1
|
Afshari N, Koturbash I, Boerma M, Newhauser W, Kratz M, Willey J, Williams J, Chancellor J. A Review of Numerical Models of Radiation Injury and Repair Considering Subcellular Targets and the Extracellular Microenvironment. Int J Mol Sci 2024; 25:1015. [PMID: 38256089 PMCID: PMC10816679 DOI: 10.3390/ijms25021015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Astronauts in space are subject to continuous exposure to ionizing radiation. There is concern about the acute and late-occurring adverse health effects that astronauts could incur following a protracted exposure to the space radiation environment. Therefore, it is vital to consider the current tools and models used to describe and study the organic consequences of ionizing radiation exposure. It is equally important to see where these models could be improved. Historically, radiobiological models focused on how radiation damages nuclear deoxyribonucleic acid (DNA) and the role DNA repair mechanisms play in resulting biological effects, building on the hypotheses of Crowther and Lea from the 1940s and 1960s, and they neglected other subcellular targets outside of nuclear DNA. The development of these models and the current state of knowledge about radiation effects impacting astronauts in orbit, as well as how the radiation environment and cellular microenvironment are incorporated into these radiobiological models, aid our understanding of the influence space travel may have on astronaut health. It is vital to consider the current tools and models used to describe the organic consequences of ionizing radiation exposure and identify where they can be further improved.
Collapse
Affiliation(s)
- Nousha Afshari
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Igor Koturbash
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Wayne Newhauser
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
| | - Maria Kratz
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Jeffrey Willey
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Jeffery Chancellor
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA; (N.A.); (W.N.)
- Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, TX 77555, USA
- Outer Space Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Edwards S, Adams J, Tchernikov A, Edwards JG. Low-dose X-ray radiation induces an adaptive response: A potential countermeasure to galactic cosmic radiation exposure. Exp Physiol 2024. [PMID: 38180298 DOI: 10.1113/ep091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
Space exploration involves many dangers including galactic cosmic radiation (GCR). This class of radiation includes high-energy protons and heavy ionizing ions. NASA has defined GCR as a carcinogenic risk for long-duration space missions. To date, no clear strategy has been developed to counter chronic GCR exposure. We hypothesize that preconditioning cells with low levels of radiation will be protective from subsequent higher radiation exposures. H9C2 cells were pretreated with 0.1 to 1.0 Gy X-rays. The challenge radiation exposure consisted of either 8 Gy X-rays or 75 cGy of GCR, using a five-ion GCRsim protocol. A cell doubling time assay was used to determine cell viability. An 8 Gy X-ray challenge alone significantly (P < 0.05) increased cell doubling time compared to the no-radiation control group. Low-dose radiation pre-treatment ameliorated the 8 Gy X-ray-induced increases in cell doubling time. A 75 cGy GCR challenge alone significantly increased cell doubling time compared to the no-radiation group. Following the 75 cGy challenge, only the 0.5 and 1.0 Gy pre-treatment ameliorated the 75 cGy-induced increases in cell doubling time. DNA damage or pathological oxidant stress will delay replicative functions and increase cell doubling time. Our results suggested that pretreatment with low-dose X-rays induced an adaptive response which offered a small but significant protection against a following higher radiation challenge. Although perhaps not a practical countermeasure, these findings may serve to offer insight into cell signalling pathways activated in response to low-dose irradiation and targeted for countermeasure development.
Collapse
|
3
|
Zhang P, Wu Y, Piao C, Song Y, Zhao Y, Lyu Y, Sun Q, Liu J. Alteration of genome-wide DNA methylation in non-uranium miners induced by high level radon exposure. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503683. [PMID: 37770140 DOI: 10.1016/j.mrgentox.2023.503683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023]
Abstract
In China, according to statistics about underground non-uranium mine radon levels, 15% exceed the national standard intervention level of 1000 Bq/m3, and some mines may exceed 10,000 Bq/m3. The relationship between radon exposure in underground miners and lung cancer has already been established, but the mechanisms and biological processes underlying it are poorly understood. In order to identify the genome-wide DNA methylation profile associated with long-term radon exposure, we performed the Infinium Human Methylation 850 K BeadChip measurement in whole blood samples obtained from 15 underground non-uranium miners and 10 matched aboveground control workers. Radon concentrations in the air of workplaces and living environments were measured by CR-39 radon detectors, and annual effective doses were calculated using the detection data. Under the high radon concentration with an average value of 12,700 Bq·m-3, a total of 165 significant differentially methylated positions (127 hypermethylated sites and 38 hypomethylated sites) annotated to 71 genes were identified in underground miners (|Δβ| ≥ 0.10, p < 0.05), and the average DNA methylation level of 165 DMPs was significantly higher than that of the control workers. Most DMPs were found on chromosome 1, and approximately one-quarter of them were located in genomic promoter regions. Through bioinformatics analysis and pyrosequencing validation, five candidate genes differentially methylated by radon, including TIMP2, EMP2, CPT1B, AMD1 and SLC43A2 were identified. GO and KEGG analysis implicated that long term radon exposure could induce the lung cancer related biological processes such as cell adhesion and cellular polarity maintenance. Our study provides evidence for the alterations of genome-wide DNA methylation profiles induced by long-term high level radon exposure, and new insights into searching for carcinogenic biomarkers of high radon exposure in future studies.
Collapse
Affiliation(s)
- Pinhua Zhang
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yunyun Wu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Chunnan Piao
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yanchao Song
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yanfang Zhao
- The Third People's Hospital of Henan Province, Henan Hospital for Occupational Diseases, Zhengzhou 450052, China
| | - Yumin Lyu
- The Third People's Hospital of Henan Province, Henan Hospital for Occupational Diseases, Zhengzhou 450052, China
| | - Quanfu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Jianxiang Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China.
| |
Collapse
|
4
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Priya R, Das B. Global DNA methylation profile at LINE-1 repeats and promoter methylation of genes involved in DNA damage response and repair pathways in human peripheral blood mononuclear cells in response to γ-radiation. Mol Cell Biochem 2021; 477:267-281. [PMID: 34708334 DOI: 10.1007/s11010-021-04265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1 repeats and promoter methylation of DNA damage response (DDR) and DNA repair (DR) genes (PARP1, ATM, BRCA1, MLH1, XPC, RAD23B, APC, TNFα, DNMT3A, MRE11A, MGMT, CDKN2A, MTHFR) in human peripheral blood mononuclear cells (PBMCs) of healthy donors in response to γ-radiation. Methylation level was correlated with gene expression profile of selected DDR and DR genes (APC, MLH1, PARP1, MRE11A, TNFα, MGMT) to understand their role in gene regulation. Blood samples were collected from 15 random healthy donors, PBMCs were isolated, exposed to 0.1 Gy (low) and 2.0 Gy (high) doses of γ-radiation and proliferated for 48 h and 72 h. Genomic DNA and total RNA were isolated from irradiated PBMCs along with un-irradiated control. Methylation profile was determined from bisulphite converted DNA and amplified by methylation sensitive high resolution melting (MS-HRM) method. Total RNA was converted to cDNA and relative expression was analysed using real time quantitative-PCR. Our results revealed that at 0.1 Gy, MRE11A and TNFα showed significant (P < 0.05) increase in methylation at 72 h. At 2.0 Gy, significant increase (P < 0.05) in methylation profile was observed at LINE1, MRE11A, PARP1, BRCA1, DNMT3A and RAD23B at 48 h and 72 h. PARP1 showed significant positive correlation of methylation status with gene expression. In conclusion, low and high doses of γ-radiation have significant influence on DNA methylation status of LINE1, DDR and DR genes suggesting their potential role as epigenetic signatures in human PBMCs, which can be further explored in human populations.
Collapse
Affiliation(s)
- Rashmi Priya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
6
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
8
|
Zhuntova G, Loffredo C, Grigoryeva E, Sychugov G, Kazachkov E, Kirillova E, Azizova T. The Russian Radiobiological Human Tissue Repository: characteristics of biological specimens donated by nuclear workers with lung cancer. Int J Radiat Biol 2020; 96:577-583. [PMID: 31976795 DOI: 10.1080/09553002.2020.1721596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Characteristics of biological specimens donated by nuclear workers with lung cancer.Materials and methods: Biological specimens were identified at the Radiobiological Human Tissue Repository (RHTR). It was established at the Southern Urals Biophysics Institute in Russia and has been developed and supported within the bilateral US-Russian Agreement on International Cooperation for Minimization of the Effects of Prolonged Radiation Exposure. Biological specimens were collected from workers of the Russian nuclear production facility Mayak PA who were exposed to gamma radiation and/or alpha particles. To determine a histologic type of lung cancer, immunohistochemistry was used.Results and conclusions: Today biological specimens donated by 343 registrants with lung cancer are available at the RHTR. Among them, 255 donors (74%) are Mayak PA workers hired at the main facilities (reactors, plutonium production, and radiochemical plants) in 1948-1982. These workers donated about 6024 specimens of lung tissues (tumor and tumor-free) stored mostly as formalin-fixed paraffin-embedded tissue blocks (31%) and histology slides (64%); in addition, they donated 1800 specimens of blood/blood components, buccal epithelium cells, and sputum. Among histologic types identified for these lung cancer cases, adenocarcinoma and small cell carcinoma were prevalent. Information about individual doses from external and internal radiation exposure, data on quantitative smoking characteristics and diseases are available for all workers with lung cancer. Complete information on radiation exposure, health status and non-radiation factors annotated to RHTR registrants and the high quality of the available biological specimens are a unique resource for studying biological mechanisms of radiation-induced lung cancer.
Collapse
Affiliation(s)
- Galina Zhuntova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Evgeniya Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Gleb Sychugov
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Evgeny Kazachkov
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Evgeniya Kirillova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Tamara Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| |
Collapse
|
9
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
10
|
Kuzmina NS, Lapteva NS, Rusinova GG, Azizova TV, Vyazovskaya NS, Rubanovich AV. Gene hypermethylation in blood leukocytes in humans long term after radiation exposure - Validation set. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:935-942. [PMID: 29253833 DOI: 10.1016/j.envpol.2017.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Hypermethylation of СpG islands in the promoter regions of several genes with basic protective function in blood leukocytes of individuals exposed to ionizing radiation long time ago (2-46 years), and differential effects of age and radiation exposure on hypermethylation was reported in our previous work. To validate these results, epigenetic modifications were assessed in an independent series of 49 nuclear industry workers from the "Mayak" facility (67-84 years old at sampling) with documented individual accumulated doses from the prolonged external γ-radiation exposure (95.9-409.5 cGy, end of work with radiation:0.3-39 years ago), and in 50 non-exposed persons matched by age. In addition to the genes analyzed before (RASSF1A, p16/INK4A, p14/ARF, GSTP1), four additional loci were analyzed: TP53, ATM, SOD3, ESR1. The frequency of individuals displaying promoter methylation of at least one of the 8 genes (71.4%) was significantly higher in exposed group as compared to the control group (40%), p = .002, OR = 3.75. A significantly elevated frequency of individuals with hypermethylated СpG islands in GSTP1, TP53, SOD3 promoters was revealed among exposed subjects as compared to the control group (p = .012, OR = 8.41; p = .041, OR = 4.02 and p = .009, OR = 3.42, respectively). A similar trend (p = .12, OR = 3.06) was observed for the p16/INK4A gene. As a whole, p16/INK4A and GSTP1 promoter hypermethylation in irradiated subjects from both previously and currently analyzed groups was pronounced. Thus, the direction of the effects was fully confirmed, suggesting the result reproducibility. No statistically significant correlation between promoter methylation and individual radiation dose was found. Further studies are required to create an array of blood epigenetic markers of radiation exposure associating with premature aging and age-related diseases and to accurately evaluate radiation-added effect across the range of doses. SYNTHESIS The results of studies of epigenetic changes in two independent samples of irradiated subjects indicated the significance of radiation factor in the induction of hypermethylation of CpG islands in gene promoters that is revealed in blood cells years and decades after exposure.
Collapse
Affiliation(s)
- Nina S Kuzmina
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia.
| | - Nellya Sh Lapteva
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia.
| | | | | | | | - Alexander V Rubanovich
- N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
11
|
Miousse IR, Ewing LE, Kutanzi KR, Griffin RJ, Koturbash I. DNA Methylation in Radiation-Induced Carcinogenesis: Experimental Evidence and Clinical Perspectives. Crit Rev Oncog 2018; 23:1-11. [PMID: 29953365 PMCID: PMC6369919 DOI: 10.1615/critrevoncog.2018025687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ionizing radiation is a valuable tool in many spheres of human life. At the same time, it is a genotoxic agent with a well-established carcinogenic potential. Progress achieved in the last two decades has demonstrated convincingly that ionizing radiation can also target the cellular epigenome. Epigenetics is defined as heritable changes in the expression of genes that are not due to alterations of DNA sequence but consist of specific covalent modifications of chromatin components, such as methylation of DNA, histone modifications, and control performed by non-coding RNAs. Accumulating evidence suggests that DNA methylation, a key epigenetic mechanism involved in the control of expression of genetic information, may serve as one of the driving mechanisms of radiation-induced carcinogenesis. Here, we review the literature on the effects of ionizing radiation on DNA methylation in various biological systems, discuss the role of DNA methylation in radiation carcinogenesis, and provide our opinion on the potential utilization of this knowledge in radiation oncology.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Laura E. Ewing
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kristy R. Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert J. Griffin
- Department of Radiation Oncology, Radiation Biology Division, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
12
|
Miousse IR, Tobacyk J, Melnyk S, James SJ, Cheema AK, Boerma M, Hauer-Jensen M, Koturbash I. One-carbon metabolism and ionizing radiation: a multifaceted interaction. Biomol Concepts 2017; 8:83-92. [PMID: 28574375 PMCID: PMC6693336 DOI: 10.1515/bmc-2017-0003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/03/2017] [Indexed: 01/20/2023] Open
Abstract
Ionizing radiation (IR) is a ubiquitous component of our environment and an important tool in research and medical treatment. At the same time, IR is a potent genotoxic and epigenotoxic stressor, exposure to which may lead to negative health outcomes. While the genotoxocity is well described and characterized, the epigenetic effects of exposure to IR and their mechanisms remain under-investigated. In this conceptual review, we propose the IR-induced changes to one-carbon metabolism as prerequisites to alterations in the cellular epigenome. We also provide evidence from both experimental and clinical studies describing the interactions between IR and one-carbon metabolism. We further discuss the potential for the manipulation of the one-carbon metabolism in clinical applications for the purpose of normal tissue protection and for increasing the radiosensitivity of cancerous cells.
Collapse
Affiliation(s)
- Isabelle R. Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Julia Tobacyk
- Departments of Environmental and Occupational Health, and Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stepan Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - S. Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amrita K. Cheema
- Departments of Oncology and Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington DC 20057, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
13
|
Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93:457-469. [PMID: 28134023 PMCID: PMC5411327 DOI: 10.1080/09553002.2017.1287454] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. CONCLUSIONS In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.
Collapse
Affiliation(s)
- Isabelle R Miousse
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kristy R Kutanzi
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
14
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
15
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
16
|
Wang D, Yang PN, Chen J, Zhou XY, Liu QJ, Li HJ, Li CL. Promoter hypermethylation may be an important mechanism of the transcriptional inactivation of ARRDC3, GATA5, and ELP3 in invasive ductal breast carcinoma. Mol Cell Biochem 2014; 396:67-77. [PMID: 25148870 DOI: 10.1007/s11010-014-2143-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/11/2014] [Indexed: 12/24/2022]
Abstract
Hypermethylation of promoter CpG islands represents an alternative mechanism to inactivate tumor suppressor genes. This study was to detect promoter methylation status and mRNA expression levels of ARRDC3, ELP3, GATA5, and PAX6, and to explore the association between methylation and expression in invasive ductal carcinomas (IDCs) and matched normal tissues (MNTs) from breast cancer patients. Aberrant gene methylation was observed as follows: ARRDC3 in 38.5 %, ELP3 in 73.1 %, GATA5 in 48.1 %, and PAX6 in 50.0 % of IDCs. mRNA expression of ARRDC3, ELP3, and GATA5 in IDCs showed a lower level than that in MNTs (P < 0.001, P = 0.001 and P < 0.001, respectively). For ARRDC3, both methylated and unmethylated IDCs showed significantly lower expression values compared to MNTs (P = 0.001 and P = 0.007, respectively). For ELP3 and GATA5, methylated tumors only showed significantly lower expression values compared to MNTs (P = 0.001 and P < 0.001, respectively). For ARRDC3 and GATA5, methylation was associated with their less fold change in IDCs (P = 0.049 and P = 0.020, respectively). Methylation of ARRDC3 was significantly associated with grades and lymph node status of IDCs (P = 0.036 and P = 0.002, respectively). Methylation frequency of ELP3 was higher in lymph node positive versus lymph node negative tumors (P = 0.020); whereas methylation frequency of PAX6 was lower in tumors with the ER negative samples (P = 0.025). Our data suggested that promoter hypermethylation may be an important mechanism of the transcriptional inactivation of ARRDC3, GATA5, and ELP3 in IDCs.
Collapse
Affiliation(s)
- Da Wang
- Department of Biochemistry and Molecular Biology, School of Preclinical and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Nzabarushimana E, Miousse IR, Shao L, Chang J, Allen AR, Turner J, Stewart B, Raber J, Koturbash I. Long-term epigenetic effects of exposure to low doses of 56Fe in the mouse lung. JOURNAL OF RADIATION RESEARCH 2014; 55:823-8. [PMID: 24585548 PMCID: PMC4100002 DOI: 10.1093/jrr/rru010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Despite significant progress, the long-term health effects of exposure to high charge (Z) and energy (E) nuclei (HZEs) and the underlying mechanisms remain poorly understood. Mouse studies show that space missions can result in pulmonary pathological states. The goal of this study was to evaluate the pro-fibrotic and pro-carcinogenic effects of exposure to low doses of heavy iron ions ((56)Fe) in the mouse lung. Exposure to (56)Fe (600 MeV; 0.1, 0.2 and 0.4 Gy) resulted in minor pro-fibrotic changes, detected at the beginning of the fibrotic phase (22 weeks post exposure), which were exhibited as increased expression of chemokine Ccl3, and interleukin Il4. Epigenetic alterations were exhibited as global DNA hypermethylation, observed after exposure to 0.4 Gy. Cadm1, Cdh13, Cdkn1c, Mthfr and Sfrp1 were significantly hypermethylated after exposure to 0.1 Gy, while exposure to higher doses resulted in hypermethylation of Cdkn1c only. However, expression of these genes was not affected by any dose. Congruently with the observed patterns of global DNA methylation, DNA repetitive elements were hypermethylated after exposure to 0.4 Gy, with minor changes observed after exposure to lower doses. Importantly, hypermethylation of repetitive elements coincided with their transcriptional repression. The findings of this study will aid in understanding molecular determinants of pathological states associated with exposure to (56)Fe, as well as serve as robust biomarkers for the delayed effects of irradiation. Further studies are clearly needed to investigate the persistence and outcomes of molecular alterations long term after exposure.
Collapse
Affiliation(s)
- Etienne Nzabarushimana
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Isabelle R Miousse
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Antiño R Allen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| | - Jennifer Turner
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA
| | - Blair Stewart
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA Department of Neurology, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA Division of Cancer Biology and Radiobiology, and Division of Neuroscience, ONPRC, Oregon Health and Science University, 3181 S.W. Sam Jackson Park Rd, Portland, 97239-3098, OR, USA
| | - Igor Koturbash
- Department of Environmental and Occupational Health, College of Public Health, University of Arkansas for Medical Sciences, 4301 West Markham Street, #820-11, Little Rock, 72205-7199, AR, USA
| |
Collapse
|
18
|
Abstract
Silencing of GATA5 gene expression as a result of promoter hypermethylation has been observed in lung, gastrointestinal and ovarian cancers. However, the regulation of GATA5 gene expression has been poorly understood. In the present study, we have demonstrated that an E (enhancer)-box in the GATA5 promoter (bp -118 to -113 in mice; bp -164 to -159 in humans) positively regulates GATA5 transcription by binding USF1 (upstream stimulatory factor 1). Using site-directed mutagenesis, EMSA (electrophoretic mobility-shift analysis) and affinity chromatography, we found that USF1 specifically binds to the E-box sequence (5'-CACGTG-3'), but not to a mutated E-box. CpG methylation of this E-box significantly diminished its binding of transcription factors. Mutation of the E-box within a GATA5 promoter fragment significantly decreased promoter activity in a luciferase reporter assay. Chromatin immunoprecipitation identified that USF1 physiologically interacts with the GATA5 promoter E-box in mouse intestinal mucosa, which has the highest GATA5 gene expression in mouse. Co-transfection with a USF1 expression plasmid significantly increased GATA5 promoter-driven luciferase transcription. Furthermore, real-time and RT (reverse transcription)-PCR analyses confirmed that overexpression of USF1 activates endogenous GATA5 gene expression in human bronchial epithelial cells. The present study provides the first evidence that USF1 activates GATA5 gene expression through the E-box motif and suggests a potential mechanism (disruption of the E-box) by which GATA5 promoter methylation reduces GATA5 expression in cancer.
Collapse
|
19
|
Epigenetic changes in response to tai chi practice: a pilot investigation of DNA methylation marks. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:841810. [PMID: 22719790 PMCID: PMC3375016 DOI: 10.1155/2012/841810] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/29/2012] [Indexed: 01/06/2023]
Abstract
Tai chi exercise has been shown to improve physiological and psychosocial functions, well-being, quality of life, and disease conditions. The biological mechanisms by which tai chi exerts its holistic effects remain unknown. We investigated whether tai chi practice results in positive epigenetic changes at the molecular level. Design. The DNA methylation profiles of sixty CpG-dinucleotide marks in female tai chi practitioners (N = 237; 45–88 years old) who have been practising tai chi for three or more years were compared with those of age-matched control females (N = 263) who have never practised tai chi. Results. Six CpG marks originating from three different chromosomes reveal a significant difference (P < 0.05) between the two cohorts. Four marks show losses while two marks show gains in DNA methylation with age in the controls. In the tai chi cohort all six marks demonstrate significant slowing (by 5–70%) of the age-related methylation losses or gains observed in the controls, suggesting that tai chi practice may be associated with measurable beneficial epigenetic changes. Conclusions. The results implicate the potential use of DNA methylation as an epigenetic biomarker to better understand the biological mechanisms and the health and therapeutic efficacies of tai chi.
Collapse
|
20
|
Wang X, Kang GH, Campan M, Weisenberger DJ, Long TI, Cozen W, Bernstein L, Wu AH, Siegmund KD, Shibata D, Laird PW. Epigenetic subgroups of esophageal and gastric adenocarcinoma with differential GATA5 DNA methylation associated with clinical and lifestyle factors. PLoS One 2011; 6:e25985. [PMID: 22028801 PMCID: PMC3197593 DOI: 10.1371/journal.pone.0025985] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 09/15/2011] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Adenocarcinomas located near the gastroesophageal junction have unclear etiology and are difficult to classify. We used DNA methylation analysis to identify subtype-specific markers and new subgroups of gastroesophageal adenocarcinomas, and studied their association with epidemiological risk factors and clinical outcomes. METHODOLOGY/PRINCIPAL FINDINGS We used logistic regression models and unsupervised hierarchical cluster analysis of 74 DNA methylation markers on 45 tumor samples (44 patients) of esophageal and gastric adenocarcinomas obtained from a population-based case-control study to uncover epigenetic markers and cluster groups of gastroesophageal adenocarcinomas. No distinct epigenetic differences were evident between subtypes of gastric and esophageal cancers. However, we identified two gastroesophageal adenocarcinoma subclusters based on DNA methylation profiles. Group membership was best predicted by GATA5 DNA methylation status. We analyzed the associations between these two epigenetic groups and exposure using logistic regression, and the associations with survival time using Cox regression in a larger set of 317 tumor samples (278 patients). There were more males with esophageal and gastric cardia cancers in Cluster Group 1 characterized by higher GATA5 DNA methylation values (all p<0.05). This group also showed associations of borderline statistical significance with having ever smoked (p-value = 0.07), high body mass index (p-value = 0.06), and symptoms of gastroesophageal reflux (p-value = 0.07). Subjects in cluster Group 1 showed better survival than those in Group 2 after adjusting for tumor differentiation grade, but this was not found to be independent of tumor stage. CONCLUSIONS/SIGNIFICANCE DNA methylation profiling can be used in population-based studies to identify epigenetic subclasses of gastroesophageal adenocarcinomas and class-specific DNA methylation markers that can be linked to epidemiological data and clinical outcome. Two new epigenetic subgroups of gastroesophageal adenocarcinomas were identified that differ to some extent in their survival rates, risk factors of exposure, and GATA5 DNA methylation.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Gyeong Hoon Kang
- Department of Pathology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Mihaela Campan
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel J. Weisenberger
- University of Southern California Epigenome Center and USC/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| | - Tiffany I. Long
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Wendy Cozen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Leslie Bernstein
- Division of Population Sciences, City of Hope National Medical Center, Duarte, California, United States of America
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kimberly D. Siegmund
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Peter W. Laird
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- University of Southern California Epigenome Center and USC/Norris Comprehensive Cancer Center, Los Angeles, California, United States of America
| |
Collapse
|
21
|
Wang D, Wang J, Li Y, He Z, Zhang Y. The influence of anthracosis and p16 ink4a gene aberrant methylation on small-sized pulmonary adenocarcinoma. Exp Mol Pathol 2010; 90:131-6. [PMID: 21073868 DOI: 10.1016/j.yexmp.2010.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 10/26/2010] [Accepted: 10/29/2010] [Indexed: 02/03/2023]
Abstract
AIMS Anthracosis is the deposition of black dusty material in the pulmonary parenchyma. Previous reports showed anthracosis and p16(ink4a) gene aberrant methylation are closely related to the promotion and progression of small-sized pulmonary adenocarcinoma. In this study, we investigated the influence of anthracosis and p16(ink4a) gene aberrant methylation on clinical samples from patients with small-sized adenocarcinoma. METHODS AND RESULTS DNA was bisulfite modified and methylation-specific PCR was performed to detect p16(ink4a) gene aberrant methylation; black dusty material was extracted from lung tissues. Anthracotic index (AI) was defined as the absolute absorbance by densitometry. The histopathological diagnosis was concluded according to Noguchi's classification for small-sized pulmonary adenocarcinoma. The mean AI and the frequency of p16(ink4a) gene aberrant methylation of heavy smokers were significantly higher than that of nonsmokers (P<0.01 andP<0.05, respectively). The frequency of p16(ink4a) gene aberrant methylation of early stage small-sized adenocarcinoma was lower than that of advanced and poorly differentiated, while p16(ink4a) protein expression level of early stage small-sized adenocarcinoma was significantly higher than that of poorly differentiated small-sized adenocarcinoma (P<0.05). CONCLUSIONS AI and p16(ink4a) gene aberrant methylation may provide a potential universal biomarker for small-sized adenocarcinoma.
Collapse
Affiliation(s)
- Daye Wang
- Center of Clinical Pathology, China Capital Medical University, Beijing, China.
| | | | | | | | | |
Collapse
|
22
|
Mathers JC, Strathdee G, Relton CL. Induction of epigenetic alterations by dietary and other environmental factors. ADVANCES IN GENETICS 2010; 71:3-39. [PMID: 20933124 DOI: 10.1016/b978-0-12-380864-6.00001-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary and other environmental factors induce epigenetic alterations which may have important consequences for cancer development. This chapter summarizes current knowledge of the impact of dietary, lifestyle, and environmental determinants of cancer risk and proposes that effects of these exposures might be mediated, at least in part, via epigenetic mechanisms. Evidence is presented to support the hypothesis that all recognized epigenetic marks (including DNA methylation, histone modification, and microRNA (miRNA) expression) are influenced by environmental exposures, including diet, tobacco, alcohol, physical activity, stress, environmental carcinogens, genetic factors, and infectious agents which play important roles in the etiology of cancer. Some of these epigenetic modifications change the expression of tumor suppressor genes and oncogenes and, therefore, may be causal for tumorigenesis. Further work is required to understand the mechanisms through which specific environmental factors produce epigenetic changes and to identify those changes which are likely to be causal in the pathogenesis of cancer and those which are secondary, or bystander, effects. Given the plasticity of epigenetic marks in response to cancer-related exposures, such epigenetic marks are attractive candidates for the development of surrogate endpoints which could be used in dietary or lifestyle intervention studies for cancer prevention. Future research should focus on identifying epigenetic marks which are (i) validated as biomarkers for the cancer under study; (ii) readily measured in easily accessible tissues, for example, blood, buccal cells, or stool; and (iii) altered in response to dietary or lifestyle interventions for which there is convincing evidence for a relationship with cancer risk.
Collapse
Affiliation(s)
- John C Mathers
- Human Nutrition Research Centre, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | |
Collapse
|
23
|
Christensen BC, Houseman EA, Marsit CJ, Zheng S, Wrensch MR, Wiemels JL, Nelson HH, Karagas MR, Padbury JF, Bueno R, Sugarbaker DJ, Yeh RF, Wiencke JK, Kelsey KT. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet 2009; 5:e1000602. [PMID: 19680444 PMCID: PMC2718614 DOI: 10.1371/journal.pgen.1000602] [Citation(s) in RCA: 756] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 07/15/2009] [Indexed: 02/07/2023] Open
Abstract
Epigenetic control of gene transcription is critical for normal human development and cellular differentiation. While alterations of epigenetic marks such as DNA methylation have been linked to cancers and many other human diseases, interindividual epigenetic variations in normal tissues due to aging, environmental factors, or innate susceptibility are poorly characterized. The plasticity, tissue-specific nature, and variability of gene expression are related to epigenomic states that vary across individuals. Thus, population-based investigations are needed to further our understanding of the fundamental dynamics of normal individual epigenomes. We analyzed 217 non-pathologic human tissues from 10 anatomic sites at 1,413 autosomal CpG loci associated with 773 genes to investigate tissue-specific differences in DNA methylation and to discern how aging and exposures contribute to normal variation in methylation. Methylation profile classes derived from unsupervised modeling were significantly associated with age (P<0.0001) and were significant predictors of tissue origin (P<0.0001). In solid tissues (n = 119) we found striking, highly significant CpG island–dependent correlations between age and methylation; loci in CpG islands gained methylation with age, loci not in CpG islands lost methylation with age (P<0.001), and this pattern was consistent across tissues and in an analysis of blood-derived DNA. Our data clearly demonstrate age- and exposure-related differences in tissue-specific methylation and significant age-associated methylation patterns which are CpG island context-dependent. This work provides novel insight into the role of aging and the environment in susceptibility to diseases such as cancer and critically informs the field of epigenomics by providing evidence of epigenetic dysregulation by age-related methylation alterations. Collectively we reveal key issues to consider both in the construction of reference and disease-related epigenomes and in the interpretation of potentially pathologically important alterations. The causes and extent of tissue-specific interindividual variation in human epigenomes are underappreciated and, hence, poorly characterized. We surveyed over 200 carefully annotated human tissue samples from ten anatosites at 1,413 CpGs for methylation alterations to appraise the nature of phenotypically, and hence potentially clinically important epigenomic alterations. Within tissue types, across individuals, we found variation in methylation that was significantly related to aging and environmental exposures such as tobacco smoking. Individual variation in age- and exposure-related methylation may significantly contribute to increased susceptibility to several diseases. As the NIH–funded HapMap project is critically contributing to annotating the human reference genome defining normal genetic variability, our work raises key issues to consider in the construction of reference epigenomes. It is well recognized that understanding genetic variation is essential to understanding disease. Our work, and the known interplay of epigenetics and genetics, makes it equally clear that a more complete characterization of epigenetic variation and its sources must be accomplished to reach the goal of a complete understanding of disease. Additional research is absolutely necessary to define the mechanisms controlling epigenomic variation. We have begun to lay the foundations for essential normal tissue controls for comparison to diseased tissue, which will allow the identification of the most crucial disease-related alterations and provide more robust targets for novel treatments.
Collapse
Affiliation(s)
- Brock C Christensen
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|