dose rate in a fraction of a second. Evidence from experimental animal models suggest that FLASH RT spares various normal tissues including the lung, gastrointestinal track, and brain from radiation-induced toxicity (a phenomenon known as FLASH effect), which is otherwise commonly observed with conventional dose rate RT. However, it is not simply the ultra-high dose rate alone that brings the FLASH effect. Multiple parameters such as instantaneous dose rate, pulse size, pulse repetition frequency, and the total duration of exposure all need to be carefully optimized simultaneously. Furthermore it is critical to validate FLASH effects in an in vivo experimental model system. The exact molecular mechanism responsible for this FLASH effect is not yet understood although a number of hypotheses have been proposed including oxygen depletion and less reactive oxygen species (ROS) production by FLASH RT, and enhanced ability of normal tissues to handle ROS and labile iron pool compared to tumors. In this review, we briefly overview the process of ionization event and history of radiotherapy and fractionation of ionizing radiation. We also highlight some of the latest FLASH RT reviews and results with a special interest to neurocognitive protection in rodent model with whole brain irradiation. Lastly we discuss some of the issues remain to be answered with FLASH RT including undefined molecular mechanism, lack of standardized parameters, low penetration depth for electron beam, and tumor hypoxia still being a major hurdle for local control. Nevertheless, researchers are close to having all answers to the issues that we have raised, hence we believe that advancement of FLASH RT will be made more quickly than one can anticipate.
Collapse
Affiliation(s)
- Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Hye-Joon Park
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, Seoul, Korea
- College of Medicine, Seoul National University, Seoul, Korea.
| |
Collapse
|
25
|
Jain S, Cetnar A, Woollard J, Gupta N, Blakaj D, Chakravarti A, Ayan AS. Pulse parameter optimizer: an efficient tool for achieving prescribed dose and dose rate with electron FLASH platforms. Phys Med Biol 2023; 68:19NT01. [PMID: 37735967 DOI: 10.1088/1361-6560/acf63e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Purpose. Commercial electron FLASH platforms deliver ultra-high dose rate doses at discrete combinations of pulse parameters including pulse width (PW), pulse repetition frequency (PRF) and number of pulses (N), which dictate unique combinations of dose and dose rates. Additionally, collimation, source to surface distance, and airgaps also vary the dose per pulse (DPP). Currently, obtaining pulse parameters for the desired dose and dose rate is a cumbersome manual process involving creating, updating, and looking up values in large spreadsheets for every treatment configuration. This work presents a pulse parameter optimizer application to match intended dose and dose rate precisely and efficiently.Methods. Dose and dose rate calculation methods have been described for a commercial electron FLASH platform. A constrained optimization for the dose and dose rate cost function was modelled as a mixed integer problem in MATLAB (The MathWorks Inc., Version9.13.0 R2022b, Natick, Massachusetts). The beam and machine data required for the application were acquired using GafChromic film and alternating current current transformers (ACCTs). Variables for optimization included DPP for every collimator, PW and PRF measured using ACCT and airgap factors.Results. Using PW, PRF,Nand airgap factors as parameters, a software was created to optimize dose and dose rate, reaching the closest match if exact dose and dose rates are not achievable. Optimization took 20 s or less to converge to results. This software was validated for accuracy of dose calculation and precision in matching prescribed dose and dose rate.Conclusion. A pulse parameter optimization application was built for a commercial electron FLASH platform to increase efficiency in dose, dose rate, and pulse parameter prescription process. Automating this process reduces safety concerns associated with manual look up and calculation of these parameters, especially when many subjects at different doses and dose rates are to be safely managed.
Collapse
Affiliation(s)
- S Jain
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A Cetnar
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - J Woollard
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - N Gupta
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - D Blakaj
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A Chakravarti
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| | - A S Ayan
- The Department of Radiation Oncology, The Ohio State University Wexner Medical Center, United States of America
| |
Collapse
|
26
|
Marinelli M, di Martino F, Del Sarto D, Pensavalle JH, Felici G, Giunti L, De Liso V, Kranzer R, Verona C, Verona Rinati G. A diamond detector based dosimetric system for instantaneous dose rate measurements in FLASH electron beams. Phys Med Biol 2023; 68:175011. [PMID: 37494946 DOI: 10.1088/1361-6560/acead0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Objective.A reliable determination of the instantaneous dose rate (I-DR) delivered in FLASH radiotherapy treatments is believed to be crucial to assess the so-called FLASH effect in preclinical and biological studies. At present, no detectors nor real-time procedures are available to do that in ultra high dose rate (UH-DR) electron beams, typically consisting ofμs pulses characterized by I-DRs of the order of MGy/s. A dosimetric system is proposed possibly overcoming the above reported limitation, based on the recently developed flashDiamond (fD) detector (model 60025, PTW-Freiburg, Germany).Approach.A dosimetric system is proposed, based on a flashDiamond detector prototype, properly modified and adapted for very fast signal transmission. It was used in combination with a fast transimpedance amplifier and a digital oscilloscope to record the temporal traces of the pulses delivered by an ElectronFlash linac (SIT S.p.A., Italy). The proposed dosimetric systems was investigated in terms of the temporal characteristics of its response and the capability to measure the absolute delivered dose and instantaneous dose rate (I-DR). A 'standard' flashDiamond was also investigated and its response compared with the one of the specifically designed prototype.Main results. Temporal traces recorded in several UH-DR irradiation conditions showed very good signal to noise ratios and rise and decay times of the order of a few tens ns, faster than the ones obtained by the current transformer embedded in the linac head. By analyzing such signals, a calibration coefficient was derived for the fD prototype and found to be in agreement within 1% with the one obtained under reference60Co irradiation. I-DRs as high as about 2 MGy s-1were detected without any undesired saturation effect. Absolute dose per pulse values extracted by integrating the I-DR signals were found to be linear up to at least 7.13 Gy and in very good agreement with the ones obtained by connecting the fD to a UNIDOS electrometer (PTW-Freiburg, Germany). A good short term reproducibility of the linac output was observed, characterized by a pulse-to-pulse variation coefficient of 0.9%. Negligible differences were observed when replacing the fD prototype with a standard one, with the only exception of a somewhat slower response time for the latter detector type.Significance.The proposed fD-based system was demonstrated to be a suitable tool for a thorough characterization of UH-DR beams, providing accurate and reliable time resolved I-DR measurements from which absolute dose values can be straightforwardly derived.
Collapse
Affiliation(s)
- Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | - Fabio di Martino
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | - Damiano Del Sarto
- U.O.Fisica Sanitaria, Azienda Universitaria Ospedaliera Pisana, Pisa, Italy
| | | | | | | | | | - Rafael Kranzer
- PTW-Freiburg, Freiburg D-79115, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, D-26121 Germany
| | - Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, Roma, Italy
| | | |
Collapse
|
27
|
Clements N, Esplen N, Bazalova-Carter M. A feasibility study of ultra-high dose rate mini-GRID therapy using very-high-energy electron beams for a simulated pediatric brain case. Phys Med 2023; 112:102637. [PMID: 37454482 DOI: 10.1016/j.ejmp.2023.102637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Ultra-high dose rate (UHDR, >40 Gy/s), spatially-fractionated minibeam GRID (mini-GRID) therapy using very-high-energy electrons (VHEE) was investigated using Monte Carlo simulations. Multi-directional VHEE treatments with and without mini-GRID-fractionation were compared to a clinical 6 MV volumetric modulated arc therapy (VMAT) plan for a pediatric glioblastoma patient using dose-volume histograms, volume-averaged dose rates in critical patient structures, and planning target volume D98s. Peak-to-valley dose ratios (PVDRs) and dose rates in organs at risk (OARs) were evaluated due to their relevance for normal-tissue sparing in FLASH and spatially-fractionated techniques. Depths of convergence, defined where the PVDR is first ≤1.1, and depths at which dose rates fall below the UHDR threshold were also evaluated. In a water phantom, the VHEE mini-GRID treatments presented a surface (5 mm depth) PVDR of (51±2) and a depth of convergence of 42 mm at 150 MeV and a surface PVDR of (33±1) with a depth of convergence of 57 mm at 250 MeV. For a pediatric GBM case, VHEE treatments without mini-GRID-fractionation produced 25% and 22% lower volume-averaged doses to OARs compared to the 6 MV VMAT plan and 8/9 and 9/9 of the patient structures were exposed to volume-averaged dose rates >40 Gy/s for the 150 MeV and 250 MeV plans, respectively. The 150 MeV and 250 MeV mini-GRID treatments produced 17% and 38% higher volume-averaged doses to OARs and 3/9 patient structures had volume-averaged dose rates above 40 Gy/s. VHEE mini-GRID plans produced many comparable dose metrics to the clinical VMAT plan, encouraging further optimization.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
28
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
29
|
Chappuis F, Tran HN, Zein SA, Bailat C, Incerti S, Bochud F, Desorgher L. The general-purpose Geant4 Monte Carlo toolkit and its Geant4-DNA extension to investigate mechanisms underlying the FLASH effect in radiotherapy: Current status and challenges. Phys Med 2023; 110:102601. [PMID: 37201453 DOI: 10.1016/j.ejmp.2023.102601] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
FLASH radiotherapy is a promising approach to cancer treatment that offers several advantages over conventional radiotherapy. With this novel technique, high doses of radiation are delivered in a short period of time, inducing the so-called FLASH effect - a phenomenon characterized by healthy tissue sparing without alteration of tumor control. The mechanisms behind the FLASH effect remain unknown. One way to approach this problem is to gain insight into the initial parameters that can distinguish FLASH from conventional irradiation by simulating particle transport in aqueous media using the general-purpose Geant4 Monte Carlo toolkit and its Geant4-DNA extension. This review article discusses the current status of Geant4 and Geant4-DNA simulations to investigate mechanisms underlying the FLASH effect, as well as the challenges faced in this research field. One of the primary challenges is to accurately simulate the experimental irradiation parameters. Another challenge is the temporal extension of the simulations. This review also focuses on two hypotheses to explain the FLASH effect - namely the oxygen depletion hypothesis and the inter-track interactions hypothesis - and discusses how the Geant4 toolkit can be used to investigate them. The aim of this review is to provide an overview of Geant4 and Geant4-DNA simulations for FLASH radiotherapy and to highlight the challenges that need to be overcome in order to better study the FLASH effect.
Collapse
Affiliation(s)
- Flore Chappuis
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Hoang Ngoc Tran
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - Sara A Zein
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - Claude Bailat
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Sébastien Incerti
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
| | - François Bochud
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, CH-1007 Lausanne, Switzerland.
| |
Collapse
|
30
|
Drayson OGG, Vozenin MC, Limoli CL. A rigorous behavioral testing platform for the assessment of radiation-induced neurological outcomes. Methods Cell Biol 2023; 180:177-197. [PMID: 37890929 PMCID: PMC11093273 DOI: 10.1016/bs.mcb.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Behavioral testing is a popular and reliable method of neurocognitive assessment of rodents but the lack of standard operating procedures has led to a high variation of protocols in use. Therefore, there exists a strong need to standardize protocols for a combined behavioral platform in order to maintain consistency across institutions and assist newcomers in the field. This paper provides details on the methodology of several behavioral tasks which have been validated in identifying radiation induced cognitive impairment as well as provide guidance on timescales and best practices. The cognitive assessments outlined here are optimized for rodent studies and either target learning and memory (open field task, object in updated location, novel object recognition, object in place, and temporal order) or mood and cognition (social interaction, elevated plus maze, light dark box, forced swim test, and fear extinction). We have utilized this platform successfully in evaluating cognitive injury induced by various radiation types, doses, fractionation schedules and also with ultra-high dose rate FLASH radiotherapy. Recommended materials and software are provided as well as advice on methods of data analysis. In this way a comprehensive behavioral platform is described with broad applicability to assess cognitive endpoints critical to therapeutic outcome.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California at Irvine, Irvine, CA, United States
| | - Marie-Catherine Vozenin
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California at Irvine, Irvine, CA, United States
| |
Collapse
|
31
|
Espinosa-Rodriguez A, Villa-Abaunza A, Díaz N, Pérez-Díaz M, Sánchez-Parcerisa D, Udías J, Ibáñez P. Design of an X-ray irradiator based on a standard imaging X-ray tube with FLASH dose-rate capabilities for preclinical research. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
32
|
FLASHlab@PITZ: New R&D platform with unique capabilities for electron FLASH and VHEE radiation therapy and radiation biology under preparation at PITZ. Phys Med 2022; 104:174-187. [PMID: 36463582 DOI: 10.1016/j.ejmp.2022.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/19/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
At the Photo Injector Test facility at DESY in Zeuthen (PITZ), an R&D platform for electron FLASH and very high energy electron radiation therapy and radiation biology is being prepared (FLASHlab@PITZ). The beam parameters available at PITZ are worldwide unique. They are based on experiences from 20 + years of developing high brightness beam sources and an ultra-intensive THz light source demonstrator for ps scale electron bunches with up to 5 nC bunch charge at MHz repetition rate in bunch trains of up to 1 ms length, currently 22 MeV (upgrade to 250 MeV planned). Individual bunches can provide peak dose rates up to 1014 Gy/s, and 10 Gy can be delivered within picoseconds. Upon demand, each bunch of the bunch train can be guided to a different transverse location, so that either a "painting" with micro beams (comparable to pencil beam scanning in proton therapy) or a cumulative increase of absorbed dose, using a wide beam distribution, can be realized at the tumor. Full tumor treatment can hence be completed within 1 ms, mitigating organ movement issues. With extremely flexible beam manipulation capabilities, FLASHlab@PITZ will cover the current parameter range of successfully demonstrated FLASH effects and extend the parameter range towards yet unexploited short treatment times and high dose rates. A summary of the plans for FLASHlab@PITZ and the status of its realization will be presented.
Collapse
|
33
|
Lv Y, Lv Y, Wang Z, Lan T, Feng X, Chen H, Zhu J, Ma X, Du J, Hou G, Liao W, Yuan K, Wu H. FLASH radiotherapy: A promising new method for radiotherapy. Oncol Lett 2022; 24:419. [PMID: 36284652 PMCID: PMC9580247 DOI: 10.3892/ol.2022.13539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/10/2022] [Indexed: 11/06/2022] Open
Abstract
Among the treatments for malignant tumors, radiotherapy is of great significance both as a main treatment and as an adjuvant treatment. Radiation therapy damages cancer cells with ionizing radiation, leading to their death. However, radiation-induced toxicity limits the dose delivered to the tumor, thereby constraining the control effect of radiotherapy on tumor growth. In addition, the delayed toxicity caused by radiotherapy significantly harms the physical and mental health of patients. FLASH-RT, an emerging class of radiotherapy, causes a phenomenon known as the 'FLASH effect', which delivers radiotherapy at an ultra-high dose rate with lower toxicity to normal tissue than conventional radiotherapy to achieve local tumor control. Although its mechanism remains to be fully elucidated, this modality constitutes a potential new approach to treating malignant tumors. In the present review, the current research progress of FLASH-RT and its various particular effects are described, including the status of research on FLASH-RT and its influencing factors. The hypothetic mechanism of action of FLASH-RT is also summarized, providing insight into future tumor treatments.
Collapse
Affiliation(s)
- Yinghao Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Yue Lv
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Zhen Wang
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Tian Lan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xuping Feng
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hao Chen
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Xiao Ma
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Jinpeng Du
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Guimin Hou
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Wenwei Liao
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Kefei Yuan
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Hong Wu
- Department of Liver Surgery and Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, Sichuan University and Collaborative Innovation Center of Biotherapy, West China Hospital, Chengdu, Sichuan 610000, P.R. China
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
34
|
Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies. Clin Transl Radiat Oncol 2022; 38:138-146. [DOI: 10.1016/j.ctro.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
|
35
|
Lomax T, Psoroulas S. To FLASH or to Fractionate? That is the question. Z Med Phys 2022; 32:387-390. [PMID: 36328860 PMCID: PMC9948873 DOI: 10.1016/j.zemedi.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
37
|
Jorge PG, Melemenidis S, Grilj V, Buchillier T, Manjappa R, Viswanathan V, Gondré M, Vozenin MC, Germond JF, Bochud F, Moeckli R, Limoli C, Skinner L, No HJ, Wu YF, Surucu M, Yu AS, Lau B, Wang J, Schüler E, Bush K, Graves EE, Maxim PG, Loo BW, Bailat C. Design and validation of a dosimetric comparison scheme tailored for ultra-high dose-rate electron beams to support multicenter FLASH preclinical studies. Radiother Oncol 2022; 175:203-209. [PMID: 36030934 DOI: 10.1016/j.radonc.2022.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND PURPOSE We describe a multicenter cross validation of ultra-high dose rate (UHDR) (>= 40 Gy/s) irradiation in order to bring a dosimetric consensus in absorbed dose to water. UHDR refers to dose rates over 100-1000 times those of conventional clinical beams. UHDR irradiations have been a topic of intense investigation as they have been reported to induce the FLASH effect in which normal tissues exhibit reduced toxicity relative to conventional dose rates. The need to establish optimal beam parameters capable of achieving the in vivo FLASH effect has become paramount. It is therefore necessary to validate and replicate dosimetry across multiple sites conducting UHDR studies with distinct beam configurations and experimental set-ups. MATERIALS AND METHODS Using a custom cuboid phantom with a cylindrical cavity (5 mm diameter by 10.4 mm length) designed to contain three type of dosimeters (thermoluminescent dosimeters (TLDs), alanine pellets, and Gafchromic films), irradiations were conducted at expected doses of 7.5 to 16 Gy delivered at UHDR or conventional dose rates using various electron beams at the Radiation Oncology Departments of the CHUV in Lausanne, Switzerland and Stanford University, CA. RESULTS Data obtained between replicate experiments for all dosimeters were in excellent agreement (±3%). In general, films and TLDs were in closer agreement with each other, while alanine provided the closest match between the expected and measured dose, with certain caveats related to absolute reference dose. CONCLUSION In conclusion, successful cross-validation of different electron beams operating under different energies and configurations lays the foundation for establishing dosimetric consensus for UHDR irradiation studies, and, if widely implemented, decrease uncertainty between different sites investigating the mechanistic basis of the FLASH effect.
Collapse
Affiliation(s)
- Patrik Gonçalves Jorge
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Buchillier
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maude Gondré
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- CHUV - Radiation-oncology Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hyunsoo Joshua No
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yufan Fred Wu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emil Schüler
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karl Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
38
|
Rohrer Bley C, Wolf F, Gonçalves Jorge P, Grilj V, Petridis I, Petit B, Böhlen TT, Moeckli R, Limoli C, Bourhis J, Meier V, Vozenin MC. Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs. Clin Cancer Res 2022; 28:3814-3823. [PMID: 35421221 PMCID: PMC9433962 DOI: 10.1158/1078-0432.ccr-22-0262] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The FLASH effect is characterized by normal tissue sparing without compromising tumor control. Although demonstrated in various preclinical models, safe translation of FLASH-radiotherapy stands to benefit from larger vertebrate animal models. Based on prior results, we designed a randomized phase III trial to investigate the FLASH effect in cat patients with spontaneous tumors. In parallel, the sparing capacity of FLASH-radiotherapy was studied on mini pigs by using large field irradiation. EXPERIMENTAL DESIGN Cats with T1-T2, N0 carcinomas of the nasal planum were randomly assigned to two arms of electron irradiation: arm 1 was the standard of care (SoC) and used 10 × 4.8 Gy (90% isodose); arm 2 used 1 × 30 Gy (90% isodose) FLASH. Mini pigs were irradiated using applicators of increasing size and a single surface dose of 31 Gy FLASH. RESULTS In cats, acute side effects were mild and similar in both arms. The trial was prematurely interrupted due to maxillary bone necrosis, which occurred 9 to 15 months after radiotherapy in 3 of 7 cats treated with FLASH-radiotherapy (43%), as compared with 0 of 9 cats treated with SoC. All cats were tumor-free at 1 year in both arms, with one cat progressing later in each arm. In pigs, no acute toxicity was recorded, but severe late skin necrosis occurred in a volume-dependent manner (7-9 months), which later resolved. CONCLUSIONS The reported outcomes point to the caveats of translating single-high-dose FLASH-radiotherapy and emphasizes the need for caution and further investigations. See related commentary by Maity and Koumenis, p. 3636.
Collapse
Affiliation(s)
- Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Friederike Wolf
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Patrik Gonçalves Jorge
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Radiation Physics, Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Veljko Grilj
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Radiation Physics, Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ioannis Petridis
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Benoit Petit
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Till T Böhlen
- Institute of Radiation Physics, Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphael Moeckli
- Institute of Radiation Physics, Department of Radiology, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Charles Limoli
- Department of Radiation Oncology, School of Medicine, University of California at Irvine, Irvine, California
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valeria Meier
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marie-Catherine Vozenin
- Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
39
|
Jansen J, Beyreuther E, García-Calderón D, Karsch L, Knoll J, Pawelke J, Schürer M, Seco J. oChanges in Radical Levels as a Cause for the FLASH effect: Impact of beam structure parameters at ultra-high dose rates on oxygen depletion in water. Radiother Oncol 2022; 175:193-196. [PMID: 36030933 DOI: 10.1016/j.radonc.2022.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/15/2023]
Abstract
The influence of different average and bunch dose rates in electron beams on the FLASH effect was investigated. The present study measures O2 content in water at different beam pulse patterns and finds strong correlation with biological data, strengthening the hypothesis of radical-related mechanisms as a reason for the FLASH effect.
Collapse
Affiliation(s)
- Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiation Physics, Dresden, Germany
| | - Daniel García-Calderón
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Leonhard Karsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Jan Knoll
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany
| | - Jörg Pawelke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Schürer
- National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Ruprecht-Karls-University, Heidelberg, Germany.
| |
Collapse
|
40
|
Rahman M, Trigilio A, Franciosini G, Moeckli R, Zhang R, Böhlen TT. FLASH radiotherapy treatment planning and models for electron beams. Radiother Oncol 2022; 175:210-221. [PMID: 35964763 DOI: 10.1016/j.radonc.2022.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Antonio Trigilio
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Gaia Franciosini
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
41
|
Schneider T, Fernandez-Palomo C, Bertho A, Fazzari J, Iturri L, Martin OA, Trappetti V, Djonov V, Prezado Y. Combining FLASH and spatially fractionated radiation therapy: The best of both worlds. Radiother Oncol 2022; 175:169-177. [PMID: 35952978 DOI: 10.1016/j.radonc.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022]
Abstract
FLASH radiotherapy (FLASH-RT) and spatially fractionated radiation therapy (SFRT) are two new therapeutical strategies that use non-standard dose delivery methods to reduce normal tissue toxicity and increase the therapeutic index. Although likely based on different mechanisms, both FLASH-RT and SFRT have shown to elicit radiobiological effects that significantly differ from those induced by conventional radiotherapy. With the therapeutic potential having been established separately for each technique, the combination of FLASH-RT and SFRT could therefore represent a winning alliance. In this review, we discuss the state of the art, advantages and current limitations, potential synergies, and where a combination of these two techniques could be implemented today or in the near future.
Collapse
Affiliation(s)
- Tim Schneider
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | | | - Annaïg Bertho
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Jennifer Fazzari
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France
| | - Olga A Martin
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland; Division of Radiation Oncology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia; University of Melbourne, Parkville, VIC 3010, Australia
| | - Verdiana Trappetti
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | - Yolanda Prezado
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, 91400 Orsay, France.
| |
Collapse
|
42
|
Intra-Operative Electron Radiation Therapy: An Update of the Evidence Collected in 40 Years to Search for Models for Electron-FLASH Studies. Cancers (Basel) 2022; 14:cancers14153693. [PMID: 35954357 PMCID: PMC9367249 DOI: 10.3390/cancers14153693] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Four decades ago, intraoperative electron radiation therapy (IOeRT) was developed to improve precision in local cancer treatment by combining real-time surgical exploration and resection with high-energy electron irradiation. The technology of ultra-high dose rate electron and other radiation beams known as FLASH irradiation sharply increases its interests, as data from preclinical experiments have proven a marked favorable effect on the therapeutic index: similar cancer control with a clearly improved tolerance of many normal tissues to high doses of irradiation. The knowledge and tools regarding technology, physics, biology, and preclinical results in heterogeneous cancers opens great opportunities towards the path of developing the first clinical applications of the emerging FLASH technology via clinical trials based on state-of-the-art medical practice with IOeRT. Abstract Introduction: The clinical practice and outcome results of intraoperative electron radiation therapy (IOeRT) in cancer patients have been extensively reported over 4 decades. Electron beams can be delivered in the promising FLASH dose rate. Methods and Materials: Several cancer models were approached by two alternative radiobiological strategies to optimize local cancer control: boost versus exclusive IOeRT. Clinical outcomes are revisited via a bibliometric search performed for the elaboration of ESTRO/ACROP IORT guidelines. Results: In the period 1982 to 2020, a total of 19,148 patients were registered in 116 publications concerning soft tissue sarcomas (9% of patients), unresected and borderline-resected pancreatic cancer (22%), locally recurrent and locally advanced rectal cancer (22%), and breast cancer (45%). Clinical outcomes following IOeRT doses in the range of 10 to 25 Gy (with or without external beam fractionated radiation therapy) show a wide range of local control from 40 to 100% depending upon cancer site, histology, stage, and treatment intensity. Constraints for normal tissue tolerance are important to maintain tumor control combined with acceptable levels of side effects. Conclusions: IOeRT represents an evidence-based approach for several tumor types. A specific risk analysis for local recurrences supports the identification of cancer models that are candidates for FLASH studies.
Collapse
|
43
|
Karsch L, Pawelke J, Brand M, Hans S, Hideghéty K, Jansen J, Lessmann E, Löck S, Schürer M, Schurig R, Seco J, Szabó ER, Beyreuther E. Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo. Radiother Oncol 2022; 173:49-54. [PMID: 35661675 DOI: 10.1016/j.radonc.2022.05.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND PURPOSE Continuing recent experiments at the research electron accelerator ELBE at the Helmholtz-Zentrum Dresden-Rossendorf the influence of beam pulse structure on the Flash effect was investigated. MATERIALS AND METHODS The proton beam pulse structure of an isochronous cyclotron (UHDRiso) and a synchrocyclotron (UHDRsynchro) was mimicked at ELBE by quasi-continuous electron bunches at 13 MHz delivering mean dose rates of 287 Gy/s and 177 Gy/s and bunch dose rates of 106Gy/s and 109 Gy/s, respectively. For UHDRsynchro, 40 ms macro pulses at a frequency of 25 Hz superimposed the bunch delivery. For comparison, a maximum beam intensity (2.5 x 105 Gy/s mean and ∼109 Gy/s bunch dose rate) and a reference irradiation (of ∼8 Gy/min mean dose rate) were applied. Radiation induced changes were assessed in zebrafish embryos over four days post irradiation. RESULTS Relative to the reference a significant protecting Flash effect was observed for all electron beam pulse regimes with less severe damage the higher the mean dose rate of the electron beam. Accordingly, the macro pulsing induced prolongation of treatment time at UHDRsynchro regime reduces the protecting effect compared to the maximum regime delivered at same bunch but higher mean dose rate. The Flash effect of the UHDRiso regime was confirmed at a clinical isochronous cyclotron comparing the damage induced by proton beams delivered at 300 Gy/s and ∼9 Gy/min. CONCLUSION The recent findings indicate that the mean dose rate or treatment time are decisive for the normal tissue protecting Flash effect in zebrafish embryo.
Collapse
Affiliation(s)
- Leonhard Karsch
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Jörg Pawelke
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies TU Dresden (CRTD), and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies TU Dresden (CRTD), and Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden, Germany
| | - Katalin Hideghéty
- ELI-ALPS, ELI-HU Non-Profit Ltd., Szeged, Hungary; Oncotherapy Department, University of Szeged, Szeged, Hungary
| | - Jeannette Jansen
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabeth Lessmann
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schürer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; National Center for Tumor Diseases Dresden (NCT/UCC), Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
| | - Rico Schurig
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany
| | - Joao Seco
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | | | - Elke Beyreuther
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiation Physics, Dresden, Germany.
| |
Collapse
|
44
|
Tinganelli W, Weber U, Puspitasari A, Simoniello P, Abdollahi A, Oppermann J, Schuy C, Horst F, Helm A, Fournier C, Durante M. FLASH with carbon ions: tumor control, normal tissue sparing, and distal metastasis in a mouse osteosarcoma model. Radiother Oncol 2022; 175:185-190. [DOI: 10.1016/j.radonc.2022.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/30/2022]
|
45
|
Farr J, Grilj V, Malka V, Sudharsan S, Schippers M. Ultra‐High dose rate radiation production and delivery systems intended for FLASH. Med Phys 2022; 49:4875-4911. [PMID: 35403262 PMCID: PMC9544515 DOI: 10.1002/mp.15659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Higher dose rates, a trend for radiotherapy machines, can be beneficial in shortening treatment times for radiosurgery and mitigating the effects of motion. Recently, even higher doses (e.g., 100 times greater) have become targeted because of their potential to generate the FLASH effect (FE). We refer to these physical dose rates as ultra‐high (UHDR). The complete relationship between UHDR and the FE is unknown. But UHDR systems are needed to explore the relationship further and to deliver clinical UHDR treatments, where indicated. Despite the challenging set of unknowns, the authors seek to make reasonable assumptions to probe how existing and developing technology can address the UHDR conditions needed to provide beam generation capable of producing the FE in preclinical and clinical applications. As a preface, this paper discusses the known and unknown relationships between UHDR and the FE. Based on these, different accelerator and ionizing radiation types are then discussed regarding the relevant UHDR needs. The details of UHDR beam production are discussed for existing and potential future systems such as linacs, cyclotrons, synchrotrons, synchrocyclotrons, and laser accelerators. In addition, various UHDR delivery mechanisms are discussed, along with required developments in beam diagnostics and dose control systems.
Collapse
Affiliation(s)
- Jonathan Farr
- Applications of Detectors and Accelerators to Medicine Meyrin 1217 Switzerland
| | - Veljko Grilj
- Lausanne University Hospital Lausanne 1011 Switzerland
| | - Victor Malka
- Weizmann Institute of Science Rehovot 7610001 Israel
| | | | | |
Collapse
|
46
|
Friedl AA, Prise KM, Butterworth KT, Montay-Gruel P, Favaudon V. Radiobiology of the FLASH effect. Med Phys 2022; 49:1993-2013. [PMID: 34426981 DOI: 10.1002/mp.15184] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation exposures at ultrahigh dose rates (UHDRs) at several orders of magnitude greater than in current clinical radiotherapy (RT) have been shown to manifest differential radiobiological responses compared to conventional (CONV) dose rates. This has led to studies investigating the application of UHDR for therapeutic advantage (FLASH-RT) that have gained significant interest since the initial discovery in 2014 that demonstrated reduced lung toxicity with equivalent levels of tumor control compared with conventional dose-rate RT. Many subsequent studies have demonstrated the potential protective role of FLASH-RT in normal tissues, yet the underlying molecular and cellular mechanisms of the FLASH effect remain to be fully elucidated. Here, we summarize the current evidence of the FLASH effect and review FLASH-RT studies performed in preclinical models of normal tissue response. To critically examine the underlying biological mechanisms of responses to UHDR radiation exposures, we evaluate in vitro studies performed with normal and tumor cells. Differential responses to UHDR versus CONV irradiation recurrently involve reduced inflammatory processes and differential expression of pro- and anti-inflammatory genes. In addition, frequently reduced levels of DNA damage or misrepair products are seen after UHDR irradiation. So far, it is not clear what signal elicits these differential responses, but there are indications for involvement of reactive species. Different susceptibility to FLASH effects observed between normal and tumor cells may result from altered metabolic and detoxification pathways and/or repair pathways used by tumor cells. We summarize the current theories that may explain the FLASH effect and highlight important research questions that are key to a better mechanistic understanding and, thus, the future implementation of FLASH-RT in the clinic.
Collapse
Affiliation(s)
- Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Karl T Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California at Irvine, Irvine, California, USA
| | - Vincent Favaudon
- Institut Curie, Inserm U 1021-CNRS UMR 3347, Université Paris-Saclay, PSL Research University, Centre Universitaire, Orsay, France
| |
Collapse
|
47
|
Favaudon V, Labarbe R, Limoli CL. Model studies of the role of oxygen in the FLASH effect. Med Phys 2022; 49:2068-2081. [PMID: 34407219 PMCID: PMC8854455 DOI: 10.1002/mp.15129] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Current radiotherapy facilities are standardized to deliver dose rates around 0.1-0.4 Gy/s in 2 Gy daily fractions, designed to deliver total accumulated doses to reach the tolerance limit of normal tissues undergoing irradiation. FLASH radiotherapy (FLASH-RT), on the other hand, relies on facilities capable of delivering ultrahigh dose rates in large doses in a single microsecond pulse, or in a few pulses given over a very short time sequence. For example, most studies to date have implemented 4-6 MeV electrons with intra-pulse dose rates in the range 106 -107 Gy/s. The proposed dependence of the FLASH effect on oxygen tension has stimulated several theoretical models based on three different hypotheses: (i) Radiation-induced transient oxygen depletion; (ii) cell-specific differences in the ability to detoxify and/or recover from injury caused by reactive oxygen species; (iii) self-annihilation of radicals by bimolecular recombination. This article focuses on the observations supporting or refuting these models in the frame of the chemical-biological bases of the impact of oxygen on the radiation response of cell free, in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Vincent Favaudon
- Institut Curie, Inserm U 1021- CNRS UMR 3347, University Paris-Saclay, PSL Research University, Centre Universitaire, 91405 Orsay Cedex, France
- Corresponding author:
| | - Rudi Labarbe
- Ion Beam Applications S.A. (IBA), Louvain-la-Neuve, Belgium
| | - Charles L. Limoli
- Dept. of Radiation Oncology, Medical Sciences I, B146B, Irvine, California 92697-2695, USA
| |
Collapse
|
48
|
Gonçalves Jorge P, Grilj V, Bourhis J, Vozenin M, Germond J, Bochud F, Bailat C, Moeckli R. Technical note: Validation of an ultrahigh dose rate pulsed electron beam monitoring system using a current transformer for FLASH preclinical studies. Med Phys 2022; 49:1831-1838. [PMID: 35066878 PMCID: PMC9303205 DOI: 10.1002/mp.15474] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/07/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The Oriatron eRT6 is a linear accelerator (linac) used in FLASH preclinical studies able to reach dose rates ranging from conventional (CONV) up to ultrahigh (UHDR). This work describes the implementation of commercially available beam current transformers (BCTs) as online monitoring tools compatible with CONV and UHDR irradiations for preclinical FLASH studies. METHODS Two BCTs were used to measure the output of the Oriatron eRT6 linac. First, the correspondence between the set nominal beam parameters and those measured by the BCTs was checked. Then, we established the relationship between the total exit charge (measured by BCTs) and the absorbed dose to water. The influence of the pulse width (PW) and the pulse repetition frequency (PRF) at UHDR was characterized, as well as the short- and long-term stabilities of the relationship between the exit charge and the dose at CONV and UHDR. RESULTS The BCTs were able to determine consistently the number of pulses, PW, and PRF. For fixed PW and pulse height, the exit charge measured from BCTs was correlated with the dose, and linear relationships were found with uncertainties of 0.5 % and 3 % in CONV and UHDR mode, respectively. Short- and long-term stabilities of the dose-to-charge ratio were below 1.6 %. CONCLUSIONS We implemented commercially available BCTs and demonstrated their ability to act as online beam monitoring systems to support FLASH preclinical studies with CONV and UHDR irradiations. The implemented BCTs support dosimetric measurements, highlight variations among multiple measurements in a row, enable monitoring of the physics parameters used for irradiation, and are an important step for the safety of the clinical translation of FLASH radiation therapy.
Collapse
Affiliation(s)
- Patrik Gonçalves Jorge
- Institute of Radiation PhysicsLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Veljko Grilj
- Institute of Radiation PhysicsLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jean Bourhis
- Radiation‐Oncology DepartmentLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Marie‐Catherine Vozenin
- Radiation‐Oncology LaboratoryLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Jean‐François Germond
- Institute of Radiation PhysicsLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - François Bochud
- Institute of Radiation PhysicsLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Claude Bailat
- Institute of Radiation PhysicsLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Raphaël Moeckli
- Institute of Radiation PhysicsLausanne University Hospital and University of LausanneLausanneSwitzerland
| |
Collapse
|
49
|
Montay-Gruel P, Corde S, Laissue JA, Bazalova-Carter M. FLASH radiotherapy with photon beams. Med Phys 2021; 49:2055-2067. [PMID: 34519042 DOI: 10.1002/mp.15222] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Ultra-high-dose rate "FLASH" radiotherapy (FLASH-RT) has been shown to drastically reduce normal tissue toxicities while being as efficacious as conventional dose rate radiotherapy to treat tumors. A large number of preclinical studies describing this so-called FLASH effect have led to the clinical translation of FLASH-RT using ultra-high-dose rate electron and proton beams. Although the vast majority of radiation therapy treatments are delivered using X-rays, few preclinical data using ultra-high-dose rate X-ray irradiation have been published. This review focuses on different methods that can be used to generate ultra-high-dose rate X-rays and their beam characteristics along with their effect on the biological tissues and the perspectives for the development of FLASH-RT with X-rays.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, California, USA.,Department of Radiotherapy, Iridium Network, Antwerp, Belgium
| | - Stéphanie Corde
- Department of Radiation Oncology, Prince of Wales Hospital, Randwick, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jean A Laissue
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
50
|
Sampayan SE, Sampayan KC, Caporaso GJ, Chen YJ, Falabella S, Hawkins SA, Hearn J, Watson JA, Zentler JM. Megavolt bremsstrahlung measurements from linear induction accelerators demonstrate possible use as a FLASH radiotherapy source to reduce acute toxicity. Sci Rep 2021; 11:17104. [PMID: 34429440 PMCID: PMC8385032 DOI: 10.1038/s41598-021-95807-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/26/2021] [Indexed: 11/11/2022] Open
Abstract
Recent studies indicate better efficacy and healthy tissue sparing with high dose-rate FLASH radiotherapy (FLASH-RT) cancer treatment. This technique delivers a prompt high radiation dose rather than fractional doses over time. While some suggest thresholds of > 40 Gy s−1 with a maximal effect at > 100 Gy s−1, accumulated evidence shows that instantaneous dose-rate and irradiation time are critical. Mechanisms are still debated, but toxicity is minimized while inducing apoptosis in malignant tissue. Delivery technologies to date show that a capability gap exists with clinic scale, broad area, deep penetrating, high dose rate systems. Based on these trends, if FLASH-RT is adopted, it may become a dominant approach except in the least technologically advanced countries. The linear induction accelerator (LIA) developed for high instantaneous and high average dose-rate, species independent charged particle acceleration, has yet to be considered for this application. We review the status of LIA technology, explore the physics of bremsstrahlung-converter-target interactions and our work on stabilizing the electron beam. While the gradient of the LIA is low, we present our preliminary work to improve the gradient by an order of magnitude, presenting a point design for a multibeam FLASH-RT system using a single accelerator for application to conformal FLASH-RT.
Collapse
Affiliation(s)
- Stephen E Sampayan
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA. .,Opcondys, Inc., 600 Commerce Court, Manteca, CA, 95336, USA.
| | | | - George J Caporaso
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Yu-Jiuan Chen
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Steve Falabella
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Steven A Hawkins
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Jason Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - James A Watson
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| | - Jan-Mark Zentler
- Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA, 94551, USA
| |
Collapse
|