1
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. Gut Microbes 2025; 17:2458189. [PMID: 39930324 PMCID: PMC11817531 DOI: 10.1080/19490976.2025.2458189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/07/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal growth barrier dysfunction, and aberrant inflammatory responses. Further, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, mostly commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no U.S. Food and Drug Administration (FDA) approved countermeasures that can treat radiation-induced GI injuries. To meet this critical need, Synedgen Inc. has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract, which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy partial body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, Vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory responses mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera while suppressing potentially pathogenic bacteria Enterococcus and Staphylococcus compared with Vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and reducing pro-inflammatory responses. Further development of this drug as an FDA-approved medical countermeasure is of critical importance.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Alexander LM, Khalid S, Gallego-Lopez GM, Astmann TJ, Oh JH, Heggen M, Huss P, Fisher R, Mukherjee A, Raman S, Choi IY, Smith MN, Rogers CJ, Epperly MW, Knoll LJ, Greenberger JS, van Pijkeren JP. Development of a Limosilactobacillus reuteri therapeutic delivery platform with reduced colonization potential. Appl Environ Microbiol 2024; 90:e0031224. [PMID: 39480094 DOI: 10.1128/aem.00312-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/09/2024] [Indexed: 11/02/2024] Open
Abstract
Bacterial biotherapeutic delivery vehicles have the potential to treat a variety of diseases. This approach obviates the need to purify the recombinant effector molecule, allows delivery of therapeutics in situ via oral or intranasal administration, and protects the effector molecule during gastrointestinal transit. Lactic acid bacteria have been broadly developed as therapeutic delivery vehicles though risks associated with the colonization of a genetically modified microorganism have so-far not been addressed. Here, we present an engineered Limosilactobacillus reuteri strain with reduced colonization potential. We applied a dual-recombineering scheme for efficient barcoding and generated mutants in genes encoding five previously characterized and four uncharacterized putative adhesins. Compared with the wild type, none of the mutants were reduced in their ability to survive gastrointestinal transit in mice. CmbA was identified as a key protein in L. reuteri adhesion to HT-29 and enteroid cells. The nonuple mutant, a single strain with all nine genes encoding adhesins inactivated, had reduced capacity to adhere to enteroid monolayers. The nonuple mutant producing murine IFN-β was equally effective as its wild-type counterpart in mitigating radiation toxicity in mice. Thus, this work established a novel therapeutic delivery platform that lays a foundation for its application in other microbial therapeutic delivery candidates and furthers the progress of the L. reuteri delivery system towards human use.IMPORTANCEOne major advantage to leverage gut microbes that have co-evolved with the vertebrate host is that evolution already has taken care of the difficult task to optimize survival within a complex ecosystem. The availability of the ecological niche will support colonization. However, long-term colonization of a recombinant microbe may not be desirable. Therefore, strategies need to be developed to overcome this potential safety concern. In this work, we developed a single strain in which we inactivated the encoding sortase, and eight genes encoding characterized/putative adhesins. Each individual mutant was characterized for growth and adhesion to epithelial cells. On enteroid cells, the nonuple mutant has a reduced adhesion potential compared with the wild-type strain. In a model of total-body irradiation, the nonuple strain engineered to release murine interferon-β performed comparable to a derivative of the wild-type strain that releases interferon-β. This work is an important step toward the application of recombinant L. reuteri in humans.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Saima Khalid
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gina M Gallego-Lopez
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Theresa J Astmann
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee-Hwan Oh
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mark Heggen
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - In Young Choi
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan N Smith
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
3
|
Mitra D, Armijo GK, Ober EH, Baker SM, Turner HC, Broustas CG. MIIST305 mitigates gastrointestinal acute radiation syndrome injury and ameliorates radiation-induced gut microbiome dysbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619652. [PMID: 39484519 PMCID: PMC11526895 DOI: 10.1101/2024.10.22.619652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury. To meet this critical need, Synedgen Inc., has developed a glycopolymer radiomitigator (MIIST305) that is specifically targeted to the GI tract which acts by intercalating into the mucus layer and the glycocalyx of intestinal epithelial cells that could potentially ameliorate the deleterious effects of radiation. Male C57BL/6J adult mice were exposed to 13 Gy total body X-irradiation with 5% bone marrow shielding and MIIST305 was administered on days 1, 3, and 5 post-irradiation. Approximately 85% of the animals survived the irradiation exposure and were apparently healthy until the end of the 30-day study period. In contrast, no control, vehicle-treated animals survived past day 10 at this radiation dose. We show that MIIST305 improved intestinal epithelial barrier function and suppressed systemic inflammatory response mediated by radiation-induced pro-inflammatory cytokines. Taxonomic profiling and community structure of the fecal and colonic mucosa microbiota demonstrated that MIIST305 treatment increased microbial diversity and restored abundance of beneficial commensal bacteria, including Lactobacillus and Bifidobacterium genera, while suppressing potentially pathogenic bacteria compared with vehicle-treated animals. In summary, MIIST305 is a novel GI-targeted therapeutic that greatly enhances survival in mice exposed to lethal radiation and protects the GI tract from injury by restoring a balanced gut microbiota and effectively reducing proinflammatory responses. Further development of this drug as an FDA-approved medical countermeasure will be of critical importance in the event of a radiation public health emergency.
Collapse
Affiliation(s)
- Debmalya Mitra
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Gabriel K. Armijo
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Elizabeth H. Ober
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Helen C. Turner
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Constantinos G. Broustas
- Center for Radiological Research, Columbia University Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Kiang JG, Cannon G, Singh VK. An Overview of Radiation Countermeasure Development in Radiation Research from 1954 to 2024. Radiat Res 2024; 202:420-431. [PMID: 38964743 PMCID: PMC11385179 DOI: 10.1667/rade-24-00036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.
Collapse
Affiliation(s)
- Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
- Department of Medicine, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Vijay K Singh
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
| |
Collapse
|
5
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 PMCID: PMC10933493 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
7
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Leibowitz BJ, Coffman LG, Wang H, Huq MS, Huang Z, Rogers CJ, Vlad AM, Greenberger JS, Mukherjee A. Genetically Engineered Probiotic Limosilactobacillus reuteri Releasing IL-22 (LR-IL-22) Modifies the Tumor Microenvironment, Enabling Irradiation in Ovarian Cancer. Cancers (Basel) 2024; 16:474. [PMID: 38339228 PMCID: PMC10854600 DOI: 10.3390/cancers16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Despite recent advances in cancer therapy, ovarian cancer remains the most lethal gynecological cancer worldwide, making it crucial and of the utmost importance to establish novel therapeutic strategies. Adjuvant radiotherapy has been assessed historically, but its use was limited by intestinal toxicity. We recently established the role of Limosilactobacillus reuteri in releasing IL-22 (LR-IL-22) as an effective radiation mitigator, and we have now assessed its effect in an ovarian cancer mouse model. We hypothesized that an LR-IL-22 gavage would enable intestinal radioprotection by modifying the tumor microenvironment and, subsequently, improving overall survival in female C57BL/6MUC-1 mice with widespread abdominal syngeneic 2F8cis ovarian cancer. Herein, we report that the LR-IL-22 gavage not only improved overall survival in mice when combined with a PD-L1 inhibitor by inducing differential gene expression in irradiated stem cells but also induced PD-L1 protein expression in ovarian cancer cells and mobilized CD8+ T cells in whole abdomen irradiated mice. The addition of LR-IL-22 to a combined treatment modality with fractionated whole abdomen radiation (WAI) and systemic chemotherapy and immunotherapy regimens can facilitate a safe and effective protocol to reduce tumor burden, increase survival, and improve the quality of life of a locally advanced ovarian cancer patient.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | | | - Brian J. Leibowitz
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Lan G. Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA; (H.W.); (Z.H.)
| | | | - Anda M. Vlad
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; (D.F.H.); (M.W.E.); (R.F.); (W.H.); (D.S.); (B.J.L.); (M.S.H.); (J.S.G.)
| |
Collapse
|
8
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
9
|
Epperly MW, Mukherjee A, Fisher R, Shields D, Hou W, Wang H, Rigatti LH, Green A, Huq MS, Greenberger JS. Chemical Carcinogen (Dimethyl-benzanthracene) Induced Transplantable Cancer in Fanconi Anemia (Fanca-/-) Mice. In Vivo 2023; 37:2421-2432. [PMID: 37905617 PMCID: PMC10621406 DOI: 10.21873/invivo.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations. MATERIALS AND METHODS Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA). RESULTS A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells. CONCLUSION This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Lora H Rigatti
- D.L.A.R. - Veterinary Services, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Anthony Green
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - M Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.;
| |
Collapse
|
10
|
Hamade DF, Epperly MW, Fisher R, Hou W, Shields D, van Pijkeren JP, Mukherjee A, Yu J, Leibowitz BJ, Vlad AM, Coffman L, Wang H, Huq MS, Huang Z, Rogers CJ, Greenberger JS. Release of Interferon-β (IFN-β) from Probiotic Limosilactobacillus reuteri-IFN-β (LR-IFN-β) Mitigates Gastrointestinal Acute Radiation Syndrome (GI-ARS) following Whole Abdominal Irradiation. Cancers (Basel) 2023; 15:1670. [PMID: 36980556 PMCID: PMC10046795 DOI: 10.3390/cancers15061670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Irradiation can be an effective treatment for ovarian cancer, but its use is limited by intestinal toxicity. Thus, strategies to mitigate toxicity are important and can revitalize the current standard of care. We previously established that LR-IL-22 protects the intestine from WAI. We now hypothesize that LR-IFN-β is an effective radiation protector and mitigator and is rapidly cleared from the digestive tract, making it an option for intestinal radioprotection. We report that the gavage of LR-IFN-β during WAI provides improved intestinal barrier integrity and significantly preserves the numbers of Lgr5+GFP+ intestinal stem cells, improving survival. The rapid clearance of the genetically engineered probiotic from the digestive tract renders it a safe and feasible radiation mitigator. Therefore, the above genetically engineered probiotic is both a feasible and effective radiation mitigator that could potentially revolutionize the management of OC patients. Furthermore, the subsequent addition of platinum/taxane-based chemotherapy to the combination of WAI and LR-IFN-β should reduce tumor volume while protecting the intestine and should improve the overall survival in OC patients.
Collapse
Affiliation(s)
- Diala F. Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anda M. Vlad
- Department of OB/Gyn and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, PA 15260, USA
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ziyu Huang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
11
|
Alexander LM, van Pijkeren JP. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol 2023; 31:197-211. [PMID: 36220750 PMCID: PMC9877134 DOI: 10.1016/j.tim.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 02/03/2023]
Abstract
For decades, bacteria have been exploited as vectors for vaccines and therapeutics. However, the bacterial arsenal used has historically been limited to a few strains. Advancements in immunology, combined with the development of genetic tools, have expanded our strategies and capabilities to engineer bacteria using various delivery strategies. Depending on the application, each delivery strategy requires specific considerations, optimization, and safety concerns. Here, we review various modes of therapeutic delivery used to target or vaccinate against a variety of ailments in preclinical models and in clinical trials. We highlight modes of bacteria-derived delivery best suited for different applications. Finally, we discuss current obstacles in bacteria-derived therapies and explore potential improvements of the various modes of therapeutic delivery.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Role of IL-22 in intestinal microenvironment and potential targeted therapy through diet. Immunol Res 2022; 71:121-129. [PMID: 36173554 DOI: 10.1007/s12026-022-09325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Abstract
IL-22 is a type 2 receptor cytokine in IL-10 family. IL-22 is usually secreted by innate and adaptive immune cells and takes its effects on non-hematopoietic cells. Through activate STAT3 pathway, IL-22 plays an important role in infection clearance and tissue regeneration, which is critical for barrier integrate and homeostasis. Abnormal activation of IL-22 signal was observed in inflammation diseases, autoimmune diseases, and cancers. We review the recent discoveries about the mechanism and regulation of IL-22 signal pathway from the perspective of intestinal micro-environment. Diet-based IL-22 target therapeutic strategies and their potential clinical significance will also be discussed.
Collapse
|
13
|
Espinal A, Epperly MW, Mukherjee A, Fisher R, Shields D, Wang H, Huq MS, Hamade DF, Vlad AM, Coffman L, Buckanovich R, Yu J, Leibowitz BJ, van Pijkeren JP, Patel RB, Stolz D, Watkins S, Ejaz A, Greenberger JS. Intestinal Radiation Protection and Mitigation by Second-Generation Probiotic Lactobacillus-reuteri Engineered to Deliver Interleukin-22. Int J Mol Sci 2022; 23:5616. [PMID: 35628427 PMCID: PMC9145862 DOI: 10.3390/ijms23105616] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri-Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.
Collapse
Affiliation(s)
- Alexis Espinal
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Diala Fatima Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Anda M. Vlad
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Lan Coffman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (L.C.); (R.B.)
| | - Ronald Buckanovich
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (L.C.); (R.B.)
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (J.Y.); (B.J.L.)
| | - Brian J. Leibowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (J.Y.); (B.J.L.)
| | | | - Ravi B. Patel
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (D.S.); (S.W.)
| | - Simon Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15232, USA; (D.S.); (S.W.)
| | - Asim Ejaz
- Department of Plastic and Reconstructive Surgery, University of Pittsburgh, Pittsburgh, PA 15232, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.E.); (M.W.E.); (A.M.); (R.F.); shieldsd+@pitt.edu (D.S.); (M.S.H.); (D.F.H.); (R.B.P.)
| |
Collapse
|