1
|
Młynarczyk D, Puig P, Barquinero JF, Armero C, Gómez-Rubio V. Comparative analysis of the yields of dicentrics and chromosomal translocations. Int J Radiat Biol 2024; 100:1193-1201. [PMID: 38953797 DOI: 10.1080/09553002.2024.2369077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/09/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Chromosomal dicentrics and translocations are commonly employed as biomarkers to estimate radiation doses. The main goal of this article is to perform a comparative analysis of yields of both types of aberrations. The objective is to determine if there are relevant distinctions between both yields, allowing for a comprehensive assessment of their respective suitability and accuracy in the estimation of radiation doses. MATERIALS AND METHODS The analysis involved data from a partial-radiation simulation study with the calibration data obtained through two scoring methods: conventional and PAINT modified. Subsequently, a Bayesian bivariate zero-inflated Poisson model was employed to compare the posterior marginal density of the mean of dicentrics and translocations and assess the differences between them. RESULTS When employing the conventional method of scoring, the findings indicate that there is no notable disparity between the yield of observed translocations and dicentrics. However, when utilizing the PAINT modified method, a notable discrepancy is observed for higher doses, indicating a relevant difference in the mean number of the two types of aberrations. CONCLUSIONS The choice of scoring method significantly influences the analysis of radiation-induced aberrations, especially when distinguishing between complex and simple chromosomal formations. Further research and analysis are necessary to gain a deeper understanding of the factors and mechanisms impacting the formation of dicentrics and translocations.
Collapse
Affiliation(s)
- Dorota Młynarczyk
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pedro Puig
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centre de Recerca Matemàtica, Bellaterra, Spain
| | - Joan F Barquinero
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Armero
- Departament d'Estadística i Investigació Operativa, Universitat de València, València, Spain
| | - Virgilio Gómez-Rubio
- Department of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
2
|
Mokari M, Moeini H, Farazmand S. Computational modeling and a Geant4-DNA study of the rejoining of direct and indirect DNA damage induced by low energy electrons and carbon ions. Int J Radiat Biol 2023; 99:1391-1404. [PMID: 36745857 DOI: 10.1080/09553002.2023.2173824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE DNA double-strand breaks (DSBs) created by ionizing radiations are considered as the most detrimental lesion, which could result in the cell death or sterilization. As the empirical evidence gathered from the cellular and molecular radiation biology has demonstrated significant correlations between the initial and lasting levels of DSBs, gaining knowledge into the DSB repair mechanisms proves vital. Much effort has been invested into understanding the mechanisms triggering the repair and processes engaged after irradiation of cells. Given a mechanistic model, we performed - to our knowledge - the first Monte Carlo study of the expected repair kinetics of carbon ions and electrons using on the one hand Geant4-DNA simulations of electrons for benchmarking purposes and on the other hand quantifying the influence of direct and indirect damage. Our objective was to calculate the DSB repair rates using a repair mechanism for G1 and early S phases of the cell cycle in conjunction with simulations of the DNA damage. MATERIALS AND METHODS Based on Geant4-DNA simulations of DSB damage caused by electrons and carbon ions - using a B-DNA model and a water sphere of 3 μm radius resembling the mean size of human cells - we derived the kinetics of various biochemical repair processes. RESULTS The overall repair times of carbon ions increased with the DSB complexity. Comparison of the DSB complexity (DSBc) and repair times as a function of carbon-ion energy suggested that the repair time of no specific fraction of DSBs could solely be explained as a function of DSB complexity. CONCLUSION Analysis of the carbon-ion repair kinetics indicated that, given a fraction of DSBs, decreasing the energy would result in an increase of the repair time. The disagreements of the calculated and experimental repair kinetics for electrons could, among others, be due to larger damage complexity predicted by simulations or created actually by electrons of comparable energies to x-rays. They are also due to the employed repair mechanisms, which introduce no inherent dependence on the radiation type but make direct use of the simulated DSBs.
Collapse
Affiliation(s)
- Mojtaba Mokari
- Department of Physics, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hossein Moeini
- Department of Physics, School of Science, Shiraz University, Shiraz, Iran
| | - Shahnaz Farazmand
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
3
|
Bastiani I, McMahon SJ, Turner P, Redmond KM, McGarry CK, Cole A, O'Sullivan JM, Prise KM, Ainsbury L, Anderson R. Dose estimation after a mixed field exposure: Radium-223 and intensity modulated radiotherapy. Nucl Med Biol 2021; 106-107:10-20. [PMID: 34968973 DOI: 10.1016/j.nucmedbio.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/04/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Radium-223 dichloride ([223Ra]RaCl2), a radiopharmaceutical that delivers α-particles to regions of bone metastatic disease, has been proven to improve overall survival of men with metastatic castration resistant prostate cancer (mCRPC). mCRPC patients enrolled on the ADRRAD clinical trial are treated with a mixed field exposure comprising radium-223 (223Ra) and intensity modulated radiotherapy (IMRT). While absorbed dose estimation is an important step in the characterisation of wider systemic radiation risks in nuclear medicine, uncertainties remain for novel radiopharmaceuticals such as 223Ra. METHODS 24-Colour karyotyping was used to quantify the spectrum of chromosome aberrations in peripheral blood lymphocytes of ADRRAD patients at incremental times during their treatment. Dicentric equivalent frequencies were used in standard models for estimation of absorbed blood dose. To account for the mixed field nature of the treatment, existing models were used to determine the ratio of the component radiation types. Additionally, a new approach (M-FISHLET), based on the ratio of cells containing damage consistent with high-LET exposure (complex chromosomal exchanges) and low-LET exposure (simple exchanges), was used as a pseudo ratio for 223Ra:IMRT dose. RESULTS Total IMRT estimated doses delivered to the blood after completion of mixed radiotherapy (after 37 IMRT fractions and two [223Ra]RaCl2 injections) were in the range of 1.167 ± 0.092 and 2.148 ± 0.096 Gy (dose range across all models applied). By the last treatment cycle analysed in this study (four [223Ra]RaCl2 injections), the total absorbed 223Ra dose to the blood was estimated to be between 0.024 ± 0.027 and 0.665 ± 0.080 Gy, depending on the model used. Differences between the models were observed, with the observed dose variance coming from inter-model as opposed to inter-patient differences. The M-FISHLET model potentially overestimates the 223Ra absorbed blood dose by accounting for further PBL exposure in the vicinity of metastatic sites. CONCLUSIONS The models presented provide initial estimations of cumulative dose received during incremental IMRT fractions and [223Ra]RaCl2 injections, which will enable improved understanding of the doses received by individual patients. While the M-FISHLET method builds on a well-established technique for external exposures, further consideration is needed to evaluate this method and its use in assessing non-targeted exposure by 223Ra after its localization at bone metastatic sites.
Collapse
Affiliation(s)
- Isabella Bastiani
- Centre for Health Effects of Radiological and Chemical Agents, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London UB8 3PH, United Kingdom of Great Britain and Northern Ireland.
| | - Stephen J McMahon
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland.
| | - Philip Turner
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Kelly M Redmond
- Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Conor K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Aidan Cole
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Joe M O'Sullivan
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland; Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom of Great Britain and Northern Ireland.
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom of Great Britain and Northern Ireland.
| | - Liz Ainsbury
- Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Didcot OX11 0RQ, United Kingdom of Great Britain and Northern Ireland.
| | - Rhona Anderson
- Centre for Health Effects of Radiological and Chemical Agents, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, London UB8 3PH, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
4
|
Hartel C, Nasonova E, Ritter S, Friedrich T. Alpha-Particle Exposure Induces Mainly Unstable Complex Chromosome Aberrations which do not Contribute to Radiation-Associated Cytogenetic Risk. Radiat Res 2021; 196:561-573. [PMID: 34411274 DOI: 10.1667/rade-21-00116.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/03/2022]
Abstract
The mechanism underlying the carcinogenic potential of α radiation is not fully understood, considering that cell inactivation (e.g., mitotic cell death) as a main consequence of exposure efficiently counteracts the spreading of heritable DNA damage. The aim of this study is to improve our understanding of the effectiveness of α particles in inducing different types of chromosomal aberrations, to determine the respective values of the relative biological effectiveness (RBE) and to interpret the results with respect to exposure risk. Human peripheral blood lymphocytes (PBLs) from a single donor were exposed ex vivo to doses of 0-6 Gy X rays or 0-2 Gy α particles. Cells were harvested at two different times after irradiation to account for the mitotic delay of heavily damaged cells, which is known to occur after exposure to high-LET radiation (including α particles). Analysis of the kinetics of cells reaching first or second (and higher) mitosis after irradiation and aberration data obtained by the multiplex fluorescence in situ hybridization (mFISH) technique are used to determine of the cytogenetic risk, i.e., the probability for transmissible aberrations in surviving lymphocytes. The analysis shows that the cytogenetic risk after α exposure is lower than after X rays. This indicates that the actually observed higher carcinogenic effect of α radiation is likely to stem from small scale mutations that are induced effectively by high-LET radiation but cannot be resolved by mFISH analysis.
Collapse
Affiliation(s)
- C Hartel
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - E Nasonova
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany.,Joint Institute for Nuclear Research, Laboratory of Radiation Biology, Dubna, Russia
| | - S Ritter
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| | - T Friedrich
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, Darmstadt, Germany
| |
Collapse
|
5
|
Nickson CM, Fabbrizi MR, Carter RJ, Hughes JR, Kacperek A, Hill MA, Parsons JL. USP9X Is Required to Maintain Cell Survival in Response to High-LET Radiation. Front Oncol 2021; 11:671431. [PMID: 34277417 PMCID: PMC8281306 DOI: 10.3389/fonc.2021.671431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Ionizing radiation (IR) principally acts through induction of DNA damage that promotes cell death, although the biological effects of IR are more broad ranging. In fact, the impact of IR of higher-linear energy transfer (LET) on cell biology is generally not well understood. Critically, therefore, the cellular enzymes and mechanisms responsible for enhancing cell survival following high-LET IR are unclear. To this effect, we have recently performed siRNA screening to identify deubiquitylating enzymes that control cell survival specifically in response to high-LET α-particles and protons, in comparison to low-LET X-rays and protons. From this screening, we have now thoroughly validated that depletion of the ubiquitin-specific protease 9X (USP9X) in HeLa and oropharyngeal squamous cell carcinoma (UMSCC74A) cells using small interfering RNA (siRNA), leads to significantly decreased survival of cells after high-LET radiation. We consequently investigated the mechanism through which this occurs, and demonstrate that an absence of USP9X has no impact on DNA damage repair post-irradiation nor on apoptosis, autophagy, or senescence. We discovered that USP9X is required to stabilize key proteins (CEP55 and CEP131) involved in centrosome and cilia formation and plays an important role in controlling pericentrin-rich foci, particularly in response to high-LET protons. This was also confirmed directly by demonstrating that depletion of CEP55/CEP131 led to both enhanced radiosensitivity of cells to high-LET protons and amplification of pericentrin-rich foci. Our evidence supports the importance of USP9X in maintaining centrosome function and biogenesis and which is crucial particularly in the cellular response to high-LET radiation.
Collapse
Affiliation(s)
- Catherine M. Nickson
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Maria Rita Fabbrizi
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rachel J. Carter
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan R. Hughes
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Andrzej Kacperek
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| | - Mark A. Hill
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, United Kingdom
| | - Jason L. Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
- Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, United Kingdom
| |
Collapse
|
6
|
Bláha P, Feoli C, Agosteo S, Calvaruso M, Cammarata FP, Catalano R, Ciocca M, Cirrone GAP, Conte V, Cuttone G, Facoetti A, Forte GI, Giuffrida L, Magro G, Margarone D, Minafra L, Petringa G, Pucci G, Ricciardi V, Rosa E, Russo G, Manti L. The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives. Front Oncol 2021; 11:682647. [PMID: 34262867 PMCID: PMC8274279 DOI: 10.3389/fonc.2021.682647] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.
Collapse
Affiliation(s)
- Pavel Bláha
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
| | - Chiara Feoli
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
| | - Stefano Agosteo
- Energy Department, Politecnico di Milano, and INFN, Sezione di Milano, Milan, Italy
| | - Marco Calvaruso
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Francesco Paolo Cammarata
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | | | - Mario Ciocca
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | | | - Valeria Conte
- Laboratori Nazionali di Legnaro (LNL), INFN, Legnaro, Italy
| | | | - Angelica Facoetti
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | - Giusi Irma Forte
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Lorenzo Giuffrida
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Giuseppe Magro
- Medical Physics Unit & Research Department, Centro Nazionale di Adroterapia Oncologica (CNAO) & INFN, Sezione di Pavia, Pavia, Italy
| | - Daniele Margarone
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Luigi Minafra
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
| | - Giada Petringa
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
- Extreme Light Infrastructure (ELI)-Beamlines Center, Institute of Physics (FZU), Czech Academy of Sciences, Prague, Czechia
| | - Gaia Pucci
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), Università di Palermo, Palermo, Italy
| | - Valerio Ricciardi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
- Department of Mathematics & Physics, Università L. Vanvitelli, Caserta, Italy
| | - Enrico Rosa
- Radiation Biophysics Laboratory, Department of Physics “E. Pancini”, Università di Napoli Federico II, Naples, Italy
| | - Giorgio Russo
- Istituto di Bioimmagini e Fisiologia Molecolare-Consiglio Nazionale delle Ricerche (IBFM-CNR), Cefalù, Italy
- Laboratori Nazionali del Sud (LNS), INFN, Catania, Italy
- The Sicilian Center of Nuclear Physics and the Structure of Matter (CSFNSM), Catania, Italy
| | - Lorenzo Manti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli, Naples, Italy
- Radiation Biophysics Laboratory, Department of Physics “E. Pancini”, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
7
|
Hill MA. Radiation Track Structure: How the Spatial Distribution of Energy Deposition Drives Biological Response. Clin Oncol (R Coll Radiol) 2020; 32:75-83. [PMID: 31511190 DOI: 10.1016/j.clon.2019.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
Ionising radiation is incredibly effective at causing biological effects. This is due to the unique way energy is deposited along highly structured tracks of ionisation and excitation events, which results in correlation with sites of DNA damage from the nanometre to the micrometre scale. Correlation of these events along the track on the nanometre scale results in clustered damage, which not only results in the formation of DNA double-strand breaks (DSB), but also more difficult to repair complex DSB, which include additional damage within a few base pairs. The track structure varies significantly with radiation quality and the increase in relative biological effectiveness observed with increasing linear energy transfer in part corresponds to an increase in the probability and complexity of clustered DNA damage produced. Likewise, correlation over larger scales, associated with packing of DNA and associated chromosomes within the cell nucleus, can also have a major impact on the biological response. The proximity of the correlated damage along the track increases the probability of miss-repair through pairwise interactions resulting in an increase in probability and complexity of DNA fragments/deletions, mutations and chromosomal rearrangements. Understanding the mechanisms underlying the biological effectiveness of ionising radiation can provide an important insight into ways of increasing the efficacy of radiotherapy, as well as the risks associated with exposure. This requires a multi-scale approach for modelling, not only considering the physics of the track structure from the millimetre scale down to the nanometre scale, but also the structural packing of the DNA within the nucleus, the resulting chemistry in the context of the highly reactive environment of the nucleus, together with the subsequent biological response.
Collapse
Affiliation(s)
- M A Hill
- MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, Oxford, UK.
| |
Collapse
|
8
|
Jones B, Hill MA. Physical characteristics at the turnover-points of relative biological effect (RBE) with linear energy transfer (LET). Phys Med Biol 2019; 64:225010. [PMID: 31665711 DOI: 10.1088/1361-6560/ab52a5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper considers the kinematic physical characteristics of ionic beams for maximum relative bio-effectiveness (RBE). RBE studies, based on heterogenous cell survival studies at different laboratories and linear energy transfer (LET) conditions for proton, helium, carbon, neon and argon ions, have been further analysed to determine the LETU values where RBE is maximal and the LET-RBE relationship has a turnover point. The SRIM stopping power software and other classical equations are used to determine the particle velocities, kinetic energies and their effective ionic charges at LETU. The estimated mean LETU values increase with atomic number (Z). Each LETU has a unique relativistic velocity, β = v/c, the velocity v expressed as a fraction of the speed of light, (c), and which is non-linearly proportional to Z. For ions helium and heavier ions, these velocities indicate that the effective charge Z * is around 0.99 of the full Z value at each LETU, with remarkably stable velocities of 3-4 nm · fs-1 per nucleon, or around 6-8 nm · fs-1 per unit Z. For Z = 1, (protons and deuterium) some values fall outside these ranges but the result depends on the mix of proton and deuterium used in experiments. An alternative index of βA/Z 2 (A is the atomic mass number), suggests an average velocity of around 15 nm · fs-1 for each particle at LETU. These distances, traversed in the time of the radiochemical process initiation, are all within the dimensions of the nucleosome. Curve fitting of the data set provides a predictive equation for LETU for any ion, as LETU = 30.4 + [Formula: see text] (1 - Exp[-0.61 √ (Z - 1)]) when normalised to protons. These data can be extended to heavier ions such as silicon and iron and give values that are consistent with experimental data. Each ion probably has a unique LETU value. Kinematic studies show maximum bio-effectiveness occurs at particle velocities where electron stripping remains at around 99% and where the velocity per nucleon is around 3-4 nm · fs-1. This study enhances the limited prior knowledge about the physical conditions of particle beams that provide maximum bio-effectiveness, with applications in particle radiotherapy, radiation protection and space travel.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, Oxford Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DG, United Kingdom. Author to whom any correspondence should be addressed
| | | |
Collapse
|
9
|
Thompson JM, Elliott A, D’Abrantes S, Sawakuchi GO, Hill MA. TRACKING DOWN ALPHA-PARTICLES: THE DESIGN, CHARACTERISATION AND TESTING OF A SHALLOW-ANGLED ALPHA-PARTICLE IRRADIATOR. RADIATION PROTECTION DOSIMETRY 2019; 183:264-269. [PMID: 30726978 PMCID: PMC6525335 DOI: 10.1093/rpd/ncy300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Human exposure to α-particles from radon and other radionuclides is associated with carcinogenesis, but if well controlled and targeted to cancer cells, α-particles may be used in radiotherapy. Thus, it is important to understand the biological effects of α-particles to predict cancer risk and optimise radiotherapy. To enable studies of α-particles in cells, we developed and characterised an α-particle automated irradiation rig that allows exposures at a shallow angle (70° to the normal) of cell monolayers in a 30 mm diameter dish to complement standard perpendicular irradiations. The measured incident energy of the α-particles was 3.3 ± 0.5 MeV (LET in water = 120 keV μm-1), with a maximum incident dose rate of 1.28 ± 0.02 Gy min-1, which for a 5 μm cell monolayer corresponds to a mean dose rate of 1.57 ± 0.02 Gy min-1 and a mean LET in water of 154 keV μm-1. The feasibility of resolving radiation-induced DNA double-strand breaks (DSB) foci along the track of α-particles was demonstrated using immunofluorescent labelling with γH2AX and 53BP1 in normal MRC-5 human lung cells.
Collapse
Affiliation(s)
- James M Thompson
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Amy Elliott
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Sofia D’Abrantes
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler St., Unit 1420, Houston, TX 77030, USA
| | - Mark A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
10
|
Anderson R. Cytogenetic Biomarkers of Radiation Exposure. Clin Oncol (R Coll Radiol) 2019; 31:311-318. [DOI: 10.1016/j.clon.2019.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
11
|
Radionuclide Therapy for Bone Metastases: Utility of Scintigraphy and PET Imaging for Treatment Planning. PET Clin 2018; 13:491-503. [PMID: 30219184 DOI: 10.1016/j.cpet.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The skeleton is a common site for cancer metastases. Bone metastases are a major cause of morbidity and mortality and associated with pain, pathologic fractures, spinal cord compression, and decreased survival. Various radionuclides have been used for pain therapy. Recently, an α-emitter has been shown to improve overall survival of patients with bone metastases from castration-resistant prostate cancer and was approved as a therapeutic agent. The aim of this article is to provide an overview regarding state of the art radionuclide therapy options for bone metastases, with focus on the role of PET imaging in therapy planning.
Collapse
|
12
|
Hill MA. Track to the future: historical perspective on the importance of radiation track structure and DNA as a radiobiological target. Int J Radiat Biol 2018; 94:759-768. [PMID: 29219655 PMCID: PMC6113897 DOI: 10.1080/09553002.2017.1387304] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022]
Abstract
PURPOSE Understanding the mechanisms behind induced biological response following exposure to ionizing radiation is not only important in assessing the risk associated with human exposure, but potentially can help identify ways of improving the efficacy of radiotherapy. Over the decades, there has been much discussion on what is the key biological target for radiation action and its associated size. It was already known in the 1930s that microscopic features of radiation significantly influenced biological outcomes. This resulted in the development of classic target theory, leading to field of microdosimetry and subsequently nanodosimetry, studying the inhomogeneity and stochastics of interactions, along with the identification of DNA as a key target. CONCLUSIONS Ultimately, the biological response has been found to be dependent on the radiation track structure (spatial and temporal distribution of ionization and excitation events). Clustering of energy deposition on the nanometer scale has been shown to play a critical role in determining biological response, producing not just simple isolated DNA lesions but also complex clustered lesions that are more difficult to repair. The frequency and complexity of these clustered damage sites are typically found to increase with increasing LET. However in order to fully understand the consequences, it is important to look at the relative distribution of these lesions over larger dimensions along the radiation track, up to the micrometer scale. Correlation of energy deposition events and resulting sites of DNA damage can ultimately result in complex gene mutations and complex chromosome rearrangements following repair, with the frequency and spectrum of the resulting rearrangements critically dependent on the spatial and temporal distribution of these sites and therefore the radiation track. Due to limitations in the techniques used to identify these rearrangements it is likely that the full complexity of the genetic rearrangements that occur has yet to be revealed. This paper discusses these issues from a historical perspective, with many of these historical studies still having relevance today. These can not only cast light on current studies but guide future studies, especially with the increasing range of biological techniques available. So, let us build on past knowledge to effectively explore the future.
Collapse
Affiliation(s)
- Mark A. Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Gray Laboratories, ORCRB Roosevelt Drive, Oxford, UK
| |
Collapse
|
13
|
Jezkova L, Zadneprianetc M, Kulikova E, Smirnova E, Bulanova T, Depes D, Falkova I, Boreyko A, Krasavin E, Davidkova M, Kozubek S, Valentova O, Falk M. Particles with similar LET values generate DNA breaks of different complexity and reparability: a high-resolution microscopy analysis of γH2AX/53BP1 foci. NANOSCALE 2018; 10:1162-1179. [PMID: 29271466 DOI: 10.1039/c7nr06829h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biological effects of high-LET (linear energy transfer) radiation have received increasing attention, particularly in the context of more efficient radiotherapy and space exploration. Efficient cell killing by high-LET radiation depends on the physical ability of accelerated particles to generate complex DNA damage, which is largely mediated by LET. However, the characteristics of DNA damage and repair upon exposure to different particles with similar LET parameters remain unexplored. We employed high-resolution confocal microscopy to examine phosphorylated histone H2AX (γH2AX)/p53-binding protein 1 (53BP1) focus streaks at the microscale level, focusing on the complexity, spatiotemporal behaviour and repair of DNA double-strand breaks generated by boron and neon ions accelerated at similar LET values (∼135 keV μm-1) and low energies (8 and 47 MeV per n, respectively). Cells were irradiated using sharp-angle geometry and were spatially (3D) fixed to maximize the resolution of these analyses. Both high-LET radiation types generated highly complex γH2AX/53BP1 focus clusters with a larger size, increased irregularity and slower elimination than low-LET γ-rays. Surprisingly, neon ions produced even more complex γH2AX/53BP1 focus clusters than boron ions, consistent with DSB repair kinetics. Although the exposure of cells to γ-rays and boron ions eliminated a vast majority of foci (94% and 74%, respectively) within 24 h, 45% of the foci persisted in cells irradiated with neon. Our calculations suggest that the complexity of DSB damage critically depends on (increases with) the particle track core diameter. Thus, different particles with similar LET and energy may generate different types of DNA damage, which should be considered in future research.
Collapse
Affiliation(s)
- Lucie Jezkova
- Joint Institute for Nuclear Research, Dubna, Russia and University of Chemistry and Technology Prague, Prague, Czech Republic
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Mariia Zadneprianetc
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Elena Kulikova
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | | | - Tatiana Bulanova
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Daniel Depes
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| | - Iva Falkova
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| | - Alla Boreyko
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Evgeny Krasavin
- Joint Institute for Nuclear Research, Dubna, Russia and Dubna State University, Dubna, Russia
- Dubna State University, Dubna, Russia
| | - Marie Davidkova
- Czech Academy of Sciences, Nuclear Physics Institute, Prague, Czech Republic
| | - Stanislav Kozubek
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| | - Olga Valentova
- University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| |
Collapse
|
14
|
Abstract
PURPOSE To better estimate relative biological effectiveness (RBE) in therapeutic proton beams by using a modeled approach, in order to improve their clinical safety and effectiveness. INTRODUCTION Concerns exist about the 1.1 RBE used in proton therapy, since it may lead to unintentional over- and under-dosage in patients and so lead to unexpected clinical outcomes. Late reacting normal tissues (with low α/β values), might be overdosed if RBE >1.1; very radiosensitive tumors (with high α/β), might be under-dosed if RBE <1.1. Some physicists recommend ignoring RBE in favor of a LET × dose product to predict effects. MATERIAL AND METHODS Extensive linear-quadratic based modeling is scaled between a standard hospital megavoltage photon reference radiation (low LET of 0.22 keV μm-1) α and β values and their values at higher LETs, representative of the middle and end of the SOBPs. A previously published energy-efficiency model provide RBE estimates for different α/β (2-27 Gy). The concept of using a LET × dose product is assessed by comparing it with surviving fraction and the equivalent dose in 2 Gy fractions (EQD-2). RESULTS Low α/β value biosystems have the widest RBE ranges with dose per fraction changes and increasing LET, often above 1.1 even within the SOBP LET range, with lower values at higher dose per fraction. Highly radiosensitive tumors (α/β 10-27 Gy) have the lowest RBEs, often below 1.1, and are not fraction-sensitive. RBE's generally increase with LET, so curtailment of LET in normal tissues is important. The LET × dose product is insufficiently discriminating when compared with surviving fraction and biological effective dose (BED) or EQD-2. CONCLUSIONS An overall research framework is suggested. Proton therapy advantages will only be fully realized if reasonably correct RBE values are used.
Collapse
Affiliation(s)
- B. Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Abstract
Denser ionisation clustering and complex DNA damage in proton Bragg peaks far exceeds that seen with conventional X-rays. This results in more efficient cell sterilisation, quantified by the relative biological effectiveness (RBE). Currently, a 1.1 RBE is used to determine the clinical proton doses by dividing the usual X-rays dose by this amount. This number, derived from short-term experiments, has been criticised as being irrelevant to late normal tissue (NT) effects following radiotherapy and included many control irradiations using lower voltage X-rays (with elevated RBE values) than those used in the clinic. In principle, an increased RBE could be used for each organ at risk, by using extensions of the clinically successful linear quadratic model. Protons undoubtedly reduce or eliminate NT radiation dose in tissues distantly located from a tumour, but the necessity to include NT margins around a tumour can result in a higher volume of NT than tumour being irradiated. Deleterious side-effects can follow if the NT RBE exceeds 1.1, including in tissue very close to these margins and which are only partially spared. Use of a constant 1.1 RBE can ‘overdose’ NT, which may require a greater dose reduction such as 1.2 in the brain; some tumours may be ‘under-dosed’ (since they might require a lesser or no reduction in dose). More sophisticated proton experiments show that RBE values of 1.1–1.5 and higher occur in some situations. There are now mathematical models of varying degrees of complexity that can estimate the RBE from the dose, LET and the low-LET radiosensitivities. True multidisciplinary cooperation is required to implement such new ideas in proton therapy in order to improve safety and effectiveness.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB - Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
16
|
Erbeldinger N, Rapp F, Ktitareva S, Wendel P, Bothe AS, Dettmering T, Durante M, Friedrich T, Bertulat B, Meyer S, Cardoso MC, Hehlgans S, Rödel F, Fournier C. Measuring Leukocyte Adhesion to (Primary) Endothelial Cells after Photon and Charged Particle Exposure with a Dedicated Laminar Flow Chamber. Front Immunol 2017; 8:627. [PMID: 28620384 PMCID: PMC5451490 DOI: 10.3389/fimmu.2017.00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022] Open
Abstract
The vascular endothelium interacts with all types of blood cells and is a key modulator of local and systemic inflammatory processes, for example, in the adhesion of blood leukocytes to endothelial cells (EC) and the following extravasation into the injured tissue. The endothelium is constantly exposed to mechanical forces caused by blood flow, and the resulting shear stress is essential for the maintenance of endothelial function. Changes in local hemodynamics are sensed by EC, leading to acute or persistent changes. Therefore, in vitro assessment of EC functionality should include shear stress as an essential parameter. Parallel-plate flow chambers with adjustable shear stress can be used to study EC properties. However, commercially available systems are not suitable for radiation experiments, especially with charged particles, which are increasingly used in radiotherapy of tumors. Therefore, research on charged-particle-induced vascular side effects is needed. In addition, α-particle emitters (e.g., radon) are used to treat inflammatory diseases at low doses. In the present study, we established a flow chamber system, applicable for the investigation of radiation induced changes in the adhesion of lymphocytes to EC as readout for the onset of an inflammatory reaction or the modification of a pre-existing inflammatory state. In this system, primary human EC are cultured under physiological laminar shear stress, subjected to a proinflammatory treatment and/or irradiation with X-rays or charged particles, followed by a coincubation with primary human lymphocytes (peripheral blood lymphocytes (PBL)). Analysis is performed by semiautomated quantification of fluorescent staining in microscopic pictures. First results obtained after irradiation with X-rays or helium ions indicate decreased adhesion of PBL to EC under laminar conditions for both radiation qualities, whereas adhesion of PBL under static conditions is not clearly affected by irradiation. Under static conditions, no radiation-induced changes in surface expression of adhesion molecules and activation of nuclear factor kappa B (NF-κB) signaling were observed after single cell-based high-throughput analysis. In subsequent studies, these investigations will be extended to laminar conditions.
Collapse
Affiliation(s)
- Nadine Erbeldinger
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.,Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Felicitas Rapp
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Svetlana Ktitareva
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Philipp Wendel
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Anna S Bothe
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Till Dettmering
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Marco Durante
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Thomas Friedrich
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Meyer
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - M C Cardoso
- Department of Biology, Technical University Darmstadt, Darmstadt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| |
Collapse
|
17
|
Success and Failures of Combined Modalities in Glioblastoma Multiforme: Old Problems and New Directions. Semin Radiat Oncol 2016; 26:281-98. [DOI: 10.1016/j.semradonc.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Nagle PW, Hosper NA, Ploeg EM, van Goethem MJ, Brandenburg S, Langendijk JA, Chiu RK, Coppes RP. The In Vitro Response of Tissue Stem Cells to Irradiation With Different Linear Energy Transfers. Int J Radiat Oncol Biol Phys 2016; 95:103-111. [PMID: 27084633 DOI: 10.1016/j.ijrobp.2016.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE A reduction in the dose, irradiated volume, and sensitivity of, in particular, normal tissue stem cells is needed to advance radiation therapy. This could be obtained with the use of particles for radiation therapy. However, the radiation response of normal tissue stem cells is still an enigma. Therefore, in the present study, we developed a model to investigate the in vitro response of stem cells to particle irradiation. METHODS AND MATERIALS We used the immortalized human salivary gland (HSG) cell line resembling salivary gland (SG) cells to translate the radiation response in 2-dimensional (2D) to 3-dimensional (3D) conditions. This response was subsequently translated to the response of SG stem cells (SGSCs). Dispersed single cells were irradiated with photons or carbon ions at different linear energy transfers (LETs; 48.76 ± 2.16, 149.9 ± 10.8, and 189 ± 15 keV/μm). Subsequently, 2D or 3D clonogenicity was determined by counting the colonies or secondary stem cell-derived spheres in Matrigel. γH2AX immunostaining was used to assess DNA double strand break repair. RESULTS The 2D response of HSG cells showed a similar increase in dose response to increasing higher LET irradiation as other cell lines. The 3D response of HSG cells to increasing LET irradiation was reduced compared with the 2D response. Finally, the response of mouse SGSCs to photons was similar to the 3D response of HSG cells. The response to higher LET irradiation was reduced in the stem cells. CONCLUSIONS Mouse SGSC radiosensitivity seems reduced at higher LET radiation compared with transformed HSG cells. The developed model to assess the radiation response of SGSCs offers novel possibilities to study the radiation response of normal tissue in vitro.
Collapse
Affiliation(s)
- Peter W Nagle
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nynke A Hosper
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Emily M Ploeg
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marc-Jan van Goethem
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; KVI-Center for Advanced Radiation Research, University of Groningen, Groningen, The Netherlands
| | - Sytze Brandenburg
- KVI-Center for Advanced Radiation Research, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roland K Chiu
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert P Coppes
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Rall M, Kraft D, Volcic M, Cucu A, Nasonova E, Taucher-Scholz G, Bönig H, Wiesmüller L, Fournier C. Impact of Charged Particle Exposure on Homologous DNA Double-Strand Break Repair in Human Blood-Derived Cells. Front Oncol 2015; 5:250. [PMID: 26618143 PMCID: PMC4641431 DOI: 10.3389/fonc.2015.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.
Collapse
Affiliation(s)
- Melanie Rall
- Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - Daniela Kraft
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Meta Volcic
- Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
| | - Aljona Cucu
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Elena Nasonova
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Gisela Taucher-Scholz
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Halvard Bönig
- German Red Cross Blood Service Baden-Wuerttemberg – Hessen, Institute for Transfusion Medicine and Immunohematology, Johann Wolfgang Goethe-University Hospital, Frankfurt, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, Ulm University, Ulm, Germany
- *Correspondence: Lisa Wiesmüller, ; Claudia Fournier,
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
- *Correspondence: Lisa Wiesmüller, ; Claudia Fournier,
| |
Collapse
|
20
|
Hill MA. Fishing for radiation quality: chromosome aberrations and the role of radiation track structure. RADIATION PROTECTION DOSIMETRY 2015; 166:295-301. [PMID: 25883310 DOI: 10.1093/rpd/ncv151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The yield of chromosome aberrations is not only dependent on dose but also on radiation quality, with high linear energy transfer (LET) typically having a greater biological effectiveness per unit dose than those of low-LET radiation. Differences in radiation track structure and cell morphology can also lead to quantitative differences in the spectra of the resulting chromosomal rearrangements, especially at low doses associated with typical human exposures. The development of combinatorial fluorescent labelling techniques (such as mFISH and mBAND) has helped to reveal the complexity of rearrangements, showing increasing complexity of observed rearrangements with increasing LET but has a resolution limited to ∼10 MBp. High-LET particles have not only been shown to produce clustered sites of DNA damage but also produce multiple correlated breaks along its path resulting in DNA fragments smaller than the resolution of these techniques. Additionally, studies have shown that the vast majority of radiation-induced HPRT mutations were also not detectable using fluorescent in situ hybridisation (FISH) techniques, with correlation of breaks along the track being reflected in the complexity of mutations, with intra- and inter-chromosomal insertions, and inversions occurring at the sites of some of the deletions. Therefore, the analysis of visible chromosomal rearrangements observed using current FISH techniques is likely to represent just the tip of the iceberg, considerably underestimating the extent and complexity of radiation induced rearrangements.
Collapse
Affiliation(s)
- M A Hill
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
21
|
Jones B. A Simpler Energy Transfer Efficiency Model to Predict Relative Biological Effect for Protons and Heavier Ions. Front Oncol 2015; 5:184. [PMID: 26322274 PMCID: PMC4531328 DOI: 10.3389/fonc.2015.00184] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/27/2015] [Indexed: 01/26/2023] Open
Abstract
The aim of this work is to predict relative biological effectiveness (RBE) for protons and clinically relevant heavier ions, by using a simplified semi-empirical process based on rational expectations and published experimental results using different ion species. The model input parameters are: Z (effective nuclear charge) and radiosensitivity parameters αL and βL of the control low linear energy transfer (LET) radiation. Sequential saturation processes are assumed for: (a) the position of the turnover point (LETU) for the LET–RBE relationship with Z, and (b) the ultimate value of α at this point (αU) being non-linearly related to αL. Using the same procedure for β, on the logical assumption that the changes in β with LET, although smaller than α, are symmetrical with those of α, since there is symmetry of the fall off of LET–RBE curves with increasing dose, which suggests that LETU must be identical for α and β. Then, using iso-effective linear quadratic model equations, the estimated RBE is scaled between αU and αL and between βU and βL from for any input value of Z, αL, βL, and dose. The model described is fitted to the data of Barendsen (alpha particles), Weyrather et al. (carbon ions), and Todd for nine different ions (deuterons to Argon), which include variations in cell surviving fraction and dose. In principle, this new system can be used to complement the more complex methods to predict RBE with LET such as the local effect and MKM models which already have been incorporated into treatment planning systems in various countries. It would be useful to have a secondary check to such systems, especially to alert clinicians of potential risks by relatively easy estimation of relevant RBEs. In clinical practice, LET values smaller than LETU are mostly encountered, but the model extends to higher values beyond LETU for other purposes such as radiation, protection, and astrobiology. Considerable further research is required, perhaps in a dedicated international laboratory, using a basket of different models to determine what the best system or combination of systems will be to make proton and ion beam radiotherapy as safe as possible and to produce the best possible clinical results.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Insitute for Radiation Oncology, University of Oxford , Oxford , UK
| |
Collapse
|
22
|
Sumption N, Goodhead DT, Anderson RM. Alpha-Particle-Induced Complex Chromosome Exchanges Transmitted through Extra-Thymic Lymphopoiesis In Vitro Show Evidence of Emerging Genomic Instability. PLoS One 2015; 10:e0134046. [PMID: 26252014 PMCID: PMC4529306 DOI: 10.1371/journal.pone.0134046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/03/2015] [Indexed: 11/24/2022] Open
Abstract
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.
Collapse
Affiliation(s)
| | | | - Rhona M. Anderson
- Medical Research Council, Didcot, Oxon, United Kingdom
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
23
|
Tracy BL, Stevens DL, Goodhead DT, Hill MA. Variation in RBE for Survival of V79-4 Cells as a Function of Alpha-Particle (Helium Ion) Energy. Radiat Res 2015; 184:33-45. [PMID: 26121227 DOI: 10.1667/rr13835.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High linear energy transfer (LET) α particles are important with respect to the carcinogenic risk associated with human exposure to ionizing radiation, most notably to radon and its progeny. Additionally, the potential use of alpha-particle-emitting radionuclides in radiotherapy is increasingly being explored. Within the body the emitted alpha particles slow down, traversing a number of cells with a range of energies and therefore with varying efficiencies at inducing biological response. The LET of the particle typically rises from between ~70-90 keV μm(-1) at the start of the track (depending on initial energy) to a peak of ~237 keV μm(-1) towards the end of the track, before falling again at the very end of its range. To investigate the variation in biological response with incident energy, a plutonium-238 alpha-particle irradiator was calibrated to enable studies with incident energies ranging from 4.0 MeV down to 1.1 MeV. The variation in clonogenic survival of V79-4 cells was determined as a function of incident energy, along with the relative variation in the initial yields of DNA double-strand breaks (DSB) measured using the FAR assay. The clonogenic survival data also extends previously published data obtained at the Medical Research Council (MRC), Harwell using the same cells irradiated with helium ions, with energies ranging from 34.9 MeV to 5.85 MeV. These studies were performed in conjunction with cell morphology measurements on live cells enabling the determination of absorbed dose and calculation of the average LET in the cell. The results show an increase in relative biological effectiveness (RBE) for cell inactivation with decreasing helium ion energy (increasing LET), reaching a maximum for incident energies of ~3.2 MeV and corresponding average LET of 131 keV μm(-1), above which the RBE is observed to fall at lower energies (higher LETs). The effectiveness of single alpha-particle traversals (relevant to low-dose exposure) at inducing cell inactivation was observed to increase with decreasing energy to a peak of ~68% survival probability for incident energies of ~1.8 MeV (average LET of 190 keV μm(-1)) producing ~0.39 lethal lesions per track. However, the efficiency of a single traversal will also vary significantly with cell morphology and angle of incidence, as well as cell type.
Collapse
Affiliation(s)
- Bliss L Tracy
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom;,b Radiation Protection Bureau, Health Canada 6302D1, Ottawa, Ontario K1A 1C1, Canada; and
| | - David L Stevens
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom;,c Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Dudley T Goodhead
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom
| | - Mark A Hill
- a Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom;,c Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
24
|
Curwen GB, Sotnik NV, Cadwell KK, Azizova TV, Hill MA, Tawn EJ. Chromosome aberrations in workers with exposure to α-particle radiation from internal deposits of plutonium: expectations from in vitro studies and comparisons with workers with predominantly external γ-radiation exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:195-206. [PMID: 25649482 DOI: 10.1007/s00411-015-0585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
mFISH analysis of chromosome aberration profiles of 47 and 144 h lymphocyte cultures following exposure to 193 mGy α-particle radiation confirmed that the frequency of stable aberrant cells and stable cells carrying translocations remains constant through repeated cell divisions. Age-specific rates and in vitro dose-response curves were used to derive expected translocation yields in nine workers from the Mayak nuclear facility in Russia. Five had external exposure to γ-radiation, two of whom also had exposure to neutrons, and four had external exposure to γ-radiation and internal exposure to α-particle radiation from incorporated plutonium. Doubts over the appropriateness of the dose response used to estimate translocations from the neutron component made interpretation difficult in two of the workers with external exposure, but the other three had translocation yields broadly in line with expectations. Three of the four plutonium workers had translocation yields in line with expectations, thus supporting the application of the recently derived in vitro α-particle dose response for translocations in stable cells. Overall this report demonstrates that with adequate reference in vitro dose-response curves, translocation yield has the potential to be a useful tool in the validation of red bone marrow doses resulting from mixed exposure to external and internal radiation.
Collapse
Affiliation(s)
- Gillian B Curwen
- Centre for Integrated Genomic Medical Research (CIGMR), School of Population Health, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
25
|
Kraft D, Ritter S, Durante M, Seifried E, Fournier C, Tonn T. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure. Mutat Res 2015; 777:43-51. [PMID: 25938904 DOI: 10.1016/j.mrfmmm.2015.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/18/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022]
Abstract
In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34(+) cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60-85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤ 0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼ 30-35% apoptotic cells for 2 Gy carbon ions compared to ∼ 25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼ 70% and ∼ 40% for 1 Gy of carbon ions and X-rays, respectively), with a higher fraction of non-transmissible aberrations. In contrast, for both radiation qualities the percentage of clones with chromosomal abnormalities was similar (40%). Using the frequency of colonies with clonal aberrations as a surrogate marker for the leukemia risk following radiotherapy of solid tumors, charged particle therapy is not expected to lead to an increased risk of leukemia in patients.
Collapse
Affiliation(s)
- Daniela Kraft
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany; Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany.
| | - Sylvia Ritter
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany.
| | - Marco Durante
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany; Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt, Germany.
| | - Erhard Seifried
- Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany.
| | - Claudia Fournier
- GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt, Germany.
| | - Torsten Tonn
- Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg-Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt, Germany; Technische Universität Dresden, Med. Fakultät Carl Gustav Carus; Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden, Germany.
| |
Collapse
|
26
|
Jones B. Towards Achieving the Full Clinical Potential of Proton Therapy by Inclusion of LET and RBE Models. Cancers (Basel) 2015; 7:460-80. [PMID: 25790470 PMCID: PMC4381269 DOI: 10.3390/cancers7010460] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/19/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite increasing use of proton therapy (PBT), several systematic literature reviews show limited gains in clinical outcomes, with publications mostly devoted to recent technical developments. The lack of randomised control studies has also hampered progress in the acceptance of PBT by many oncologists and policy makers. There remain two important uncertainties associated with PBT, namely: (1) accuracy and reproducibility of Bragg peak position (BPP); and (2) imprecise knowledge of the relative biological effect (RBE) for different tissues and tumours, and at different doses. Incorrect BPP will change dose, linear energy transfer (LET) and RBE, with risks of reduced tumour control and enhanced toxicity. These interrelationships are discussed qualitatively with respect to the ICRU target volume definitions. The internationally accepted proton RBE of 1.1 was based on assays and dose ranges unlikely to reveal the complete range of RBE in the human body. RBE values are not known for human (or animal) brain, spine, kidney, liver, intestine, etc. A simple efficiency model for estimating proton RBE values is described, based on data of Belli et al. and other authors, which allows linear increases in α and β with LET, with a gradient estimated using a saturation model from the low LET α and β radiosensitivity parameter input values, and decreasing RBE with increasing dose. To improve outcomes, 3-D dose-LET-RBE and bio-effectiveness maps are required. Validation experiments are indicated in relevant tissues. Randomised clinical studies that test the invariant 1.1 RBE allocation against higher values in late reacting tissues, and lower tumour RBE values in the case of radiosensitive tumours, are also indicated.
Collapse
Affiliation(s)
- Bleddyn Jones
- Gray Laboratory, CRUK/MRC Oxford Oncology Institute, The University of Oxford, ORCRB-Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
27
|
Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutat Res 2013; 750:56-66. [PMID: 23958412 DOI: 10.1016/j.mrfmmm.2013.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 02/05/2023]
Abstract
Repair of double strand breaks (DSBs) is essential for cell survival and genome integrity. While much is known about the molecular mechanisms involved in DSB repair and checkpoint activation, the roles of nuclear dynamics of radiation-induced foci (RIF) in DNA repair are just beginning to emerge. Here, we summarize results from recent studies that point to distinct features of these dynamics in two different chromatin environments: heterochromatin and euchromatin. We also discuss how nuclear architecture and chromatin components might control these dynamics, and the need of novel quantification methods for a better description and interpretation of these phenomena. These studies are expected to provide new biomarkers for radiation risk and new strategies for cancer detection and treatment.
Collapse
|
28
|
Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 2013; 14:14024-63. [PMID: 23880854 PMCID: PMC3742230 DOI: 10.3390/ijms140714024] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 02/06/2023] Open
Abstract
Radon-222 is a naturally occurring radioactive gas that is responsible for approximately half of the human annual background radiation exposure globally. Chronic exposure to radon and its decay products is estimated to be the second leading cause of lung cancer behind smoking, and links to other forms of neoplasms have been postulated. Ionizing radiation emitted during the radioactive decay of radon and its progeny can induce a variety of cytogenetic effects that can be biologically damaging and result in an increased risk of carcinogenesis. Suggested effects produced as a result of alpha particle exposure from radon include mutations, chromosome aberrations, generation of reactive oxygen species, modification of the cell cycle, up or down regulation of cytokines and the increased production of proteins associated with cell-cycle regulation and carcinogenesis. A number of potential biomarkers of exposure, including translocations at codon 249 of TP53 in addition to HPRT mutations, have been suggested although, in conclusion, the evidence for such hotspots is insufficient. There is also substantial evidence of bystander effects, which may provide complications when calculating risk estimates as a result of exposure, particularly at low doses where cellular responses often appear to deviate from the linear, no-threshold hypothesis. At low doses, effects may also be dependent on cellular conditions as opposed to dose. The cellular and molecular carcinogenic effects of radon exposure have been observed to be both numerous and complex and the elevated chronic exposure of man may therefore pose a significant public health risk that may extend beyond the association with lung carcinogenesis.
Collapse
Affiliation(s)
- Aaron Robertson
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-1872-256-432; Fax: +44-1872-256-497
| | - James Allen
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| | - Robin Laney
- Clinical Oncology, Sunrise Centre, Royal Cornwall Hospital, Truro, Cornwall TR1 3LJ, UK; E-Mail:
| | - Alison Curnow
- Clinical Photobiology, European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK; E-Mails: (J.A.); (A.C.)
| |
Collapse
|
29
|
Foster HA, Estrada-Girona G, Themis M, Garimberti E, Hill MA, Bridger JM, Anderson RM. Relative proximity of chromosome territories influences chromosome exchange partners in radiation-induced chromosome rearrangements in primary human bronchial epithelial cells. Mutat Res 2013; 756:66-77. [PMID: 23791770 DOI: 10.1016/j.mrgentox.2013.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/17/2023]
Abstract
It is well established that chromosomes exist in discrete territories (CTs) in interphase and are positioned in a cell-type specific probabilistic manner. The relative localisation of individual CTs within cell nuclei remains poorly understood, yet many cancers are associated with specific chromosome rearrangements and there is good evidence that relative territorial position influences their frequency of exchange. To examine this further, we characterised the complexity of radiation-induced chromosome exchanges in normal human bronchial epithelial (NHBE) cells by M-FISH analysis of PCC spreads and correlated the exchanges induced with their preferred interphase position, as determined by 1/2-colour 2D-FISH analysis, at the time of irradiation. We found that the frequency and complexity of aberrations induced were reduced in ellipsoid NHBE cells in comparison to previous observations in spherical cells, consistent with aberration complexity being dependent upon the number and proximity of damaged CTs, i.e. lesion proximity. To ask if particular chromosome neighbourhoods could be identified we analysed all radiation-induced pair-wise exchanges using SCHIP (statistics for chromosome interphase positioning) and found that exchanges between chromosomes (1;13), (9;17), (9;18), (12;18) and (16;21) all occurred more often than expected assuming randomness. All of these pairs were also found to be either sharing similar preferred positions in interphase and/or sharing neighbouring territory boundaries. We also analysed a human small cell lung cancer cell line, DMS53, by M-FISH observing the genome to be highly rearranged, yet possessing rearrangements also involving chromosomes (1;13) and (9;17). Our findings show evidence for the occurrence of non-random exchanges that may reflect the territorial organisation of chromosomes in interphase at time of damage and highlight the importance of cellular geometry for the induction of aberrations of varying complexity after exposure to both low and high-LET radiation.
Collapse
Affiliation(s)
- Helen A Foster
- Centre for Cell and Chromosome Biology, Division of Biosciences, Brunel University, West London UB8 3PH, UK; Centre for Infection, Immunity and Disease Mechanisms, Division of Biosciences, Brunel University, West London UB8 3PH, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Themis M, Garimberti E, Hill MA, Anderson RM. Reduced chromosome aberration complexity in normal human bronchial epithelial cells exposed to low-LET γ-rays and high-LET α-particles. Int J Radiat Biol 2013; 89:934-43. [PMID: 23679558 PMCID: PMC3836394 DOI: 10.3109/09553002.2013.805889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Purpose: Cells of the lung are at risk from exposure to low and moderate doses of ionizing radiation from a range of environmental and medical sources. To help assess human health risks from such exposures, a better understanding of the frequency and types of chromosome aberration initially-induced in human lung cell types is required to link initial DNA damage and rearrangements with transmission potential and, to assess how this varies with radiation quality. Materials and methods: We exposed normal human bronchial lung epithelial (NHBE) cells in vitro to 0.5 and 1 Gy low-linear energy transfer (LET) γ-rays and a low fluence of high-LET α-particles and assayed for chromosome aberrations in premature chromosome condensation (PCC) spreads by 24-color multiplex-fluorescence in situ hybridization (M-FISH). Results: Both simple and complex aberrations were induced in a LET and dose-dependent manner; however, the frequency and complexity observed were reduced in comparison to that previously reported in spherical cell types after exposure to comparable doses or fluence of radiation. Approximately 1–2% of all exposed cells were categorized as being capable of transmitting radiation-induced chromosomal damage to future NHBE cell generations, irrespective of dose. Conclusion: One possible mechanistic explanation for this reduced complexity is the differing geometric organization of chromosome territories within ellipsoid nuclei compared to spherical nuclei. This study highlights the need to better understand the role of nuclear organization in the formation of exchange aberrations and, the influence three-dimensional (3D) tissue architecture may have on this in vivo.
Collapse
|
31
|
Sartor O, Hoskin P, Bruland ØS. Targeted radio-nuclide therapy of skeletal metastases. Cancer Treat Rev 2013; 39:18-26. [DOI: 10.1016/j.ctrv.2012.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 03/14/2012] [Accepted: 03/16/2012] [Indexed: 01/29/2023]
|
32
|
Evidence of DNA double strand breaks formation in Escherichia coli bacteria exposed to alpha particles of different LET assessed by the SOS response. Appl Radiat Isot 2012; 71 Suppl:66-70. [DOI: 10.1016/j.apradiso.2012.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 11/18/2022]
|
33
|
Curwen GB, Tawn EJ, Cadwell KK, Guyatt L, Thompson J, Hill MA. mFISH analysis of chromosome aberrations induced in vitro by α-particle radiation: examination of dose-response relationships. Radiat Res 2012; 178:414-24. [PMID: 23083107 DOI: 10.1667/rr3020.1.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A multicolored FISH (mFISH) technique was used to characterize the cytogenetic damage associated with exposure to α-particle radiation with particular emphasis on the quality and quantity that is likely to be transmitted through cell division to descendant cells. Peripheral blood lymphocytes were irradiated in vitro with (238)Pu α particles with a range of mean doses up to 936 mGy and were cultured for 47 h. The dose responses for total aberrant cells, stable and unstable cells, and cells with one simple chromosome aberration and multiple chromosome aberrations were predominantly linear for doses that resulted in cell nuclei receiving a single α-particle traversal. However, there was a decrease per unit dose in aberrant cells of all types at higher doses because of cells increasingly receiving multiple traversals. The proportion of radiation-induced aberrant cells containing multiple aberrations ranged from 48 to 74% with little evidence of dose dependency. Ninety-one percent of all cells with multiple aberrations were classified as unstable. Resolving the chromosome rearrangements into simple categories resulted in a linear dose response for dicentrics of 24.9 ± 3.3 × 10(-2) per Gy. The predominant aberration in stable transmissible cells was a single translocation with a dose response for predominantly single hit cell nuclei of 4.1 ± 1.3 × 10(-2) per Gy. Thus, translocations are the most likely aberration to be observed in peripheral blood lymphocytes from individuals with incorporated α-emitting radionuclides resulting in long-term chronic exposure.
Collapse
Affiliation(s)
- Gillian B Curwen
- Westlakes Research Institute,3 Westlakes Science and Technology Park, Moor Row, Cumbria, CA24 3LN, United Kingdom
| | | | | | | | | | | |
Collapse
|
34
|
Evidence for formation of DNA repair centers and dose-response nonlinearity in human cells. Proc Natl Acad Sci U S A 2011; 109:443-8. [PMID: 22184222 DOI: 10.1073/pnas.1117849108] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The concept of DNA "repair centers" and the meaning of radiation-induced foci (RIF) in human cells have remained controversial. RIFs are characterized by the local recruitment of DNA damage sensing proteins such as p53 binding protein (53BP1). Here, we provide strong evidence for the existence of repair centers. We used live imaging and mathematical fitting of RIF kinetics to show that RIF induction rate increases with increasing radiation dose, whereas the rate at which RIFs disappear decreases. We show that multiple DNA double-strand breaks (DSBs) 1 to 2 μm apart can rapidly cluster into repair centers. Correcting mathematically for the dose dependence of induction/resolution rates, we observe an absolute RIF yield that is surprisingly much smaller at higher doses: 15 RIF/Gy after 2 Gy exposure compared to approximately 64 RIF/Gy after 0.1 Gy. Cumulative RIF counts from time lapse of 53BP1-GFP in human breast cells confirmed these results. The standard model currently in use applies a linear scale, extrapolating cancer risk from high doses to low doses of ionizing radiation. However, our discovery of DSB clustering over such large distances casts considerable doubts on the general assumption that risk to ionizing radiation is proportional to dose, and instead provides a mechanism that could more accurately address risk dose dependency of ionizing radiation.
Collapse
|
35
|
Chauhan V, Howland M, Kutzner B, McNamee JP, Bellier PV, Wilkins RC. Biological effects of alpha particle radiation exposure on human monocytic cells. Int J Hyg Environ Health 2011; 215:339-44. [PMID: 22153871 DOI: 10.1016/j.ijheh.2011.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 11/08/2011] [Indexed: 01/18/2023]
Abstract
Radon ((222)Rn) gas produces decay progeny that emits high energy alpha (α)-particles. Epidemiological studies have shown that exposure to (222)Rn is linked with elevated risk of developing lung cancer, however clear mechanisms leading to such effects have not been delineated. Cytokines play a critical role in inflammation and their dysregulated production often contributes to disease pathogenesis. In this study, Bio-plex multiplex technology was employed to investigate modulations of 27 pro-inflammatory cytokines following exposure of human monocytic cells to 1.5 Gy of α-particle radiation. Concurrently, DNA damage was assessed by examining the formation of phosphorylated H2A histone family X (γ-H2AX) sites. Of the 27 cytokines assessed, 4 cytokines were shown to be statistically downregulated by ∼2 fold relative to the untreated controls and included the interleukin (IL) family of proteins (IL-2, IL-15 and IL-17) and macrophage inflammatory protein 1 beta (MIP-1b). Interferon-inducible protein-12 (IP-12), vascular endothelial growth factor and regulated on activation normal T cell expressed and secreted (RANTES) were shown to be high expressors and upregulated. Cells irradiated with α-particles ranging from 0.27 to 2.14 Gy showed statistically significant, dose-dependant increases in γ-H2AX formation. These data suggest that α-particle radiation causes dysregulation in the production of a number of pro-inflammatory cytokines and results in significant DNA damage.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, ON, Canada K1A 0K9. Vinita
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Hada M, Wu H, Cucinotta FA. mBAND analysis for high- and low-LET radiation-induced chromosome aberrations: a review. Mutat Res 2011; 711:187-192. [PMID: 21232544 DOI: 10.1016/j.mrfmmm.2010.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 05/30/2023]
Abstract
During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations.
Collapse
Affiliation(s)
- Megumi Hada
- NASA Johnson Space Center, Houston, TX 77058, USA; Universities Space Research Association, Houston, TX 77058, USA.
| | | | | |
Collapse
|
38
|
Beaton LA, Burn TA, Stocki TJ, Chauhan V, Wilkins RC. Development and characterization of anin vitroalpha radiation exposure system. Phys Med Biol 2011; 56:3645-58. [DOI: 10.1088/0031-9155/56/12/012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Sartor O. Potential synergistic implications for stromal-targeted radiopharmaceuticals in bone-metastatic prostate cancer. Asian J Androl 2011; 13:366-8. [PMID: 21499278 DOI: 10.1038/aja.2011.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genetic heterogeneity and chemotherapy-resistant 'stem cells' represent two of the most pressing issues in devising new strategies for the treatment of advanced prostate cancer. Though curative strategies have long been present for men with localized disease, metastatic prostate cancer is currently incurable. Though substantial improvements in outcomes are now possible through the utilization of newly approved therapies, novel combinations are clearly needed. Herein we describe potentially synergistic interactions between bone stromal-targeted radiopharmaceuticals and other therapies for treatment of bone-metastatic prostate cancer. Radiation has long been known to synergize with cytotoxic chemotherapies and recent data also suggest the possibility of synergy when combining radiation and immune-based strategies. Combination therapies will be required to substantially improve survival for men with castrate-resistant metastatic prostate cancer and we hypothesize that bone-targeted radiopharmaceuticals will play an important role in this process.
Collapse
Affiliation(s)
- Oliver Sartor
- Department of Medicine, Tulane Medical School, New Orleans, LA 70115, USA.
| |
Collapse
|
40
|
Taleei R, Weinfeld M, Nikjoo H. A kinetic model of single-strand annealing for the repair of DNA double-strand breaks. RADIATION PROTECTION DOSIMETRY 2011; 143:191-195. [PMID: 21183536 DOI: 10.1093/rpd/ncq535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Ionising radiation induces different types of DNA damage, including single-strand breaks, double-strand breaks (DSB) and base damages. DSB are considered to be the most critical lesion to be repaired. The three main competitive pathways in the repair of DSB are non-homologous end joining (NHEJ), homologous recombination (HR) and single-strand annealing (SSA). SSA is a non-conservative repair pathway requiring direct repeat sequences for the repair process. In this work, a biochemical kinetic model is presented to describe the SSA repair pathway. The model consists of a system of non-linear ordinary differential equations describing the steps in the repair pathway. The reaction rates were estimated by comparing the model results with the experimental data for chicken DT40 cells exposed to 20 Gy of X-rays. The model successfully predicts the repair of the DT40 cells with the reaction rates derived from the 20-Gy X-ray experiment. The experimental data and the kinetic model show fast and slow DSB repair components. The half time and fractions of the slow and the fast components of the repair were compared for the model and the experiments. Mathematical and computational modelling in biology has played an important role in predicting biological mechanisms and stimulating future experimentation. The present model of SSA adds to the modelling of NHEJ and HR to provide a more complete description of DSB repair pathways.
Collapse
Affiliation(s)
- Reza Taleei
- Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Stockholm SE 171 76, Sweden.
| | | | | |
Collapse
|
41
|
Hill MA, Griffin CS, Pyke EL, Stevens DL. Chromosome aberration induction is dependent on the spatial distribution of energy deposition through a cell nucleus. RADIATION PROTECTION DOSIMETRY 2011; 143:172-6. [PMID: 21183544 DOI: 10.1093/rpd/ncq517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The importance of the spatial distribution of energy deposition through the nucleus in determining the resultant chromosome rearrangements was investigated using fluorescent in situ hybridisation technique following either uniform or partial irradiation of HF19 human fibroblast cells with low-LET 1.5 keV ultrasoft X-rays. Irradiations were performed with and without a copper irradiation mask with a Poisson distribution of micron-sized holes immediately below the irradiation dish and the results are compared with previous results obtained following exposure to a Poisson distribution of alpha particles. For the same radiation quality, the spatial distribution of energy deposition within the nucleus was found to be important in determining the ultimate biological response, with an increased ratio of complex-to-simple aberrations observed for partial compared to uniform irradiation. Comparisons between low-LET ultrasoft X-rays and high-LET alpha particles indicate that the sub-micron clustering of damage along the alpha particle track is more important than just the total number of double-strand breaks produced.
Collapse
Affiliation(s)
- M A Hill
- CRUK/MRC Gray Institute for Radiation Oncology & Biology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | | | | | |
Collapse
|
42
|
Abstract
Multiplex in situ hybridization (M-FISH) is a 24-color karyotyping technique and is the method of choice for studying complex interchromosomal rearrangements. The process involves three major steps. Firstly, the multiplex labeling of all chromosomes in the genome with finite numbers of spectrally distinct fluorophores in a combinatorial fashion, such that each homologous pair of chromosomes is uniquely labeled. Secondly, the microscopic visualization and digital acquisition of each fluorophore using specific single band-pass filter sets and dedicated M-FISH software. These acquired images are then superimposed enabling individual chromosomes to be classified based on the fluor composition in accordance with the combinatorial labeling scheme of the M-FISH probe cocktail used. The third step involves the detailed analysis of these digitally acquired and processed images to resolve structural and numerical abnormalities.
Collapse
Affiliation(s)
- Rhona Anderson
- Laboratory of Genome Damage, Division of Biosciences, Centre for Cell and Chromosome Biology, Brunel University, Uxbridge, Middlesex, UK.
| |
Collapse
|
43
|
Becker D, Elsässer T, Tonn T, Seifried E, Durante M, Ritter S, Fournier C. Response of human hematopoietic stem and progenitor cells to energetic carbon ions. Int J Radiat Biol 2009; 85:1051-9. [PMID: 19895282 DOI: 10.3109/09553000903232850] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE To characterise the radiation response of human hematopoietic stem and progenitor cells (HSPC) with respect to X and carbon ion irradiation. MATERIALS AND METHODS HSPC from peripheral blood of healthy donors treated with granulocyte-colony stimulating factor (G-CSF) were enriched for the transmembrane glycoprotein CD34 (cluster of differentiation) and irradiated with X rays or carbon ions (29 keV/microm monoenergetic beam and 60-85 keV/microm spread-out Bragg peak), mimicking radiotherapy conditions. Apoptotic cell death, cell cycle progression and the frequency of chromosomal aberrations were determined. RESULTS After radiation exposure no inhibition in the progression of the cell cycle was detected. However, an enhanced frequency of apoptotic cells and an increase in aberrant cells were observed, both effects being more pronounced for carbon ions than X rays, resulting in a relative biological effectiveness (RBE) of 1.4-1.7. The fraction of complex-type aberrations was higher following carbon ion exposure. CONCLUSIONS RBE values of carbon ions are low, as expected for radiosensitive cells. The observed frequencies of apoptotic cells and chromosome aberrations in HSPC are similar to those reported for human peripheral blood lymphocytes suggesting that at least with respect to apoptosis and chromosomal aberrations mature lymphocytes reflect the respective radiation responses of their proliferating progenitors.
Collapse
|
44
|
Tawn EJ, Whitehouse CA, Holdsworth D, De Ruyck K, Vandenbulcke K, Thierens H. mBAND analysis of chromosome aberrations in lymphocytes exposedin vitroto α-particles and γ-rays. Int J Radiat Biol 2009; 84:447-53. [DOI: 10.1080/09553000802078412] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Peng Y, Borak TB, Bouffler SD, Ullrich RL, Weil MM, Bedford JS. Radiation Leukemogenesis in Mice: Loss ofPU.1on Chromosome 2 in CBA and C57BL/6 Mice after Irradiation with 1 GeV/nucleon56Fe Ions, X Rays or γ Rays. Part II. Theoretical Considerations Based on Microdosimetry and the Initial Induction of Chromosome Aberrations. Radiat Res 2009; 171:484-93. [DOI: 10.1667/rr1548.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Hirayama R, Ito A, Tomita M, Tsukada T, Yatagai F, Noguchi M, Matsumoto Y, Kase Y, Ando K, Okayasu R, Furusawa Y. Contributions of Direct and Indirect Actions in Cell Killing by High-LET Radiations. Radiat Res 2009; 171:212-8. [DOI: 10.1667/rr1490.1] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Tsuruoka C, Suzuki M, Hande MP, Furusawa Y, Anzai K, Okayasu R. The difference in LET and ion species dependence for induction of initially measured and non-rejoined chromatin breaks in normal human fibroblasts. Radiat Res 2008; 170:163-71. [PMID: 18666815 DOI: 10.1667/rr1279.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 04/04/2008] [Indexed: 11/03/2022]
Abstract
We studied the LET and ion species dependence of the induction of chromatin breaks measured immediately after irradiation as initially measured breaks and after 24 h postirradiation incubation (37 degrees C) as non-rejoined breaks in normal human fibroblasts with different heavy ions, such as carbon, neon, silicon and iron, generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Science (NIRS). Chromatin breaks were measured as an excess number of fragments of prematurely condensed chromosomes using premature chromosome condensation (PCC). The results showed that the number of excess fragments per cell per Gy for initially measured chromatin breaks was dependent on LET in the range from 13.3 to 113.1 keV/mum but was not dependent on ion species. On the other hand, the number of non-rejoined chromatin breaks detected after 24 h postirradiation incubation was clearly dependent on both LET and ion species. No significant difference was observed in the cross section for initially measured breaks, but a statistically significant difference was observed in the cross section for non-rejoined breaks among carbon, neon, silicon and iron ions. This suggests that the LET-dependent structure in the biological effects is reflected in biological consequences of repair processes.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Heavy-ion Radiobiology Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Mestres M, Caballín MR, Barrios L, Ribas M, Barquinero JF. RBE of X Rays of Different Energies: A Cytogenetic Evaluation by FISH. Radiat Res 2008; 170:93-100. [DOI: 10.1667/rr1280.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 02/27/2008] [Indexed: 11/03/2022]
|
49
|
Tawn EJ, Whitehouse CA, De Ruyck K, Hodgson L, Vandenbulcke K, Thierens H. The Characterization and Transmissibility of Chromosome Aberrations Induced in Peripheral Blood Lymphocytes byIn Vitroα-Particle Radiation. Radiat Res 2007; 168:666-74. [DOI: 10.1667/rr0969.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 07/19/2007] [Indexed: 11/03/2022]
|