1
|
Pereira MG, Amorim EMD, Aparecido da Silva A, Guimarães-Silva D, Esteves AM, Rohde C. Evidences of radioresistance in Drosophila melanogaster from Northeastern Brazil. Int J Radiat Biol 2024; 101:164-173. [PMID: 39689110 DOI: 10.1080/09553002.2024.2440858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Ionizing radiation can inflict cellular damage, the severity of which is determined by the dose, exposure duration, and its capacity to penetrate cells. Some studies have demonstrated that genetic and epigenetic mechanisms have enabled organisms to develop adaptive traits and enhance their ability to repair DNA damage. Northeastern Brazil, a region containing rocky outcrops rich in uranium and thorium, is an ideal scenario to study natural radiation and its effects on natural populations. This study presents evidence of radioresistance in the offspring of a natural strain of Drosophila melanogaster resident in the municipality of Cerro Corá (CC-res), an environment with high levels of radon-222. MATERIAL AND METHODS Genotoxicity was assessed using the comet assay in offspring of the CC-res and Oregon-R (OR), the control group, both reared under the same laboratory conditions for between 7 and 13 months. The adults and their offspring larvae were exposed to the Cerro Corá environment for 6 days during the dry and wet seasons. Low damage index and frequency were observed only in the CC-res. To confirm the radioresistance, the same strains were exposed after 16 months of cultivation to controlled doses of gamma radiation. RESULTS AND CONCLUSIONS CC-res exhibited significantly lower levels of damage compared to the OR strain, with a clear dose-response effect to the irradiation observed exclusively in the OR group. The results support the occurrence of radioresistance in the CC-res strain and underscore the need for further in vivo studies investigations into the impact of Brazil's natural environmental radiation.
Collapse
Affiliation(s)
- Maria Gislaine Pereira
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| | - Erima Maria de Amorim
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| | - Aleson Aparecido da Silva
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| | - Danubia Guimarães-Silva
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| | - Andre Morgado Esteves
- Departamento de Zoologia, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Claudia Rohde
- Laboratório de Genética, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
2
|
Cherednichenko O, Pilyugina A, Nuraliev S, Azizbekova D. Persons chronically exposed to low doses of ionizing radiation: A cytogenetic dosimetry study. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 894:503728. [PMID: 38432778 DOI: 10.1016/j.mrgentox.2024.503728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 03/05/2024]
Abstract
The dosimetry and control of exposure for individuals chronically exposed to ionizing radiation are important and complex issues. Assessment may be optimized by evaluating individual adaptation and radiosensitivity, but it is not possible for a single model to account for all relevant parameters. Our goal was to develop approaches for the calculation of doses for persons chronically exposed to ionizing radiation, taking their radiosensitivities into consideration. On the basis of ex vivo radiation of blood samples, dose-effect models were constructed for dose ranges 0.01-2.0 and 0.01-0.4 Gy, using different cytogenetic criteria. The frequencies of "dicentric chromosomes and rings" at low doses are too low to have predictive value. The different responses of subjects to radiation made it possible to categorize them according to their radiosensitivities and to generate separate dose-effect curves for radiosensitive, average, and radioresistant individuals, reducing the amount of error in retrospective dosimetry.
Collapse
Affiliation(s)
- Oksana Cherednichenko
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan.
| | - Anastassiya Pilyugina
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Serikbai Nuraliev
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| | - Dinara Azizbekova
- Laboratory of Genetic Monitoring, Institute of Genetics and Physiology, Almaty 050060, Kazakhstan
| |
Collapse
|
3
|
Fornalski KW, Adamowski Ł, Dobrzyński L, Jarmakiewicz R, Powojska A, Reszczyńska J. The radiation adaptive response and priming dose influence: the quantification of the Raper-Yonezawa effect and its three-parameter model for postradiation DNA lesions and mutations. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:221-239. [PMID: 35150289 PMCID: PMC9021059 DOI: 10.1007/s00411-022-00963-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/12/2022] [Indexed: 05/14/2023]
Abstract
The priming dose effect, called also the Raper-Yonezawa effect or simply the Yonezawa effect, is a special case of the radiation adaptive response phenomenon (radioadaptation), which refers to: (a) faster repair of direct DNA lesions (damage), and (b) DNA mutation frequency reduction after irradiation, by applying a small priming (conditioning) dose prior to the high detrimental (challenging) one. This effect is observed in many (but not all) radiobiological experiments which present the reduction of lesion, mutation or even mortality frequency of the irradiated cells or species. Additionally, the multi-parameter model created by Dr. Yonezawa and collaborators tried to explain it theoretically based on experimental data on the mortality of mice with chronic internal irradiation. The presented paper proposes a new theoretical approach to understanding and explaining the priming dose effect: it starts from the radiation adaptive response theory and moves to the three-parameter model, separately for two previously mentioned situations: creation of fast (lesions) and delayed damage (mutations). The proposed biophysical model was applied to experimental data-lesions in human lymphocytes and chromosomal inversions in mice-and was shown to be able to predict the Yonezawa effect for future investigations. It was also found that the strongest radioadaptation is correlated with the weakest cellular radiosensitivity. Additional discussions were focussed on more general situations where many small priming doses are used.
Collapse
Affiliation(s)
- Krzysztof W Fornalski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland.
| | - Łukasz Adamowski
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland
| | - Ludwik Dobrzyński
- National Centre for Nuclear Research (NCBJ), ul. A. Sołtana 7, 05-400, Otwock-Świerk, Poland
| | - Rafał Jarmakiewicz
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, Poland
| | - Aleksandra Powojska
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662, Warsaw, Poland
| | - Joanna Reszczyńska
- Department of Biophysics, Physiology and Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw (WUM), ul. T. Chałubińskiego 5, 02-004, Warsaw, Poland
| |
Collapse
|
4
|
Singleton EV, David SC, Davies JB, Hirst TR, Paton JC, Beard MR, Hemmatzadeh F, Alsharifi M. Sterility of gamma-irradiated pathogens: a new mathematical formula to calculate sterilizing doses. JOURNAL OF RADIATION RESEARCH 2020; 61:886-894. [PMID: 32930781 PMCID: PMC7674690 DOI: 10.1093/jrr/rraa076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/19/2020] [Indexed: 06/11/2023]
Abstract
In recent years there has been increasing advocacy for highly immunogenic gamma-irradiated vaccines, several of which are currently in clinical or pre-clinical trials. Importantly, various methods of mathematical modelling and sterility testing are employed to ensure sterility. However, these methods are designed for materials with a low bioburden, such as food and pharmaceuticals. Consequently, current methods may not be reliable or applicable to estimate the irradiation dose required to sterilize microbiological preparations for vaccine purposes, where bioburden is deliberately high. In this study we investigated the applicability of current methods to calculate the sterilizing doses for different microbes. We generated inactivation curves that demonstrate single-hit and multiple-hit kinetics under different irradiation temperatures for high-titre preparations of pathogens with different genomic structures. Our data demonstrate that inactivation of viruses such as Influenza A virus, Zika virus, Semliki Forest virus and Newcastle Disease virus show single-hit kinetics following exposure to gamma-irradiation. In contrast, rotavirus inactivation shows multiple-hit kinetics and the sterilizing dose could not be calculated using current mathematical methods. Similarly, Streptococcus pneumoniae demonstrates multiple-hit kinetics. These variations in killing curves reveal an important gap in current mathematical formulae to determine sterility assurance levels. Here we propose a simple method to calculate the irradiation dose required for a single log10 reduction in bioburden (D10) value and sterilizing doses, incorporating both single- and multiple-hit kinetics, and taking into account the possible existence of a resistance shoulder for some pathogens following exposure to gamma-irradiation.
Collapse
Affiliation(s)
- Eve V Singleton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shannon C David
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Justin B Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, 2234, Australia
| | - Timothy R Hirst
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- Gamma Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
- GPN Vaccines Pty Ltd, Mountbatten Park, Yarralumla, ACT, 2600, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases, and Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Mohammed Alsharifi
- Corresponding author. Research Centre for Infectious Diseases, University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
5
|
Ionizing Radiation and Translation Control: A Link to Radiation Hormesis? Int J Mol Sci 2020; 21:ijms21186650. [PMID: 32932812 PMCID: PMC7555331 DOI: 10.3390/ijms21186650] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
Protein synthesis, or mRNA translation, is one of the most energy-consuming functions in cells. Translation of mRNA into proteins is thus highly regulated by and integrated with upstream and downstream signaling pathways, dependent on various transacting proteins and cis-acting elements within the substrate mRNAs. Under conditions of stress, such as exposure to ionizing radiation, regulatory mechanisms reprogram protein synthesis to translate mRNAs encoding proteins that ensure proper cellular responses. Interestingly, beneficial responses to low-dose radiation exposure, known as radiation hormesis, have been described in several models, but the molecular mechanisms behind this phenomenon are largely unknown. In this review, we explore how differences in cellular responses to high- vs. low-dose ionizing radiation are realized through the modulation of molecular pathways with a particular emphasis on the regulation of mRNA translation control.
Collapse
|
6
|
Premkumar K, Nair J, Shankar BS. Differential radio-adaptive responses in BALB/c and C57BL/6 mice: pivotal role of calcium and nitric oxide signalling. Int J Radiat Biol 2019; 95:655-666. [PMID: 30676176 DOI: 10.1080/09553002.2019.1571647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: Our earlier studies demonstrated that transient radio-adaptive responses (RAR) in BALB/c mice were due to MAPK hyperactivation. The objective of this study was to determine the time duration of this low dose induced MAPK activation in BALB/c mice and to find out if similar adaptive responses are observed in C57BL/6 mice. Materials and methods: Mice were irradiated with 0.1 Gy priming dose (PD), 2 Gy challenge dose (CD) with an interval of 4 h (P + CD) and radiation induced immunosuppression in splenic lymphocytes was monitored as the endpoint for RAR. Results: Time kinetics following 0.1 Gy demonstrated persistence of MAPK hyperactivation till 48 h. Similar experiments in C57BL/6 mice indicated absence of RAR at 24 h following CD, in spite of MAPK activation which was also confirmed by time kinetics. Therefore, upstream activators of MAPK, viz., reactive oxygen and nitrogen species (ROS, RNS) and calcium levels were estimated. There was increased intracellular calcium (Ca2+) and nitric oxide (NO) in BALB/c and an increase in intracellular ROS in C57BL/6 mice 24 h after PD. Inhibition of NO and calcium chelation abrogated RAR in BALB/c mice. In vitro treatment of spleen cells with combination of NO donor and Ca2+ ionophore mimicked the effect of PD and induced adaptive response after 2 Gy not only in BALB/c but also in C57BL/6 mice confirming their crucial role in RAR. Conclusions: These results suggest that low dose induced differential induction of Ca2+ and NO signaling along with MAPK was responsible for contrasting RAR with respect to immune system of BALB/c and C57BL/6 mice. Abbreviations [3H]-TdR: 3H-methyl-thymidine; BAPTA: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid; CD: Challenge Dose; CFSE: Carboxy Fluorescein Succinamidyl Ester; on A: Concanavalin A; DAF-FM: 4-amino-5-methylamino-2',7'-difluorescein; DCF-DA: 2',7'-dichlorofluorescein diacetate; DSB: Double Strand Break; ELISA: Enzyme Linked ImmunoSorbent Assay; ERK: Extracellular signal-Regulated protein Kinase; FBS: Fetal Bovine Serum; HIF-1A: Hypoxia-Inducible Factor 1-alpha; LDR: Low Dose Radiation; MAPK: Mitogen Activated Protein Kinase; MAPKK/MKK: MAPK Kinase; MAPKKK: MAPK Kinase Kinase; NO: Nitric Oxide; NOS: Nitric Oxide Synthase; P + CD: Priming + Challenge dose; PBS: Phosphate Buffered Saline; PBST: Phosphate Buffered Saline-Tween 20; PD: Priming Dose; PI3K: Phosphatidyl Inositol 3-Kinase; PKC: Protein Kinase C; RAR: Radio Adaptive Response; RNS: Reactive Nitrogen Species; ROS: Reactive Oxygen Species; RPMI-1640: Roswell Park Memorial Institute-1640 medium; SAPK/JNK: Stress-Activated Protein Kinase/ c-Jun NH2-terminal Kinase; SEM: Standard Error of Mean; SNAP: S-nitro amino penicillamine; TP53: Tumor Protein 53; γ-H2AX: Gamma- H2A histone family member X; Th1: Type 1 helper T cell responses; Th2: Type 2 helper T cell responses.
Collapse
Affiliation(s)
- Kavitha Premkumar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Jisha Nair
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| | - Bhavani S Shankar
- a Immunology Section, Radiation Biology & Health Sciences Division , Bio-Science Group, Bhabha Atomic Research Centre , Mumbai , India
| |
Collapse
|
7
|
Expression of ERCC1 and TUBB3 in Locally Advanced Cervical Squamous Cell Cancer and its Correlation with Different Therapeutic Regimens. Int J Biol Markers 2018; 30:e301-14. [DOI: 10.5301/jbm.5000161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2014] [Indexed: 01/08/2023]
Abstract
Background Several studies in solid tumors have shown that expression of excision repair cross-complementation group 1 (ERCC1) and class III β-tubulin (TUBB3) can predict response to chemoradiotherapy and might be prognostic factors. We assessed the role of ERCC1 and TUBB3 expressions as predictive and prognostic factors in locally advanced cervical squamous cell carcinoma (LACSCC) patients treated with different neoadjuvant regimens. Methods ERCC1 and TUBB3 were detected in 88 patients with LACSCC by immunohistochemical analysis. Sixty-two patients were included in 3 different prospective trials and grouped as follows: vinorelbine or docetaxel (group A, n = 44) and ifosfamide-vinorelbine-cisplatin (group B, n = 18). Both groups were compared with standard cisplatin chemoradiotherapy (group C, n = 26). Clinical data at baseline, disease-free survival (DFS) and overall survival (OS) were also collected. Univariate and multivariate Cox models were used to analyze the risk factors. Results Thirty-five patients (39.8%) and 18 (20.5%) had high ERCC1 and TUBB3 expression, respectively. Both proteins were overexpressed in tumors with unfavorable characteristics. High ERCC1 was associated with advanced FIGO stage (p = 0.034) and progressive disease (49% vs. 28%). Poor DFS (p = 0.021) and OS (p = 0.005) were observed in group C patients with high ERCC1 expression. Multivariate analysis showed that ERCC1 expression, FIGO stage and pretreatment hemoglobin level were significant prognostic factors (p = 0.002, p = 0.008 and p = 0.005, respectively). Conclusions ERCC1 expression could be a predictive and prognostic factor in LACSCC patients who receive cisplatin monotherapy. Conversely, TUBB3 had no impact on survival in patients treated with antimicrotubule agents.
Collapse
|
8
|
Abstract
PURPOSE Despite decades of research into radiation-induced adaptive responses, where prior irradiation changes the response to subsequent irradiations, the field of radiation oncology relies upon models of tumor control that assume that each radiation therapy fraction reproduces the same effect, known as iso-effect per fraction. Can these radiobiology principles both be true, forming a paradox or is only one of them right? Here, the apparent coexistence of these two contradictory observations is considered, examining how adaptive responses might apply in radiotherapy scenarios that are inconsistent with the majority of adaptive response experimental designs. CONCLUSION While the iso-effect per fraction assumption would preclude the observation of adaptive responses for cells survival after radiotherapy fractions, this does not preclude the observation of adaptive responses for other endpoints. Adaptive responses for cell survival might also manifest without invalidating the iso-effect principle in practical terms. It may also be the case that instances of both phenomena can be observed under different conditions, but not at the same time.
Collapse
Affiliation(s)
- Benjamin J Blyth
- a Radiation Oncology and Cancer Imaging , Peter MacCallum Cancer Centre , Melbourne , Australia.,b Cancer Research Division , Peter MacCallum Cancer Centre , Melbourne , Australia
| |
Collapse
|
9
|
Xiao M, Bolduc DL, Li X, Cui W, Hieber KP, Bünger R, Ossetrova NI. Urine Interleukin-18 (IL-18) as a Biomarker of Total-Body Irradiation: A Preliminary Study in Nonhuman Primates. Radiat Res 2017. [PMID: 28650775 DOI: 10.1667/rr14768.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have reported that circulating IL-18 can be used as a radiation biomarker in mice, minipigs and nonhuman primates (NHPs, Macaca mulatta). Here, we report the levels of IL-18 in individual NHP's urine before and at 6 h-7 days after 5.0, 6.5 and 8.5 Gy 60Co total-body irradiation (TBI) using enzyme linked immunosorbent assay (ELISA). Six animals (3.5-5.5 kg, 3-4 years old) per radiation dose were investigated. Correlation values between urine IL-18 and blood cell counts and serum chemistry parameters including lactate dehydrogenase (LDH), lipase, and serum total protein (TP), as well as between urine IL-18 and 60-day survival, were analyzed. Our data, to the best of our knowledge, for the first time, demonstrate that concentrations of urine IL-18 from irradiated NHPs were increased in a radiation dose-dependent manner compared to pre-TBI levels in samples from these animal (N = 18, 11.02 ± 1.3 pg/ml). A 5.0 Gy low dose of radiation (∼LD10/60) did not increase urine IL-18 levels. In contrast, high-dose TBI significantly increased urine IL-18 at day 1 to day 5 in a bell-shaped time course, reaching a peak of 5- to 10-fold of control levels on day 3 after 6.5 Gy (∼LD50/60) and 8.5 Gy (∼LD90/60), respectively. Statistical analysis using receiver operator characteristic (ROC) and MultiROC analysis indicated that white blood cell and platelet counts, serum LDH, lipase and TP, when combined with urine IL-18, provide discriminatory predictors of total-body radiation injury with a very high ROC area of 0.98. Urine IL-18 measurement, as an early prognostic indicator of survival, may facilitate rapid detection of lethal doses of radiation, based on the currently available data set.
Collapse
Affiliation(s)
- Mang Xiao
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - David L Bolduc
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - XiangHong Li
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Wanchang Cui
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kevin P Hieber
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Natalia I Ossetrova
- a Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
10
|
Abstract
Massive radiation-induced inflammatory factors released from injured cells may cause innate and acquired immune reactions that can further result in stress response signal activity-induced local and systemic damage. IL-1 family members IL-1β, IL-18, and IL-33 play key roles in inflammatory and immune responses and have been recognized to have significant influences on the pathogenesis of diseases. IL-1β, IL-18, and IL-33 share similarities of cytokine biology, but differences exist in signaling pathways. A key component of the inflammatory reaction is the inflammasome, which is a caspase-1-containing multiprotein oligomer. Pathological stimuli such as radiation can induce inflammasome and caspase-1 activation, and subsequently cause maturation (activation) of pro-forms of IL-1 and IL-18 upon caspase-1 cleavage. This caspase-1 dependent and IL-1 and IL-18 associated cell damage is defined as pyroptosis. Activated IL-1 and IL-18 as proinflammatory cytokines drive pathology at different immune and inflammatory disorders through Toll-like receptor (TLR) signaling. While the mechanisms of IL-1β-induced pathophysiology of diseases have been well studied, IL-18 has received less attention. The author recently reported that gamma radiation highly increased IL-1β, IL-18 and IL-33 expression in mouse thymus, spleen and/or bone marrow cells; also circulating IL-18 can be used as a radiation biomarker to track radiation injury in mice, minipigs, and nonhuman primates. This mini-review focuses on the role of IL-18 in response to gamma radiation-induced injury.
Collapse
Affiliation(s)
- Mang Xiao
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
11
|
Ha CT, Li X, Fu D, Xiao M. Circulating IL-18 Binding Protein (IL-18BP) and IL-18 as Dual Biomarkers of Total-Body Irradiation in Mice. Radiat Res 2016; 185:375-83. [PMID: 27023262 DOI: 10.1667/rr14238.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously reported that circulating interleukin-18 (IL-18) can be used as a radiation biomarker in mice, minipigs and nonhuman primates. In this study, we further determined the serum levels of IL-18 binding protein (IL-18BP), a natural endogenous antagonist of IL-18, in CD2F1 mice 1-13 days after total-body gamma irradiation (TBI) with different doses (5-10 Gy). We compared the changes in blood lymphocyte, neutrophil and platelet counts as well as the activation of the proapoptotic executioner caspase-3 and caspase-7, and the expression of the inflammatory factor cyclooxygenase 2 (COX-2) in spleen cells, with the changes of IL-18BP and IL-18 in mouse serum. We also evaluated the significance, sensitivity and specificity of alterations in radiation-induced IL-18BP. IL-18 increased from day 1-13 after TBI in a dose-dependent manner that was paralleled with an increase in IL-18 receptor alpha (IL-18Rα) in irradiated mouse spleen cells. IL-18BP rapidly increased (25-63 fold) in mouse serum on day 1 after different doses of TBI. However, it returned to baseline within 3 days after 5-7 Gy doses and within 7 days after 8 Gy dose, and was unaltered thereafter. In contrast, high doses of radiation (9 and 10 Gy) significantly sustained a higher level of IL-18BP in mouse serum and later induced a second phase of increase in IL-18BP on day 9-13 after irradiation, which coincided with the onset of animal mortality. Consistent with this observation, highly activated caspase-3 and -7 in 8-10 Gy irradiated mouse spleen cells exhibited reduced or no activity 24 h after 5 Gy, although radiation induced an inflammatory response, as shown by COX-2 expression in all irradiated cells. Our data suggest that the radiation-induced differential elevation of IL-18 and IL-18BP in animal serum is a dynamic and discriminative indicator of the severity of injury after exposure to ionizing radiation. These findings support the inclusion of the dual biomarkers IL-18BP and IL-18 in the development of a multifactorial strategy for radiation dose and injury assessment.
Collapse
Affiliation(s)
- Cam T Ha
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Dadin Fu
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
12
|
Toprani SM, Das B. Radio-adaptive response of base excision repair genes and proteins in human peripheral blood mononuclear cells exposed to gamma radiation. Mutagenesis 2015; 30:663-76. [PMID: 25958388 DOI: 10.1093/mutage/gev032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Radio-adaptive response is a mechanism whereby a low-dose exposure (priming dose) induces resistance to a higher dose (challenging dose) thus significantly reducing its detrimental effects. Radiation-induced DNA damage gets repaired through various DNA repair pathways in human cells depending upon the type of lesion. The base excision repair (BER) pathway repairs radiation-induced base damage, abasic sites and single-strand breaks in cellular DNA. In the present study, an attempt has been made to investigate the involvement of BER genes and proteins in the radio-adaptive response in human resting peripheral blood mononuclear cells (PBMC). Venous blood samples were collected from 20 randomly selected healthy male individuals with written informed consent. PBMC were isolated and irradiated at a priming dose of 0.1 Gy followed 4h later with a challenging dose of 2.0 Gy (primed cells). Quantitation of DNA damage was done using the alkaline comet assay immediately and expression profile of BER genes and proteins were studied 30 min after the challenging dose using real-time quantitative polymerase chain reaction and western blot, respectively. The overall result showed significant (P ≤ 0.05) reduction of DNA damage in terms of percentage of DNA in tail (%T) with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4 h. Twelve individuals showed significant (P ≤ 0.05) reduction in %T whereas eight individuals showed marginal reduction in DNA damage that was not statistically significant. However, at the transcriptional level, BER genes such as APE1, FEN1 and LIGASE1 showed significant (P ≤ 0.05) up-regulation in both groups. Significant (P ≤ 0.05) up-regulation was also observed at the protein level for OGG1, APE1, MBD4, FEN1 and LIGASE1 in primed cells. Up-regulation of some BER genes and proteins such as APE1, FEN1 and LIGASE1 in primed cells of resting PBMC is suggestive of active involvement of the BER pathway in radio-adaptive response.
Collapse
Affiliation(s)
- Sneh M Toprani
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
13
|
Shelke S, Das B. Dose response and adaptive response of non-homologous end joining repair genes and proteins in resting human peripheral blood mononuclear cells exposed to γ radiation. Mutagenesis 2014; 30:365-79. [PMID: 25473122 DOI: 10.1093/mutage/geu081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ionising radiation induces single-strand breaks, double-strand breaks (DSB) and base damages in human cell. DSBs are the most deleterious and if not repaired may lead to genomic instability and cell death. DSB can be repaired through non-homologous end joining (NHEJ) pathway in resting lymphocytes. In this study, NHEJ genes and proteins were studied in irradiated human peripheral blood mononuclear cells (PBMC) at resting stage. Dose-response, time point kinetics and adaptive-response studies were conducted in irradiated PBMC at various end points such as DNA damage quantitation, transcription and protein expression profile. Venous blood samples were collected from 20 random, normal and healthy donors with written informed consent. PBMC was separated and irradiated with various doses between 0.1 and 2.0 Gy ((60)CO-γ source) for dose-response study. Repair kinetics of DNA damage and time point changes in expression of genes and proteins were studied in post-irradiated PBMC at 2.0 Gy at various time points up to 240 min. Adaptive-response study was conducted with a priming dose of 0.1 Gy followed by a challenging dose of 2.0 Gy after 4-h incubation. Our results revealed that Ku70, Ku80, XLF and Ligase IV were significantly upregulated (P < 0.05) at 4-h post-irradiation at transcript and protein level. Adaptive-response study showed significantly increased expression of the proteins involved in NHEJ, suggesting their role in adaptive response in human PBMC at G0/G1, which has important implications to human health.
Collapse
Affiliation(s)
- Shridevi Shelke
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
14
|
Radiobiological effects of multiple vs. single low-dose pre-irradiation on the HT29 cell line. Contemp Oncol (Pozn) 2014; 18:230-3. [PMID: 25258579 PMCID: PMC4171467 DOI: 10.5114/wo.2014.41386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/18/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
AIM OF THE STUDY Aim of the study was to compare radiobiological effects of multiple vs. single low-dose pre-irradiation on the HT29 cell line. This regime is designed to be as similar as possible to fractionated tumour radiotherapy treatment, and to provide data on radiobiological effects on human tumour cells. MATERIAL AND METHODS The cell line used in the study was HT29 (human colorectal adenocarcinoma, American Type Culture Collection HTB-38™). Also, for comparison, the MRC5 cell line (human foetal lung fibroblasts, American Type Culture Collection CCL 171) was used. Four-day treatment in a 4 × 2 Gy regime was performed. Cell viability was evaluated by tetrazolium colorimetric MTT assay. RESULTS Multiple low-dose pre-irradiation induced a stronger radioadaptive response compared to single low-dose application in the HT29 cell line. Multiple pre-irradiation with 0.03 Gy and 0.05 Gy caused radioadaptive effects, while in both single and multiple low-dose pre-irradiation regimes 0.07 Gy led to radiosensitivity. Radiobiological effects induced in the HT29 cell line by low-dose pre-irradiation were evidently weak during the treatment time, because a single low-dose applied only on the first day gave no radioadaptive effects. In the MRC5 cell line different effects were registered, since radioadaptive response has not been observed after multiple or single pre-irradiation. CONCLUSIONS The obtained data are interesting, especially for the possible application of low-dose pre-irradiation in radiotherapy.
Collapse
|
15
|
Blimkie MSJ, Fung LCW, Petoukhov ES, Girard C, Klokov D. Repair of DNA double-strand breaks is not modulated by low-dose gamma radiation in C57BL/6J mice. Radiat Res 2014; 181:548-59. [PMID: 24785832 DOI: 10.1667/rr13324.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, we sought to determine whether low-dose ionizing radiation, previously shown to induce a systemic adaptive response in C57BL/6J mice, is capable of enhancing the rate of DNA double-strand break repair. Repair capacity was determined by measuring γ-H2AX levels in splenic and thymic lymphocytes, using flow cytometry, at different times after a challenge irradiation (2 Gy, (60)Co). Irradiation with low doses (20 and 100 mGy) was conducted in vivo, whereas the challenge dose was applied to primary cultures of splenocytes and thymocytes in vitro 24 h later. Obtained kinetics curves of formation and loss of γ-H2AX indicated that cells from low-dose irradiated mice did not express more efficient DNA double-strand break repair compared to controls. Immunoblot analysis of γ-H2AX and Phospho-Ser-1981 ATM confirmed that DNA damage signaling was not modulated by preliminary low-dose radiation. Mouse embryonic fibroblasts of C57BL genetic background failed to show clonogenic survival radioadaptive response or enhanced repair of DNA double-strand breaks as evaluated by immunofluorescence microscopy of γ-H2AX foci. Our results indicate that radiation adaptive responses at systemic levels, such as increases in the tumor latency times in aging mice, may not be mediated by modulated DNA repair, and that the genetic background may affect expression of a radioadaptive response.
Collapse
Affiliation(s)
- Melinda S J Blimkie
- a Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada
| | | | | | | | | |
Collapse
|
16
|
Vijayalaxmi, Cao Y, Scarfi MR. Adaptive response in mammalian cells exposed to non-ionizing radiofrequency fields: A review and gaps in knowledge. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 760:S1383-5742(14)00004-0. [PMID: 24548818 DOI: 10.1016/j.mrrev.2014.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 11/19/2022]
Abstract
Adaptive response is a phenomenon in which cells which were pre-exposed to extremely low and non-toxic doses of a genotoxic agent became resistant to the damage induced by subsequent exposure to a higher and toxic dose of the same, similar (in action) or another genotoxic agent. Such response has been well documented in scientific literature in cells exposed in vitro and in vivo to low doses of physical (especially, ionizing radiation) and chemical mutagens. The existence of similar phenomenon in mammalian cells exposed in vitro and in vivo to non-ionizing radiofrequency fields has been reported in several research publications. In in vitro studies, human blood lymphocytes exposed to radiofrequency fields and then treated with a genotoxic mutagen or subjected to ionizing radiation showed significantly decreased genetic damage. Similar studies in tumor cells showed significantly increased viability, decreased apoptosis, increased mitochondrial membrane potential, decreased intracellular free Ca2+ and, increased Ca2+-Mg2+-ATPase activity. In in vivo studies, exposure of rodents to radiofrequency fields and then to lethal/sub-lethal doses of γ-radiation showed survival advantage, significantly decreased damage in hematopoietic tissues, decreased genetic damage in blood leukocytes and bone marrow cells, increased numbers of colony forming units in bone marrow, increased levels of colony stimulating factor and interleukin-3 in the serum and increased expression of genes related to cell cycle. These observations suggested the ability of radiofrequency fields to induce adaptive response and also indicated some potential mechanisms for the induction of such response. Several gaps in knowledge that need to be investigated were discussed.
Collapse
|
17
|
Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 2013; 356:72-81. [PMID: 24041866 DOI: 10.1016/j.canlet.2013.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022]
Abstract
A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the "bystander effect". These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexandros Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Olga A Martin
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre and the University of Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Grygoryev D, Moskalenko O, Hinton TG, Zimbrick JD. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in Medaka fish ( Oryzias latipes ). Radiat Res 2013; 180:235-46. [PMID: 23919310 DOI: 10.1667/rr3190.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of transgenerational exposure to low dose rate (2.4 and 21 mGy/day) gamma irradiation on the yield of DNA double-strand breaks and oxidized guanine (8-hydroxyguanine) has been studied in the muscle and liver tissue of a model organism, the Japanese medaka fish. We found the level of unrepaired 8-hydroxyguanine in muscle tissue increased nonlinearly over four generations and the pattern of this change depended on the radiation dose rate, suggesting that our treatment protocols initiated genomic instability and an adaptive response as the generations progressed. The yield of unrepaired double-strand breaks did not vary significantly among successive generations in muscle tissue in contrast to liver tissue in which it varied in a nonlinear manner. The 8-hydroxyguanine and DSB radiation yields were significantly higher at 2.4 mGy/day than at 21 mGy/day in both muscle and liver tissue in all generations. These data are consistent with the hypothesis of a threshold for radiation-induced activation of DNA repair systems below which tissue levels of DNA repair enzymes remain unchanged, leading to the accumulation of unrepaired damage at very low doses and dose rates.
Collapse
Affiliation(s)
- D Grygoryev
- a Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | |
Collapse
|
19
|
Howell EK, Gaschak SP, Griffith KDW, Rodgers BE. Radioadaptive Response Following In Utero Low-Dose Irradiation. Radiat Res 2012. [DOI: 10.1667/rr3029.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Eric K. Howell
- Department of Biological Sciences and the Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas; and
| | - Sergey P. Gaschak
- International Radioecology Laboratory, Slavutych, Kyiv Region 07100, Ukraine
| | - Kenneth D. W. Griffith
- Department of Biological Sciences and the Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas; and
| | - Brenda E. Rodgers
- Department of Biological Sciences and the Center for Environmental Radiation Studies, Texas Tech University, Lubbock, Texas; and
| |
Collapse
|
20
|
Mosse IB. Genetic effects of ionizing radiation--some questions with no answers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 112:70-75. [PMID: 22683898 DOI: 10.1016/j.jenvrad.2012.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/06/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
There are a lot of questions about genetic effects of ionizing radiation, the main one is does ionizing radiation induce mutations in humans? There is no direct evidence that exposure of parents to radiation leads to excess heritable disease in offspring. What is the difference between human and other species in which radiation induced mutations are easily registered? During evolution germ cell selection ex vivo has been changed to a selection in vivo and we cannot observe such selection of radiation damaged cells in human. Low radiation doses - are they harmful or beneficial? The "hormesis" phenomenon as well as radioadaptive response proves positive effects of low radiation dose. Can analysis of chromosomal aberration rate in lymphocytes be used for dosimetry? Many uncontrolled factors may be responsible for significant mistakes of this method. Why did evolution preserve the bystander effect? This paper is discussion one and its goal is to pay attention on some effects of ionizing radiation.
Collapse
Affiliation(s)
- Irma B Mosse
- Laboratory of Human Genetics, Institute of Genetics & Cytology, NAS of Belarus, 27, Akademicheskaya Str., 220072 Minsk, Belarus.
| |
Collapse
|
21
|
Rithidech KN, Lai X, Honikel L, Reungpatthanaphong P, Witzmann FA. Identification of proteins secreted into the medium by human lymphocytes irradiated in vitro with or without adaptive environments. HEALTH PHYSICS 2012; 102:39-53. [PMID: 22134077 PMCID: PMC3744879 DOI: 10.1097/hp.0b013e31822833af] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
There is increasing evidence to support the hypothesis of adaptive response, a phenomenon in which protection arises from a low-dose radiation (<0.1 Gy) against damage induced by subsequent exposure to high-dose radiation. The molecular mechanisms underlying such protection are poorly understood. The goal of this study was to fill this knowledge gap. Mass spectrometry-based proteomics was used to characterize global protein expression profiles in the medium collected from human lymphocyte cultures given sham irradiation (0 Gy) or a priming low dose of 0.03 Gy 137Cs γ rays 4 h prior to a challenging dose of 1 Gy 137Cs γ rays. Adaptive response was determined by decreased micronucleus frequencies in lymphocytes receiving low dose irradiation prior to high dose irradiation compared to those receiving only high dose irradiation. Adaptive response was found in these experiments. Proteomic analysis of media revealed: (a) 55 proteins with similar abundance in both groups; (b) 23 proteins in both groups, but 7 of them were high abundance in medium with adaptive environment, while 16 high abundance proteins were in medium without adaptive environment; (c) 17 proteins in medium with adaptive environment only; and (d) 8 proteins in medium without adaptive environment only. The results provide a foundation for improving understanding of the molecular mechanisms associated with the beneficial effects of low dose radiation that, in turn, will have an important impact on radiation risk estimation. Hence, these studies are highly relevant to radiation protection due to an increased use of low dose radiation in daily life (e.g., medical diagnosis or airport safety) or an unavoidable exposure to low level background radiation.
Collapse
|
22
|
Vares G, Wang B, Tanaka K, Shang Y, Fujita K, Hayata I, Nenoi M. Trp53 activity is repressed in radio-adapted cultured murine limb bud cells. JOURNAL OF RADIATION RESEARCH 2011; 52:727-734. [PMID: 21921435 DOI: 10.1269/jrr.10092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Understanding the effects of of ionizing radiation (IR) at low dose in fetal models is of great importance, because the fetus is considered to be at the most radiosensitive stage of the development and prenatal radiation might influence subsequent development. We previously demonstrated the existence of an adaptive response (AR) in murine fetuses after pre-exposure to low doses of X-rays. Trp53-dependent apoptosis was suggested to be responsible for the teratogenic effects of IR; decreased apoptosis was observed in adapted animals. In this study, in order to investigate the role of Trp53 in AR, we developed a new model of irradiated micromass culture of fetal limb bud cells, which replicated proliferation, differentiation and response to IR in murine embryos. Murine fetuses were exposed to whole-body priming irradiation of 0.3 Gy or 0.5 Gy at embryonic day 11 (E11). Limb bud cells (collected from digital ray areas exhibiting radiation-induced apoptosis) were cultured and exposed to a challenging dose of 4 Gy at E12 equivalent. The levels of Trp53 protein and its phosphorylated form at Ser18 were investigated. Our results suggested that the induction of AR in mouse embryos was correlated with a repression of Trp53 activity.
Collapse
Affiliation(s)
- Guillaume Vares
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Varès G, Wang B, Tanaka K, Kakimoto A, Eguchi-Kasai K, Nenoi M. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to low doses of heavy-ion radiation. Mutat Res 2011; 712:49-54. [PMID: 21540043 DOI: 10.1016/j.mrfmmm.2011.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 04/06/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
Adaptive response (AR) and bystander effect are two important phenomena involved in biological responses to low doses of ionizing radiation (IR). Furthermore, there is a strong interest in better understanding the biological effects of high-LET radiation. We previously demonstrated the ability of low doses of X-rays to induce an AR to challenging heavy-ion radiation [8]. In this study, we assessed in vitro the ability of priming low doses (0.01Gy) of heavy-ion radiation to induce a similar AR to a subsequent challenging dose (1-4Gy) of high-LET IR (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm) in TK6, AHH-1 and NH32 cells. Our results showed that low doses of high-LET radiation can induce an AR characterized by lower mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and faster DNA repair kinetics, in cells expressing p53.
Collapse
Affiliation(s)
- Guillaume Varès
- Radiation Risk Reduction Research Program, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Yamamoto A, Sakamoto Y, Masumura K, Honma M, Nohmi T. Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N'-nitro-N-nitrosoguanidine against γ-induced genotoxicity in human cells. Mutat Res 2011; 713:56-63. [PMID: 21704047 DOI: 10.1016/j.mrfmmm.2011.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of γ-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24h before they were exposed to γ-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by γ-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and γ-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by γ-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of γ-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.
Collapse
Affiliation(s)
- Ayumi Yamamoto
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | | | | | | | | |
Collapse
|
25
|
Varès G, Wang B, Tanaka K, Kakimoto A, Eguchi-Kasai K, Nenoi M. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to X-rays. Mutat Res 2011; 706:46-52. [PMID: 21055411 DOI: 10.1016/j.mrfmmm.2010.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/15/2010] [Accepted: 10/26/2010] [Indexed: 05/30/2023]
Abstract
The ability of cells to adapt low-dose or low-dose rate radiation is well known. High-LET radiation has unique characteristics, and the data concerning low doses effects and high-LET radiation remain fragmented. In this study, we assessed in vitro the ability of low doses of X-rays to induce an adaptive response (AR) to a subsequent challenging dose of heavy-ion radiation. Lymphoblastoid cells (TK6, AHH-1, NH32) were exposed to priming 0.02-0.1Gy X-rays, followed 6h later by challenging 1Gy heavy-ion radiation (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm). Pre-exposure of p53-competent cells resulted in decreased mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and different H2AX phosphorylation kinetics, as compared to cells exposed to challenging radiation alone. This phenomenon did not seem to be linked with cell cycle effects or radiation-induced apoptosis. Taken together, our results suggested the existence of an AR to mutagenic effects of heavy-ion radiation in lymphoblastoid cells and the involvement of double-strand break repair mechanisms.
Collapse
Affiliation(s)
- Guillaume Varès
- National Institute of Radiological Sciences, Anagawa 4-9-1, Inage-ku, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Vares G, Wang B, Tanaka K, Shang Y, Taki K, Nakajima T, Nenoi M. Gene silencing of Tead3 abrogates radiation-induced adaptive response in cultured mouse limb bud cells. JOURNAL OF RADIATION RESEARCH 2011; 52:39-46. [PMID: 21293071 DOI: 10.1269/jrr.10101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is a crucial need to better understand the effects of low-doses of ionizing radiation in fetal models. Radiation-induced adaptive response (AR) was described in mouse embryos pre-exposed in utero to low-doses of X-rays, which exhibited lower apoptotic levels in the limb bud. We previously described AR-specific gene modulations in the mouse embryo. In this study, we evaluated the role of three candidate genes in the apoptotic AR in a micromass culture of limb bud cells: Csf1, Cacna1a and Tead3. Gene silencing of these three genes abrogated AR. Knowing that TEAD3 protein levels are significantly higher in adapted cells and that YAP/TAZ/TEAD are involved in the control of cell proliferation and apoptosis, we suggest that modulation of Tead3 could play a role in the induction of AR in our model, seen as a reduction of radiation-induced apoptosis and a stimulation of proliferation and differentiation in limb bud cells.
Collapse
|
27
|
Ulsh BA. Checking the foundation: recent radiobiology and the linear no-threshold theory. HEALTH PHYSICS 2010; 99:747-758. [PMID: 21068593 DOI: 10.1097/hp.0b013e3181e32477] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The linear no-threshold (LNT) theory has been adopted as the foundation of radiation protection standards and risk estimation for several decades. The "microdosimetric argument" has been offered in support of the LNT theory. This argument postulates that energy is deposited in critical cellular targets by radiation in a linear fashion across all doses down to zero, and that this in turn implies a linear relationship between dose and biological effect across all doses. This paper examines whether the microdosimetric argument holds at the lowest levels of biological organization following low dose, low dose-rate exposures to ionizing radiation. The assumptions of the microdosimetric argument are evaluated in light of recent radiobiological studies on radiation damage in biological molecules and cellular and tissue level responses to radiation damage. There is strong evidence that radiation initially deposits energy in biological molecules (e.g., DNA) in a linear fashion, and that this energy deposition results in various forms of prompt DNA damage that may be produced in a pattern that is distinct from endogenous (e.g., oxidative) damage. However, a large and rapidly growing body of radiobiological evidence indicates that cell and tissue level responses to this damage, particularly at low doses and/or dose-rates, are nonlinear and may exhibit thresholds. To the extent that responses observed at lower levels of biological organization in vitro are predictive of carcinogenesis observed in vivo, this evidence directly contradicts the assumptions upon which the microdosimetric argument is based.
Collapse
Affiliation(s)
- Brant A Ulsh
- National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Mailstop C-46, Cincinnati, OH 45226, USA
| |
Collapse
|
28
|
Doll CM, Prystajecky M, Eliasziw M, Klimowicz AC, Petrillo SK, Craighead PS, Hao D, Diaz R, Lees-Miller SP, Magliocco AM. Low ERCC1 mRNA and protein expression are associated with worse survival in cervical cancer patients treated with radiation alone. Radiother Oncol 2010; 97:352-9. [PMID: 20934765 DOI: 10.1016/j.radonc.2010.08.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the association of excision repair cross-complementation group 1 (ERCC1) expression, using both mRNA and protein expression analysis, with clinical outcome in cervical cancer patients treated with radical radiation therapy (RT). EXPERIMENTAL DESIGN Patients (n=186) with locally advanced cervical cancer, treated with radical RT alone from a single institution were evaluated. Pre-treatment FFPE biopsy specimens were retrieved from 112 patients. ERCC1 mRNA level was determined by real-time PCR, and ERCC1 protein expression (FL297, 8F1) was measured using quantitative immunohistochemistry (AQUA®). The association of ERCC1 status with local response, 10-year disease-free (DFS) and overall survival (OS) was analyzed. RESULTS ERCC1 protein expression levels using both FL297 and 8F1 antibodies were determined for 112 patients; mRNA analysis was additionally performed in 32 patients. Clinical and outcome factors were comparable between the training and validation sets. Low ERCC1 mRNA expression status was associated with worse OS (17.9% vs 50.1%, p=0.046). ERCC1 protein expression using the FL297 antibody, but not the 8F1 antibody, was significantly associated with both OS (p=0.002) and DFS (p=0.010). After adjusting for pre-treatment hemoglobin in a multivariate analysis, ERCC1 FL297 expression status remained statistically significant for OS [HR 1.9 (1.1-3.3), p=0.031]. CONCLUSIONS Pre-treatment tumoral ERCC1 mRNA and protein expression, using the FL297 antibody, are predictive factors for survival in cervical cancer patients treated with RT, with ERCC1 FL297 expression independently associated with survival. These results identify a subset of patients who may derive the greatest benefit from the addition of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Corinne M Doll
- Department of Oncology, University of Calgary, Alberta, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Klammer H, Kadhim M, Iliakis G. Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Cancer Res 2010; 70:8498-506. [PMID: 20861183 DOI: 10.1158/0008-5472.can-10-1181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adaptive response (AR) is a term describing resistance to ionizing radiation-induced killing or formation of aberrant chromosomes that is mediated by pre-exposure to low ionizing radiation doses. The mechanism of AR remains elusive. Because cell killing and chromosome aberration formation derive from erroneous processing of DNA double-strand breaks (DSB), AR may reflect a modulation of DSB processing by nonhomologous end joining (NHEJ) or homologous recombination repair. Here, we use plasmid end-joining assays to quantify modulations induced by low ionizing radiation doses to NHEJ, the dominant pathway of DSB repair in higher eukaryotes, and investigate propagation of this response through medium transfer to nonirradiated bystander cells. Mouse embryo fibroblasts were conditioned with 10 to 1000 mGy and NHEJ quantified at different times thereafter by challenging with reporter plasmids containing a DSB. We show robust increases in NHEJ efficiency in mouse embryo fibroblasts exposed to ionizing radiation >100 mGy, irrespective of reporter plasmid used. Human tumor cells also show AR of similar magnitude that is compromised by caffeine, an inhibitor of DNA damage signaling acting by inhibiting ATM, ATR, and DNA-PKcs. Growth medium from pre-irradiated cells induces a caffeine-sensitive AR in nonirradiated cells, similar in magnitude to that seen in irradiated cells. In bystander cells, γH2AX foci are specifically detected in late S-G(2) phase and are associated with Rad51 foci that signify the function of homologous recombination repair, possibly on DNA replication-mediated DSBs. The results point to enhanced NHEJ as a mechanism of AR and suggest that AR may be transmitted to bystander cells through factors generating replication-mediated DSBs.
Collapse
Affiliation(s)
- Holger Klammer
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | |
Collapse
|
30
|
Singh S, Bala M, Kumar R, Kumar A, Dhiman SC. Modification in the expression of Mre11/Rad50/Nbs1 complex in low dose irradiated human lymphocytes. Dose Response 2009; 7:193-207. [PMID: 19809539 DOI: 10.2203/dose-response.09-001.singh] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Despite the fact that high doses of radiation are detrimental, low dose radiation (LDR) often protects the organism against a subsequent exposure of lethal doses of radiation. Present study was undertaken to understand the role of Mre11, Rad50 and Nbs1 genes in the low dose radio-adapted human peripheral blood mononuclear cells (PBMCs). Optimum time interval between low dose (0.07 Gy) and high dose (5.0 Gy) of (60)Co-gamma-radiation was observed to be 5.0 hours, at which PBMCs showed maximum LDR induced resistance (RIR). At cytogenetic level, micronuclei frequency was found to be reduced in LDR pre-irradiated PBMCs subsequently exposed to high dose radiation (HDR) as compared to controls. At transcriptional level, with reference to sham-irradiated cells significantly (p< or =0.05) altered expression of Mre11, Rad50 and Nbs1 genes was observed in low dose irradiated cells. At protein level, Mre11, Rad50 and Nbs1 were enhanced significantly (p< or =0.05) in low dose pre-irradiated cells subsequently exposed to high dose of radiation as compared to only high dose irradiated cells. Transcriptional as well as translational modulation in the expression of MRN complex components upon low dose irradiation may confer its participation in repair pathways, resulting in induced resistance.
Collapse
Affiliation(s)
- Sompal Singh
- Department of Zoology, M. S. (PG) College, Saharanpur, India.
| | | | | | | | | |
Collapse
|
31
|
Pan Y, Yuan D, Zhang J, Xu P, Chen H, Shao C. Cadmium-Induced Adaptive Response in Cells of Chinese Hamster Ovary Cell Lines with Varying DNA Repair Capacity. Radiat Res 2009; 171:446-53. [DOI: 10.1667/rr1491.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Dimova E, Dimitrova M, Miteva D, Mitrovska Z, Yurina NP, Bryant PE, Chankova S. Does single-dose cell resistance to the radio-mimetic zeocin correlate with a zeocin-induced adaptive response in Chlamydomonas reinhardtii strains? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:77-84. [PMID: 18956208 DOI: 10.1007/s00411-008-0199-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
This study aimed to test whether a correlation exists between single-dose resistance to zeocin and the ability to develop a zeocin-induced adaptive response (AR) in Chlamydomonas reinhardtii strains. Three genotypes were used: wild type (WT) strain 137C and two strains (H-3 and AK-9-9), which are highly resistant to radiation based on survival studies. Based on a micro-colony assay, the strains could be arranged according to their single-dose resistance to zeocin as follows: AK-9-9 > H-3 > 137C. However, zeocin induced a similar level of DSB in strains AK-9-9, H-3 and 137C. The radio- and zeocin-resistant strains AK-9-9 and H-3 showed higher DSB rejoining capacity than the WT strain 137C, suggesting that DSB rejoining can at least partly account for different cell survival. Both WT and radio-resistant strains develop zeocin-induced AR involving increased DSB rejoining. The radio- and zeocin-resistant strains AK-9-9 and H-3 again showed higher DSB rejoining capacity than the WT strain 137C. The higher resistance of strains H-3 and AK-9-9 did not abrogate their ability to adapt, albeit with a smaller magnitude as compared to the WT strain. The obtained results characterize new radio-resistant C. reinhardtii strains, which enrich the collection of resistant C. reinhardtii strains.
Collapse
Affiliation(s)
- E Dimova
- Central Laboratory of General Ecology-BAS, Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
33
|
Gruel G, Voisin P, Vaurijoux A, Roch-Lefevre S, Grégoire E, Maltere P, Petat C, Gidrol X, Voisin P, Roy L. Broad modulation of gene expression in CD4+ lymphocyte subpopulations in response to low doses of ionizing radiation. Radiat Res 2008; 170:335-44. [PMID: 18763857 DOI: 10.1667/rr1147.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 04/17/2008] [Indexed: 11/03/2022]
Abstract
To compare the responses of the different lymphocyte subtypes after an exposure of whole blood to low doses of ionizing radiation, we examined variations in gene expression in different lymphocyte subpopulations using microarray technology. Blood samples from five healthy donors were independently exposed to 0 (sham irradiation), 0.05 and 0.5 Gy of ionizing radiation. Three and 24 h after exposure, CD56+, CD4+ and CD8+ cells were negatively isolated. RNA from each set of experimental conditions was competitively hybridized on 25k oligonucleotide microarrays. Modifications of gene expression were measured after both intervals and in all cell types. Twenty-four hours after exposure to 0.5 Gy, we observed an induction of the expression of BAX, PCNA, GADD45, DDB2 and CDKN1A. However, the numbers of modulated genes greatly differed between cell types. In particular, 3 h after exposure to doses as low as 0.05 Gy, the number of down-modulated genes was 10 times greater for CD4+ cells than for all other cell types. Moreover, most of these repressed genes were taking part in the cell processes of protein biosynthesis and oxidative phosphorylation. The results suggest that several biological pathways in CD4+ cells could be sensitive to low doses of radiation. Therefore, specifically studying CD4+ cells could help to understand the mechanisms involved in low-dose response and allow their detection.
Collapse
Affiliation(s)
- Gaëtan Gruel
- Laboratoire de Dosimétrie Biologique, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), 92262 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The effect of radio-adaptive doses on HT29 and GM637 cells. Radiat Oncol 2008; 3:12. [PMID: 18433479 PMCID: PMC2387149 DOI: 10.1186/1748-717x-3-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/23/2008] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The shape of the dose-response curve at low doses differs from the linear quadratic model. The effect of a radio-adaptive response is the centre of many studies and well known inspite that the clinical applications are still rarely considered. METHODS We studied the effect of a low-dose pre-irradiation (0.03 Gy - 0.1 Gy) alone or followed by a 2.0 Gy challenging dose 4 h later on the survival of the HT29 cell line (human colorectal cancer cells) and on the GM637 cell line (human fibroblasts). RESULTS 0.03 Gy given alone did not have a significant effect on both cell lines, the other low doses alone significantly reduced the cell survival. Applied 4 h before the 2.0 Gy fraction, 0.03 Gy led to a significant induced radioresistance in GM637 cells, but not in HT29 cells, and 0.05 Gy led to a significant hyperradiosensitivity in HT29 cells, but not in GM637 cells. CONCLUSION A pre-irradiation with 0.03 Gy can protect normal fibroblasts, but not colorectal cancer cells, from damage induced by an irradiation of 2.0 Gy and the application of 0.05 Gy prior to the 2.0 Gy fraction can enhance the cell killing of colorectal cancer cells while not additionally damaging normal fibroblasts. If these findings prove to be true in vivo as well this may optimize the balance between local tumour control and injury to normal tissue in modern radiotherapy.
Collapse
|
35
|
Kimmel RR, Agnani S, Yang Y, Jordan R, Schwartz JL. DNA copy-number instability in low-dose gamma-irradiated TK6 lymphoblastoid clones. Radiat Res 2008; 169:259-69. [PMID: 18302486 DOI: 10.1667/rr1096.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/24/2007] [Indexed: 11/03/2022]
Abstract
Genomic instability that might occur early during low-dose, fractionated radiation exposures may be traceable in radiogenic compared to spontaneous cancers. Using a human 18K cDNA microarray-based comparative genome hybridization protocol, we measured changes in DNA copy number at over 14,000 loci in nine low-dose (137)Cs gamma-irradiated (acute exposure to 10 cGy/day x 21 days) and nine unirradiated TK6 clones and estimated locus-specific copy-number differences between them. Radiation induced copy-number hypervariability at thousands of loci across all chromosomes, with a sevenfold increase in low-level, randomly positioned DNA gains. Recurrent gains at 40 loci occurred among irradiated clones and were distributed nonrandomly across the genome, with the highest densities in 3q, 13q and 20q at sites that were hypodiploid without irradiation. Another nonrandomly distributed set of 94 loci exhibited relative recurrent gains from a hypodiploid state to a diploid state, suggesting hemizygous-to-homozygous transitions. Frequently recurring losses at 57 loci were concentrated on the single X-chromosome but were sparsely distributed at 0-2 loci per autosome. These results suggest induced mitotic homologous recombination as a possible mechanism of low-dose radiation-induced genomic instability. Genomic instability induced in TK6 cells resembled that seen in radiogenic tumors and suggests a way that radiation could induce genomic instability in preneoplastic cells.
Collapse
Affiliation(s)
- Robert R Kimmel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
36
|
Kim TI, Cho PY, Song KJ, Li S, Hong SJ, Park SW, Chai JY, Shin EH. Gene expression of Clonorchis sinensis metacercaria induced by gamma irradiation. Parasitol Res 2008; 102:1143-50. [PMID: 18224473 DOI: 10.1007/s00436-008-0882-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 01/09/2008] [Indexed: 01/01/2023]
Abstract
Gamma-rays are a form of ionizing radiation and produce serious cellular damage to nuclei and organelles. Gamma irradiation induces the expressions of genes involved in DNA repair. Clonorchis sinensis resides in and provokes pathophysiologic changes in the bile ducts of mammals. The C. sinensis metacercariae are unsusceptible or resistant to gamma irradiation with LD50 of 16.5 Gy. Using the annealing control primer-based polymerase chain reaction (PCR) method, 19 genes were found to be up-regulated in C. sinensis metacercariae exposed to gamma rays. Contigs of up-regulated genes (URGs) were retrieved in a C. sinensis expressed sequence tag pool and extended by DNA-walking. Of the 13 URGs annotated putatively as functional genes, five URGs were associated with energy metabolism, six with protein processing, and the other two with DNA repair protein RAD23 and inhibitor of apoptosis protein. Four URGs were confirmed up-regulated by gamma irradiation by quantitative real-time PCR. One unknown gene, which was up-regulated to the greatest extent, might contribute to early recovery from gamma-irradiation-induced damage. The up-regulations of genes encoding DNA repair, protein processing, and energy metabolism proteins suggests that increases in gene products orchestrate DNA lesion repair and recover cellular functions in gamma-irradiated C. sinensis metacercariae.
Collapse
Affiliation(s)
- Tae Im Kim
- Department of Parasitology, Chung-Ang University College of Medicine, Tongjak-gu, Seoul 156-756, Korea
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dimova EG, Bryant PE, Chankova SG. Adaptive response: some underlying mechanisms and open questions. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|