1
|
Bektas H, Dasdag S. Radiofrequency radiation and Alzheimer's disease: harmful and therapeutic implications. Int J Radiat Biol 2025; 101:559-571. [PMID: 40131785 DOI: 10.1080/09553002.2025.2481854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline. The relationship between AD and radiofrequency (RF) radiation emitted by wireless devices remains under investigation. The aim of this review is to comprehensively explore the effects of RF radiation on AD by evaluating existing literature. This review used Web of Science, Scopus, and PubMed to find relevant studies on AD and RF radiation. This review evaluates a total of 81 studies, including animal models, human studies, and in vitro experiments, with results summarized in tables for clarity. CONCLUSION Some studies suggest RF aggravates AD by increasing oxidative stress, impairing blood-brain barrier integrity, and promoting amyloid-beta deposition. Conversely, other studies indicate RF may have protective benefits, such as enhancing brain mitochondrial functions and reducing amyloid-beta levels. Understanding the RF-AD relationship, including parameters like frequency and exposure time, is crucial for therapeutic strategies. The studies reviewed highlight RF radiation's dual effects on AD, underscoring the need for a detailed approach. Further studies are required to clarify these effects and inform preventive and therapeutic measures.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
2
|
Wang X, Zhao X, Xu J, Li M, Sun B, Gao A, Zhang L, Wu S, Liu X, Zou D, Li Z, Dong G, Zhang C, Wang C. The Impact of 9.375 GHz Microwave Radiation on the Emotional and Cognitive Abilities of Mice. Int J Mol Sci 2025; 26:2871. [PMID: 40243492 PMCID: PMC11988873 DOI: 10.3390/ijms26072871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, high-power microwave (HPM) technology has developed rapidly. However, the current research mainly focuses on how to improve its performance and its impact on electronic devices, and there has been relatively little research on its effects on organisms. In particular, the research on the biological effects of HPMs in the X-band is even more limited. The purpose of this paper is to conduct a study on the effects of HPMs in the X-band with a frequency of 9.375 GHz on mood, learning, and cognitive abilities, as well as the antioxidant defense system. Upon observation, it was noted that the mice in the exposed groups, when compared to the control group, did not display significant signs of depression or anxiety. Furthermore, their learning capabilities, memory retention, and cognitive functions remained intact and were not adversely affected. The results of oxidative-stress-related indicators in serum and brain tissue showed increased levels of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), reduced levels of protein carbonyl (PCO) and malondialdehyde (MDA), and no significant changes in reactive oxygen species (ROS). In summary, acute exposure to 9.375 GHz HPM did not cause significant damage to the organisms, and the body could defend against the acute stress caused by HPMs through its own antioxidant system. This investigation provides substantial theoretical foundations and robust experimental evidence for establishing safety parameters and potential biomedical applications of microwave radiation within defined exposure limits.
Collapse
Affiliation(s)
- Xinyu Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xuelong Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Jing Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Menghua Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Bin Sun
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Anning Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Lihui Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Shuang Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Xiaoman Liu
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Dongfang Zou
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| | - Chenggang Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changzhen Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China; (X.W.); (X.Z.); (J.X.); (M.L.); (B.S.); (A.G.); (L.Z.); (S.W.); (X.L.); (D.Z.); (Z.L.); (G.D.)
| |
Collapse
|
3
|
Lameth J, Royer J, Martin A, Marie C, Arnaud-Cormos D, Lévêque P, Poirier R, Edeline JM, Mallat M. Repeated Head Exposures to a 5G-3.5 GHz Signal Do Not Alter Behavior but Modify Intracortical Gene Expression in Adult Male Mice. Int J Mol Sci 2025; 26:2459. [PMID: 40141104 PMCID: PMC11941837 DOI: 10.3390/ijms26062459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
The fifth generation (5G) of mobile communications promotes human exposure to electromagnetic fields exploiting the 3.5 GHz frequency band. We analyzed behaviors, cognitive functions, and gene expression in mice submitted to asymmetrical head exposure to a 5G-modulated 3.5 GHz signal. The exposures were applied for 1 h daily, 5 days per week over a six-week period, at a specific absorption rate (SAR) averaging 0.19 W/kg over the brain. Locomotor activities in an open field, object location, and object recognition memories were assessed repeatedly after four weeks of exposure and did not reveal any significant effect on the locomotion/exploration, anxiety level, or memory processes. mRNA profiling was performed at the end of the exposure period in two symmetrical areas of the right and left cerebral cortex, in which the SAR values were 0.43 and 0.14 W/kg, respectively. We found significant changes in the expression of less than 1% of the expressed genes, with over-representations of genes related to glutamatergic synapses. The right cortical area differed from the left one by an over-representation of responsive genes encoded by the mitochondrial genome. Our data show that repeated head exposures to a 5G-3.5 GHz signal can trigger mild transcriptome alterations without changes in memory capacities or emotional state.
Collapse
Affiliation(s)
- Julie Lameth
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Juliette Royer
- Institut des Neurosciences Paris-Saclay (NeuroPSI), CNRS, Université Paris-Saclay, 91400 Saclay, France (R.P.); (J.-M.E.)
| | - Alexandra Martin
- Institut des Neurosciences Paris-Saclay (NeuroPSI), CNRS, Université Paris-Saclay, 91400 Saclay, France (R.P.); (J.-M.E.)
| | - Corentine Marie
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| | - Délia Arnaud-Cormos
- XLIM, CNRS UMR 7252, 123 Avenue Albert Thomas, Université de Limoges, 87000 Limoges, France
- 1 rue Descartes, Institut Universitaire de France (IUF), 75005 Paris, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 7252, 123 Avenue Albert Thomas, Université de Limoges, 87000 Limoges, France
| | - Roseline Poirier
- Institut des Neurosciences Paris-Saclay (NeuroPSI), CNRS, Université Paris-Saclay, 91400 Saclay, France (R.P.); (J.-M.E.)
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), CNRS, Université Paris-Saclay, 91400 Saclay, France (R.P.); (J.-M.E.)
| | - Michel Mallat
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, 75013 Paris, France
| |
Collapse
|
4
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Bontempi B, Lévêque P, Dubreuil D, Jay TM, Edeline JM. Effects of Head-Only Exposure to 900 MHz GSM Electromagnetic Fields in Rats: Changes in Neuronal Activity as Revealed by c-Fos Imaging without Concomitant Cognitive Impairments. Biomedicines 2024; 12:1954. [PMID: 39335468 PMCID: PMC11428239 DOI: 10.3390/biomedicines12091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Over the last two decades, animal models have been used to evaluate the physiological and cognitive effects of mobile phone exposure. Here, we used a head-only exposure system in rats to determine whether exposure to 900 MHz GSM electromagnetic fields (EMFs) induces regional changes in neuronal activation as revealed by c-Fos imaging. In a first study, rats were exposed for 2 h to brain average specific absorption rates (BASARs) ranging from 0.5 to 6 W/kg. Changes in neuronal activation were found to be dose-dependent, with significant increases in c-Fos expression occurring at BASAR of 1 W/kg in prelimbic, infralimbic, frontal, and cingulate cortices. In a second study, rats were submitted to either a spatial working memory (WM) task in a radial maze or a spatial reference memory (RM) task in an open field arena. Exposures (45 min) were conducted before each daily training session (BASARs of 1 and 3.5 W/kg). Control groups included sham-exposed and control cage animals. In both tasks, behavioral performance evolved similarly in the four groups over testing days. However, c-Fos staining was significantly reduced in cortical areas (prelimbic, infralimbic, frontal, cingulate, and visual cortices) and in the hippocampus of animals engaged in the WM task (BASARs of 1 and 3.5 W/kg). In the RM task, EMF exposure-induced decreases were limited to temporal and visual cortices (BASAR of 1 W/kg). These results demonstrate that both acute and subchronic exposures to 900 MHz EMFs can produce region-specific changes in brain activity patterns, which are, however, insufficient to induce detectable cognitive deficits in the behavioral paradigms used here.
Collapse
Affiliation(s)
- Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux et Ecole Pratique des Hautes Etudes, 33000 Bordeaux, France
| | - Philippe Lévêque
- XLIM, CNRS UMR 6172, Université de Limoges, 87060 Limoges, France
| | - Diane Dubreuil
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| | - Thérèse M Jay
- Institut de Psychiatrie et Neurosciences de Paris, UMR_S 1266 INSERM, Université Paris Cité, 75014 Paris, France
| | - Jean-Marc Edeline
- Institut des Neurosciences Paris-Saclay (NeuroPSI), Université Paris-Saclay, CNRS, CEA Paris-Saclay, bât 151, 91400 Saclay, France
| |
Collapse
|
6
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
7
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
8
|
El-Kafoury BMA, Abdel-Hady EA, El Bakly W, Elayat WM, Hamam GG, Abd El Rahman SMM, Lasheen NN. Lipoic acid inhibits cognitive impairment induced by multiple cell phones in young male rats: role of Sirt1 and Atg7 pathway. Sci Rep 2023; 13:18486. [PMID: 37898621 PMCID: PMC10613255 DOI: 10.1038/s41598-023-44134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023] Open
Abstract
The utilization of digital technology has grown rapidly in the past three decades. With this rapid increase, cell phones emit electromagnetic radiation; that is why electromagnetic field (EMF) has become a substantial new pollution source in modern civilization, mainly having adverse effects on the brain. While such a topic attracted many researchers' scopes, there are still minimal discoveries made regarding chronic exposure to EMF. The extensive use of cell phones may affect children's cognition even indirectly if parents and guardians used their phones repeatedly near them. This study aims to investigate possible lipoic acid (LA) effects on cognitive functions and hippocampal structure in young male rats exposed to electromagnetic fields (EMF) emitted from multiple cell phones. Forty young male Wistar rats were randomly allocated into three groups: control, multiple cell phones-exposed and lipoic acid-treated rats. By the end of the experimental period, the Morris water maze was used as a cognitive test. The rats were sacrificed for the collection of serum and hippocampal tissue. These serum samples were then utilized for assessment of Liver function tests. The level ofglutamate, acetylcholine (Ach) and malondialdehyde (MDA) was estimated, in addition to evaluating the expression of autophagy-related protein-7 (Atg7) and Sirt1 genes. The left hippocampal specimens were used for histopathological studies. Results showed that multiple cell phone-exposed rats exhibited shorter latency time to reach the platform by the fifth day of training; additionally, there was a reduction in consolidation of spatial long-term memory. Correspondingly, there was an elevation of hippocampal Ach, glutamate, and MDA levels; accompanied by up-regulation of hippocampal Sirt1 and Atg7 gene expression. Compared to the EMF-exposed group, LA administration improved both learning and memory, this was proved by the significant decline in hippocampal MDA and Ach levels, the higher hippocampal glutamate, the downregulated hippocampal Sirt1 gene expression and the upregulated Atg7 gene expression. In conclusion, EMF exposure could enhance learning ability; however, it interfered with long-term memory consolidation shown by higher hippocampal Ach levels. Lipoic acid treatment improved both learning and memory by enhancing autophagy and hippocampal glutamate level and by the reduced Ach levels and Sirt1 gene expression.
Collapse
Affiliation(s)
- Bataa M A El-Kafoury
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wesam El Bakly
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, AFCM, Cairo, Egypt
| | - Wael M Elayat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Egypt
| | - Ghada Galal Hamam
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Noha N Lasheen
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Egypt.
| |
Collapse
|
9
|
Wu H, Min D, Sun B, Ma Y, Chen H, Wu J, Ren P, Wu J, Cao Y, Zhao B, Wang P. Effect of WiFi signal exposure in utero and early life on neurodevelopment and behaviors of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95892-95900. [PMID: 37561300 DOI: 10.1007/s11356-023-29159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
The aim of this study is to examine the long-term effects of prenatal and early-life WIFI signal exposure on neurodevelopment and behaviors as well as biochemical alterations of Wistar rats. On the first day of pregnancy (E0), expectant rats were allocated into two groups: the control group (n = 12) and the WiFi-exposed group (WiFi group, n = 12). WiFi group was exposed to turn on WiFi for 24 h/day from E0 to postnatal day (PND) 42. The control group was exposed to turn-off WiFi at the same time. On PND7-42, we evaluated the development and behavior of the offspring, including body weight, pain threshold, and swimming ability, spatial learning, and memory among others. Also, levels of proteins involved in apoptosis were analyzed histologically in the hippocampus in response to oxidative stress. The results showed that WiFi signal exposure in utero and early life (1) increased the body weight of WiFi + M (WiFi + male) group; (2) no change in neuro-behavioral development was observed in WiFi group; (3) increased learning and memory function in WiFi + M group; (4) enhanced comparative levels of BDNF and p-CREB proteins in the hippocampus of WiFi + M group; (5) no neuronal loss or degeneration was detected, and neuronal numbers in hippocampal CA1 were no evidently differences in each group; (6) no change in the apoptosis-related proteins (caspase-3 and Bax) levels; and (7) no difference in GSH-PX and SOD activities in the hippocampus. Prenatal WiFi exposure has no effects on hippocampal CA1 neurons, oxidative equilibrium in brain, and neurodevelopment of rats. Some effects of prenatal WiFi exposure are sex dependent. Prenatal WiFi exposure increased the body weight, improved the spatial memory and learning function, and induced behavioral hyperactivity of male rats.
Collapse
Affiliation(s)
- Hongmei Wu
- Department of Nursing, Harbin Medical University, Daqing, China
| | - Dongyu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Buxun Sun
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China
| | - Yifan Ma
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China
| | - Hongpeng Chen
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China
| | - Jing Wu
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Ping Ren
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Jiabi Wu
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, Harbin Medical University, Daqing, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China.
| |
Collapse
|
10
|
Qin T, Liu L, Wang X, Guo L, Lin J, Du J, Xue Y, Lai P, Jing Y, Ding G. Combined effects of EMP and RF field on emotional behavior in mice. Front Public Health 2023; 11:1087161. [PMID: 37006533 PMCID: PMC10061096 DOI: 10.3389/fpubh.2023.1087161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
BackgroundRecently, concerns about the combined effects of electromagnetic field (EMF) in daily living and occupational environment are rapidly growing.MethodsIn this study, we investigated the combined effects of 1-week exposure to electromagnetic pulse (EMP) at 650 kV/m for 1,000 pulses and 4.9 GHz radiofrequency (RF) at 50 W/m2 for 1 h/d in male mice. Open field test, tail suspension test and Y-maze were applied to evaluate anxiety, depression-like behaviors and spatial memory ability, respectively.ResultsIt was found that compared with Sham group, combined exposure to EMP and RF induced anxiety-like behavior, increased the level of serum S100B and decreased the level of serum 5-HT. The results of quantitative proteomic and KEGG analysis showed that the differentially expressed proteins in hippocampus were enriched in Glutamatergic and GABAergic synapse after combined exposure group, which were verified by western blot. In addition, an obvious histological alteration and autophagy-associated cell death were observed in amygdala instead of hippocampus after combined exposure to EMP and 4.9 GHz RF.ConclusionCombined exposure to EMP and 4.9 GHz RF could induce emotional behavior alteration, which might be associated with Glutamatergic and GABAergic synapse system of hippocampus and autophagy in amygdala.
Collapse
Affiliation(s)
- Tongzhou Qin
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Liyuan Liu
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Xing Wang
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Jiajin Lin
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Junze Du
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
| | - Yizhe Xue
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
- *Correspondence: Guirong Ding
| |
Collapse
|
11
|
Echchgadda I, Cantu JC, Tolstykh GP, Butterworth JW, Payne JA, Ibey BL. Changes in the excitability of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Sci Rep 2022; 12:3506. [PMID: 35241689 PMCID: PMC8894459 DOI: 10.1038/s41598-022-06914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Exposures to radiofrequency electromagnetic fields (RF-EMFs, 100 kHz to 6 GHz) have been associated with both positive and negative effects on cognitive behavior. To elucidate the mechanism of RF-EMF interaction, a few studies have examined its impact on neuronal activity and synaptic plasticity. However, there is still a need for additional basic research that further our understanding of the underlying mechanisms of RF-EMFs on the neuronal system. The present study investigated changes in neuronal activity and synaptic transmission following a 60-min exposure to 3.0 GHz RF-EMF at a low dose (specific absorption rate (SAR) < 1 W/kg). We showed that RF-EMF exposure decreased the amplitude of action potential (AP), depolarized neuronal resting membrane potential (MP), and increased neuronal excitability and synaptic transmission in cultured primary hippocampal neurons (PHNs). The results show that RF-EMF exposure can alter neuronal activity and highlight that more investigations should be performed to fully explore the RF-EMF effects and mechanisms.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA.
| | - Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Gleb P Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Joseph W Butterworth
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Jason A Payne
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Bennett L Ibey
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| |
Collapse
|
12
|
Yang H, Zhang Y, Wu X, Gan P, Luo X, Zhong S, Zuo W. Effects of Acute Exposure to 3500 MHz (5G) Radiofrequency Electromagnetic Radiation on Anxiety‐Like Behavior and the Auditory Cortex in Guinea Pigs. Bioelectromagnetics 2022; 43:106-118. [PMID: 35066900 DOI: 10.1002/bem.22388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/26/2021] [Accepted: 01/05/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Honghong Yang
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Yuanyuan Zhang
- Department of Otolaryngology‐Head and Neck Surgery Renmin Hospital of Wuhan University Wuhan Hubei China
| | - Xianwen Wu
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Ping Gan
- Department of Dependable Service Computing in Cyber Physical Society, Key Laboratory of the Ministry of Education Chongqing University Chongqing China
| | - Xiaoli Luo
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Shixun Zhong
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Wenqi Zuo
- Department of Otorhinolaryngology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
13
|
Tan S, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Hao Y, Zhou H, Gao Y, Peng R. Acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory abilities and CREB-related pathways. Sci Rep 2021; 11:12348. [PMID: 34117282 PMCID: PMC8196025 DOI: 10.1038/s41598-021-91622-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
This study aimed to evaluate the acute effects of 2.856 GHz and 1.5 GHz microwaves on spatial memory and cAMP response element binding (CREB)-related pathways. A total of 120 male Wistar rats were divided into four groups: a control group (C); 2.856 GHz microwave exposure group (S group); 1.5 GHz microwave exposure group (L group); and 2.856 and 1.5 GHz cumulative exposure group (SL group). Decreases in spatial memory abilities, changes in EEG, structural injuries, and the downregulation of phosphorylated-Ak strain transforming (p-AKT), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), phosphorylated extracellular signal regulated kinase (p-ERK) and p-CREB was observed 6 h after microwave exposure. Significant differences in the expression of p-CaMKII were found between the S and L groups. The power amplitudes of the EEG waves (θ, δ), levels of structural injuries and the expression of p-AKT, p-CaMK II, p-CREB, and p-ERK1/2 were significantly different in the S and L groups compared to the SL group. Interaction effects between the 2.856 and 1.5 GHz microwaves were found in the EEG and p-CREB changes. Our findings indicated that 2.856 GHz and 1.5 GHz microwave exposure induced a decline in spatial memory, which might be related to p-AKT, p-CaMK II, p-CREB and p-ERK1/2.
Collapse
Affiliation(s)
- Shengzhi Tan
- PLA Strategic Support Force Characteristic Medical Center, Beijing, People's Republic of China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongmei Zhou
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| |
Collapse
|
14
|
BAHADIR A. Radyofrekans/Mikrodalga Elektromanyetik Radyasyonun Anksiyete ve Depresyon Üzerine Etkileri: Deneysel Hayvan Modellerine Dayalı Çalışmalara Ait Literatür Taraması. DÜZCE ÜNIVERSITESI SAĞLIK BILIMLERI ENSTITÜSÜ DERGISI 2020. [DOI: 10.33631/duzcesbed.716526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Tafakori S, Farrokhi A, Shalchyan V, Daliri MR. Investigating the impact of mobile range electromagnetic radiation on the medial prefrontal cortex of the rat during working memory. Behav Brain Res 2020; 391:112703. [PMID: 32461126 DOI: 10.1016/j.bbr.2020.112703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/26/2022]
Abstract
Research has been focused on the effects of radiofrequency electromagnetic radiation (RF-EMR) emitted from a mobile phone on general health, especially the nervous system. The purpose of this study was to investigate the impact of RF-EMR on the brain mechanism of rats by recording local field potentials (LFPs) signals during working memory (WM) task. Subjects were exposed to 900 MHz from a dipole antenna daily for three hours. Exposure was applied, first on a short term base (1 week) and then on a long term base (4 weeks). Behavioral parameters were measured weekly while rats performed T-maze tasks in two types of normal and delayed. LFPs signals were simultaneously recorded by implanted microelectrode arrays on the medial prefrontal cortex (mPFC) of rats. Results showed a significant increase (*p < 0.05) in the task completion time of exposed rats which vanished shortly after the end of short term RF-EMR exposure. Before exposure, during correctly performed delayed tasks, an increase (peak) in power changes of theta band (4-12 Hz) was observed. But during correctly performed normal tasks, an increase appeared only by applying RF-EMR exposure. The similarity in power changes pattern of theta band in both types of tasks was observed after long term exposure. Classification accuracy of LFPs in truly done normal and delayed tasks was compared in pre and post-exposure states. Initial classification accuracy was 84.2 % which decreased significantly (*P < 0.05) after exposure. These observations indicated that RF-EMR may cause unusual brain functioning which is temporary at least for short term exposure.
Collapse
Affiliation(s)
- Shiva Tafakori
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Ashkan Farrokhi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran.
| |
Collapse
|
16
|
Singh KV, Gautam R, Meena R, Nirala JP, Jha SK, Rajamani P. Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19340-19351. [PMID: 32212071 DOI: 10.1007/s11356-020-07916-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In the present lifestyle, we are continuously exposed to radiofrequency electromagnetic field (RF-EMF) radiation generated mainly by mobile phones (MP). Among other organs, our brain and hippocampus in specific, is the region where effect of any environmental perturbation is most pronounced. So, this study was aimed to examine changes in major parameters (oxidative stress, level of pro-inflammatory cytokines (PICs), hypothalamic-pituitary-adrenal (HPA) axis hormones, and contextual fear conditioning) which are linked to hippocampus directly or indirectly, upon exposure to mobile phone radiofrequency electromagnetic field (MP-RF-EMF) radiation. Exposure was performed on young adult male Wistar rats for 16 weeks continuously (2 h/day) with MP-RF-EMF radiation having frequency, power density, and specific absorption rate (SAR) of 1966.1 MHz, 4.0 mW/cm2, and 0.36 W/kg, respectively. Another set of animals kept in similar conditions without any radiation exposure serves as control. Towards the end of exposure period, animals were tested for fear memory and then euthanized to measure hippocampal oxidative stress, level of circulatory PICs, and stress hormones. We observed significant increase in hippocampal oxidative stress (p < 0.05) and elevated level of circulatory PICs viz. IL-1beta (p < 0.01), IL-6 (p < 0.05), and TNF-alpha (p < 0.001) in experimental animals upon exposure to MP-RF-EMF radiation. Adrenal gland weight (p < 0.001) and level of stress hormones viz. adrenocorticotropic hormone (ACTH) (p < 0.01) and corticosterone (CORT) (p < 0.05) were also found to increase significantly in MP-RF-EMF radiation-exposed animals as compared with control. However, alteration in contextual fear memory was not significant enough. In conclusion, current study shows that chronic exposure to MP-RF-EMF radiation emitted from mobile phones may induce oxidative stress, inflammatory response, and HPA axis deregulation. However, changes in hippocampal functionality depend on the complex interplay of several opposing factors that got affected upon MP-RF-EMF exposure.
Collapse
Affiliation(s)
- Kumari Vandana Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramovtar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sushil Kumar Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
17
|
Mahobiya P, Rai G, Namdev N. Ascorbic acid and curcumin alleviate abnormal estrous cycle and morphological changes in cells induced by repeated ultraviolet B radiations in female Wistar rats. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2020. [DOI: 10.4103/2305-0500.284276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Broom KA, Findlay R, Addison DS, Goiceanu C, Sienkiewicz Z. Early-Life Exposure to Pulsed LTE Radiofrequency Fields Causes Persistent Changes in Activity and Behavior in C57BL/6 J Mice. Bioelectromagnetics 2019; 40:498-511. [PMID: 31522469 PMCID: PMC6790696 DOI: 10.1002/bem.22217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022]
Abstract
Despite much research, gaps remain in knowledge about the potential health effects of exposure to radiofrequency (RF) fields. This study investigated the effects of early-life exposure to pulsed long term evolution (LTE) 1,846 MHz downlink signals on innate mouse behavior. Animals were exposed for 30 min/day, 5 days/week at a whole-body average specific energy absorption rate (SAR) of 0.5 or 1 W/kg from late pregnancy (gestation day 13.5) to weaning (postnatal day 21). A behavioral tracking system measured locomotor, drinking, and feeding behavior in the home cage from 12 to 28 weeks of age. The exposure caused significant effects on both appetitive behaviors and activity of offspring that depended on the SAR. Compared with sham-exposed controls, exposure at 0.5 W/kg significantly decreased drinking frequency (P ≤ 0.000) and significantly decreased distance moved (P ≤ 0.001). In contrast, exposure at 1 W/kg significantly increased drinking frequency (P ≤ 0.001) and significantly increased moving duration (P ≤ 0.005). In the absence of other plausible explanations, it is concluded that repeated exposure to low-level RF fields in early life may have a persistent and long-term effect on adult behavior. Bioelectromagnetics. 2019;40:498-511. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kerry A. Broom
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| | - Richard Findlay
- Physics Group, EMFcomp LimitedHarwell CampusHarwellOxfordshireUK
| | - Darren S. Addison
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| | - Cristian Goiceanu
- Department of Environmental Health, National Institute of Public HealthRegional Center IasiIasiRomania
| | - Zenon Sienkiewicz
- Centre for Radiation, Chemical and Environmental HazardsPublic Health EnglandChiltonOxfordshireUK
| |
Collapse
|
19
|
Narayanan SN, Jetti R, Kesari KK, Kumar RS, Nayak SB, Bhat PG. Radiofrequency electromagnetic radiation-induced behavioral changes and their possible basis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30693-30710. [PMID: 31463749 DOI: 10.1007/s11356-019-06278-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The primary objective of mobile phone technology is to achieve communication with any person at any place and time. In the modern era, it is impossible to ignore the usefulness of mobile phone technology in cases of emergency as many lives have been saved. However, the biological effects they may have on humans and other animals have been largely ignored and not been evaluated comprehensively. One of the reasons for this is the speedy uncontrollable growth of this technology which has surpassed our researching ability. Initiated with the first generation, the mobile telephony currently reaches to its fifth generation without being screened extensively for any biological effects that they may have on humans or on other animals. Mounting evidences suggest possible non-thermal biological effects of radiofrequency electromagnetic radiation (RF-EMR) on brain and behavior. Behavioral studies have particularly concentrated on the effects of RF-EMR on learning, memory, anxiety, and locomotion. The literature analysis on behavioral effects of RF-EMR demonstrates complex picture with conflicting observations. Nonetheless, numerous reports suggest a possible behavioral effect of RF-EMR. The scientific findings about this issue are presented in the current review. The possible neural and molecular mechanisms for the behavioral effects have been proposed in the light of available evidences from the literature.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, PO Box 11172, Ras Al Khaimah, UAE.
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | | | - Raju Suresh Kumar
- Department of Basic Sciences, College of Science and Health Professions-Jeddah, King Saud Bin Abdulaziz University for Health Sciences, National Guard Health Affairs, P. O. Box 9515, Jeddah, 21423, Kingdom of Saudi Arabia
| | - Satheesha B Nayak
- Department of Anatomy, Melaka Manipal Medical College (Manipal Campus), Manipal Academy of Higher Education, Manipal, 576104, India
| | - P Gopalakrishna Bhat
- Division of Biotechnology, School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576 104, India
| |
Collapse
|
20
|
Sienkiewicz Z, van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1607. [PMID: 31071933 PMCID: PMC6539921 DOI: 10.3390/ijerph16091607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
This review considers whether exposure to low-level radiofrequency (RF) fields, mostly associated with mobile phone technology, can influence cognitive behaviour of laboratory animals. Studies were nominated for inclusion using an a priori defined protocol with preselected criteria, and studies were excluded from analysis if they did not include sufficient details about the exposure, dosimetry or experimental protocol, or if they lacked a sham-exposed group. Overall, 62 studies were identified that have investigated the effects of RF fields on spatial memory and place learning and have been published since 1993. Of these, 17 studies were excluded, 20 studies reported no significant field-related effects, 21 studies reported significant impairments or deficits, and four studies reported beneficial consequences. The data do not suggest whether these outcomes are related to specific differences in exposure or testing conditions, or simply represent chance. However, some studies have suggested possible molecular mechanisms for the observed effects, but none of these has been substantiated through independent replication. Further behavioural studies could prove useful to resolve this situation, and it is suggested that these studies should use a consistent animal model with standardized exposure and testing protocols, and with detailed dosimetry provided by heterogeneous, anatomically-realistic animal models.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Eric van Rongen
- Health Council of the Netherlands, P.O. Box 16052, 2500 BB The Hague, The Netherlands.
| |
Collapse
|
21
|
Kim JH, Lee JK, Kim HG, Kim KB, Kim HR. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol Ther (Seoul) 2019; 27:265-275. [PMID: 30481957 PMCID: PMC6513191 DOI: 10.4062/biomolther.2018.152] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Jin-Koo Lee
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyu-Bong Kim
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
22
|
Keleş Aİ, Yıldırım M, Gedikli Ö, Çolakoğlu S, Kaya H, Baş O, Sönmez OF, Odacı E. The effects of a continuous 1-h a day 900-MHz electromagnetic field applied throughout early and mid-adolescence on hippocampus morphology and learning behavior in late adolescent male rats. J Chem Neuroanat 2018; 94:46-53. [PMID: 30189239 DOI: 10.1016/j.jchemneu.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate hippocampus morphology and changes in learning behavior in male rats in late adolescence exposed to the effect of a continuous 1-h a day 900-megahertz (MHz) electromagnetic field (EMF). Twenty-four male Sprague Dawley rats aged 3-weeks were divided equally into control, sham and EMF groups. EMF group rats were exposed to a 900-MHz EMF inside an EMF cage, while the sham group rats were placed in the same cage but were not exposed to such an effect. No procedure was performed on the control group. Following 25-day application of EMF, passive avoidance, 8-arm radial maze and Y-maze tests were applied to determine rats' learning and memory performances. Open field and rotarod tests were applied to assess locomotor activity. At the end of the tests, the animals' brains were removed. Sections were taken and stained with toluidine blue. The regions of the hippocampus were subjected to histopathological evaluation. At histopathological examination, impairments of pyramidal and granular cell structures were observed in the EMF group hippocampus. No significant change was observed in learning, memory or locomotor behavior in any group. In conclusion, 900-MHz EMF applied in early and mid-adolescence causes no changes in learning, memory or locomotor behavior.
Collapse
Affiliation(s)
- Ayşe İkinci Keleş
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey.
| | - Mehmet Yıldırım
- Department of Physiology, Faculty of Medicine, Health Sciences University, İstanbul, Turkey
| | - Öznur Gedikli
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Sedar Çolakoğlu
- Department of Anatomy, Faculty of Medicine, Düzce University, Düzce, Turkey
| | - Haydar Kaya
- Department of Electrical and Electronics, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Orhan Baş
- Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey
| | - Osman Fikret Sönmez
- Department of of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| | - Ersan Odacı
- Department of Histology and Embryology, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey; Department of Physiology, Faculty of Medicine, Health Sciences University, İstanbul, Turkey; Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey; Department of Anatomy, Faculty of Medicine, Düzce University, Düzce, Turkey; Department of Electrical and Electronics, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey; Department of Anatomy, Faculty of Medicine, Ordu University, Ordu, Turkey; Department of of Neurosurgery, Tepecik Education and Research Hospital, İzmir, Turkey
| |
Collapse
|
23
|
Poulletier de Gannes F, Masuda H, Billaudel B, Poque-Haro E, Hurtier A, Lévêque P, Ruffié G, Taxile M, Veyret B, Lagroye I. Effects of GSM and UMTS mobile telephony signals on neuron degeneration and blood-brain barrier permeation in the rat brain. Sci Rep 2017; 7:15496. [PMID: 29138435 PMCID: PMC5686211 DOI: 10.1038/s41598-017-15690-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) permeation and neuron degeneration were assessed in the rat brain following exposure to mobile communication radiofrequency (RF) signals (GSM-1800 and UMTS-1950). Two protocols were used: (i) single 2 h exposure, with rats sacrificed immediately, and 1 h, 1, 7, or 50 days later, and (ii) repeated exposures (2 h/day, 5 days/week, for 4 weeks) with the effects assessed immediately and 50 days after the end of exposure. The rats' heads were exposed at brain-averaged specific absorption rates (BASAR) of 0.026, 0.26, 2.6, and 13 W/kg. No adverse impact in terms of BBB leakage or neuron degeneration was observed after single exposures or immediately after the end of repeated exposure, with the exception of a transient BBB leakage (UMTS, 0.26 W/kg). Fifty days after repeated exposure, the occurrence of degenerating neurons was unchanged on average. However, a significant increased albumin leakage was detected with both RF signals at 13 W/kg. In this work, the strongest, delayed effect was induced by GSM-1800 at 13 W/kg. Considering that 13 W/kg BASAR in the rat head is equivalent to 4 times as much in the human head, deleterious effects may occur following repeated human brain exposure above 50 W/kg.
Collapse
Affiliation(s)
| | - Hiroshi Masuda
- Kurume University School of Medicine, Department of Environmental Medicine, Kurume, Fukuoka, J-830-0011, Japan
| | - Bernard Billaudel
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | | | - Annabelle Hurtier
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Philippe Lévêque
- University of Limoges, CNRS, XLIM, UMR 7252, Limoges, F-87000, France
| | - Gilles Ruffié
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Murielle Taxile
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
| | - Bernard Veyret
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France
- "Paris Sciences et Lettres" Research University / EPHE, Paris, F-75005, France
| | - Isabelle Lagroye
- University of Bordeaux, IMS laboratory UMR-5218 CNRS, Talence, F-33405, France.
- "Paris Sciences et Lettres" Research University / EPHE, Paris, F-75005, France.
| |
Collapse
|
24
|
Rats exposed to 2.45GHz of non-ionizing radiation exhibit behavioral changes with increased brain expression of apoptotic caspase 3. ACTA ACUST UNITED AC 2017; 25:19-30. [PMID: 29153770 DOI: 10.1016/j.pathophys.2017.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/10/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022]
Abstract
In recent years there has been a tremendous increase in use of Wi-Fi devices along with mobile phones, globally. Wi-Fi devices make use of 2.4GHz frequency. The present study evaluated the impact of 2.45GHz radiation exposure for 4h/day for 45days on behavioral and oxidative stress parameters in female Sprague Dawley rats. Behavioral tests of anxiety, learning and memory were started from day 38. Oxidative stress parameters were estimated in brain homogenates after sacrificing the rats on day 45. In morris water maze, elevated plus maze and light dark box test, the 2.45GHz radiation exposed rats elicited memory decline and anxiety behavior. Exposure decreased activities of super oxide dismutase, catalase and reduced glutathione levels whereas increased levels of brain lipid peroxidation was encountered in the radiation exposed rats, showing compromised anti-oxidant defense. Expression of caspase 3 gene in brain samples were quantified which unraveled notable increase in the apoptotic marker caspase 3 in 2.45GHz radiation exposed group as compared to sham exposed group. No significant changes were observed in histopathological examinations and brain levels of TNF-α. Analysis of dendritic arborization of neurons showcased reduction in number of dendritic branching and intersections which corresponds to alteration in dendritic structure of neurons, affecting neuronal signaling. The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems.
Collapse
|
25
|
Zhang JP, Zhang KY, Guo L, Chen QL, Gao P, Wang T, Li J, Guo GZ, Ding GR. Effects of 1.8 GHz Radiofrequency Fields on the Emotional Behavior and Spatial Memory of Adolescent Mice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1344. [PMID: 29113072 PMCID: PMC5707983 DOI: 10.3390/ijerph14111344] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
Abstract
The increasing use of mobile phones by teenagers has raised concern about the cognitive effects of radiofrequency (RF) fields. In this study, we investigated the effects of 4-week exposure to a 1.8 GHz RF field on the emotional behavior and spatial memory of adolescent male mice. Anxiety-like behavior was evaluated by open field test (OFT) and elevated plus maze (EPM) test, while depression-like behavior was evaluated by sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST). The spatial learning and memory ability were evaluated by Morris water maze (MWM) experiments. The levels of amino acid neurotransmitters were determined by liquid chromatography-mass spectrometry (LC-MS). The histology of the brain was examined by hematoxylin-eosin (HE) staining. It was found that the depression-like behavior, spatial memory ability and histology of the brain did not change obviously after RF exposure. However, the anxiety-like behavior increased in mice, while, the levels of γ-aminobutyric acid (GABA) and aspartic acid (Asp) in cortex and hippocampus significantly decreased after RF exposure. These data suggested that RF exposure under these conditions do not affect the depression-like behavior, spatial memory and brain histology in adolescent male mice, but it may however increase the level of anxiety, and GABA and Asp were probably involved in this effect.
Collapse
Affiliation(s)
- Jun-Ping Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Ke-Ying Zhang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Ling Guo
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Qi-Liang Chen
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Peng Gao
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Tian Wang
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Jing Li
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Guo-Zhen Guo
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| | - Gui-Rong Ding
- Department of Radiation Biology, Faculty of Preventive Medicine, Fourth Military Medical University, 169# Chang Le West Road, Xi'an 710032, China.
| |
Collapse
|
26
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
27
|
Sharma A, Kesari KK, Saxena VK, Sisodia R. Ten gigahertz microwave radiation impairs spatial memory, enzymes activity, and histopathology of developing mice brain. Mol Cell Biochem 2017; 435:1-13. [DOI: 10.1007/s11010-017-3051-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/27/2017] [Indexed: 12/13/2022]
|
28
|
Kumar M, Singh SP, Chaturvedi CM. Chronic Nonmodulated Microwave Radiations in Mice Produce Anxiety-like and Depression-like Behaviours and Calcium- and NO-related Biochemical Changes in the Brain. Exp Neurobiol 2016; 25:318-327. [PMID: 28035182 PMCID: PMC5195817 DOI: 10.5607/en.2016.25.6.318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/28/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
The present study was aimed to investigate behavioural and biochemical effects of chronic exposure of amplitude modulated and non-modulated microwave radiation on laboratory mice. Chronic microwave exposures were executed with 2.45 GHz of either modulated (power density, 0.029 mW/cm2; specific absorption rate, 0.019 W/Kg with sinusoidal modulation of 400 Hz) or nonmodulated continuous sinusoidal wave (power density, 0.033 mW/cm2; specific absorption rate, 0.023 W/Kg) for 2 hrs daily for 1 month. Mice subjected to non-modulated microwave exposure had significantly increased acetylcholinesterase activity and increased intracellular calcium and nitric oxide levels in the cerebral cortex and hippocampus, and also had increased glucose and corticosterone levels in blood compared to control mice. These non-modulated microwave-exposed mice exhibited anxiety-like and depression-like behaviours. In contrast, mice exposed to modulated microwave for the same period did not show such changes in concomitant biochemical and behavioural analyses. These results suggest that chronic non-modulated microwave, but not modulated microwave, radiation may cause anxiety-like and depression-like behaviours and calcium- and NO-related biochemical changes in the brain.
Collapse
Affiliation(s)
- Manoj Kumar
- Molecular Neuroendocrinology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Surya P Singh
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Chandra M Chaturvedi
- Molecular Neuroendocrinology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
29
|
Mugunthan N, Shanmugasamy K, Anbalagan J, Rajanarayanan S, Meenachi S. Effects of Long Term Exposure of 900-1800 MHz Radiation Emitted from 2G Mobile Phone on Mice Hippocampus- A Histomorphometric Study. J Clin Diagn Res 2016; 10:AF01-6. [PMID: 27656427 DOI: 10.7860/jcdr/2016/21630.8368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/06/2016] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. AIM To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. MATERIALS AND METHODS With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. RESULTS The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. CONCLUSION The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice.
Collapse
Affiliation(s)
- Narayanaperumal Mugunthan
- Associate Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute , Puducherry, Tamil Nadu, India
| | - Kathirvelu Shanmugasamy
- Assistant Professor, Department of Pathology, Mahatma Gandhi Medical College and Research Institute , Puducherry, Tamil Nadu, India
| | - Jayaram Anbalagan
- Professor, Department of Anatomy, Mahatma Gandhi Medical College and Research Institute , Puducherry, Tamil Nadu, India
| | - Swamynathan Rajanarayanan
- Professor and Head, Department of Bio-technology, St. Michael College of Engineering and Technology , Kalayarkoil, Tamil Nadu, India
| | - Swamynathan Meenachi
- Directorate of Public Health (DPH), Deputy Director of Health Services , Paramakudi HUD, Tamil Nadu, India
| |
Collapse
|
30
|
Zhou Z, Shan J, Zu J, Chen Z, Ma W, Li L, Xu J. Social behavioral testing and brain magnetic resonance imaging in chicks exposed to mobile phone radiation during development. BMC Neurosci 2016; 17:36. [PMID: 27287450 PMCID: PMC4902983 DOI: 10.1186/s12868-016-0266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background The potential adverse effect of mobile phone radiation is currently an area of great concern in the field of public health. In the present study, we aimed to investigate the effect of mobile phone radiation (900 MHz radiofrequency) during hatching on postnatal social behaviors in chicks, as well as the effect on brain size and structural maturity estimated using 3.0 T magnetic resonance imaging. At day 4 of incubation, 76 normally developing chick embryos were divided into the control group (n = 39) and the radiation group (n = 37). Eggs in the radiation group were exposed to mobile phone radiation for 10 h each day from day 4 to 19 of incubation. Behavioral tests were performed 4 days after hatching. T2-weighted MR imaging and diffusion tensor imaging (DTI) were subsequently performed. The size of different brain subdivisions (telencephalon, optic lobe, brain stem, and cerebellum) and corresponding DTI parameters were measured. The Chi-square test and the student’s t test were used for statistical analysis. P < 0.05 was considered statistically significant. Results Compared with controls, chicks in the radiation group showed significantly slower aggregation responses (14.87 ± 10.06 vs. 7.48 ± 4.31 s, respectively; P < 0.05), lower belongingness (23.71 ± 8.72 vs. 11.45 ± 6.53 s, respectively; P < 0.05), and weaker vocalization (53.23 ± 8.60 vs. 60.01 ± 10.45 dB/30 s, respectively; P < 0.05). No significant differences were found between the radiation and control group for brain size and structural maturity, except for cerebellum size, which was significantly smaller in the radiation group (28.40 ± 1.95 vs. 29.95 ± 1.41 cm2, P < 0.05). The hatching and heteroplasia rates were also calculated and no significant difference was found between the two groups. Conclusions Mobile phone radiation exposure during chick embryogenesis impaired social behaviors after hatching and possibly induced cerebellar retardation. This indicates potential adverse effects of mobile phone radiation on brain development.
Collapse
Affiliation(s)
- Zien Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jiehui Shan
- Department of Geriatrics, South Campus, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 2000 Jiangyue Road, Shanghai, China
| | - Jinyan Zu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Zengai Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Weiwei Ma
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Lei Li
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jianrong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
31
|
Petitdant N, Lecomte A, Robidel F, Gamez C, Blazy K, Villégier AS. Cerebral radiofrequency exposures during adolescence: Impact on astrocytes and brain functions in healthy and pathologic rat models. Bioelectromagnetics 2016; 37:338-50. [PMID: 27272062 DOI: 10.1002/bem.21986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 05/20/2016] [Indexed: 11/07/2022]
Abstract
The widespread use of mobile phones by adolescents raises concerns about possible health effects of radiofrequency electromagnetic fields (RF EMF 900 MHz) on the immature brain. Neuro-development is a period of particular sensitivity to repeated environmental challenges such as pro-inflammatory insults. Here, we used rats to assess whether astrocyte reactivity, perception, and emotionality were affected by RF EMF exposures during adolescence. We also investigated if adolescent brains were more sensitive to RF EMF exposures after neurodevelopmental inflammation. To do so, we either performed 80 μg/kg intra-peritoneal injections of lipopolysaccharides during gestation or 1.25 μg/h intra-cerebro-ventricular infusions during adolescence. From postnatal day (P)32 to 62, rats were subjected to 45 min RF EMF exposures to the brain (specific absorption rates: 0, 1.5, or 6 W/kg, 5 days/week). From P56, they were tested for perception of novelty, anxiety-like behaviors, and emotional memory. To assess astrocytic reactivity, Glial Fibrillary Acidic Protein was measured at P64. Our results did not show any neurobiological impairment in healthy and vulnerable RF EMF-exposed rats compared to their sham-exposed controls. These data did not support the hypothesis of a specific cerebral sensitivity to RF EMF of adolescents, even after a neurodevelopmental inflammation. Bioelectromagnetics. 37:338-350, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicolas Petitdant
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Anthony Lecomte
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Franck Robidel
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Christelle Gamez
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Kelly Blazy
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| | - Anne-Sophie Villégier
- Toxicology Unit, National Institute for Environmental Protection and Industrial Risks (INERIS), Verneuil-en-Halatte, France
- Laboratory of Perinatality and Toxical Risk (PERITOX), Amiens, France
| |
Collapse
|
32
|
Neurobiological effects of repeated radiofrequency exposures in male senescent rats. Biogerontology 2016; 17:841-857. [DOI: 10.1007/s10522-016-9654-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 11/28/2022]
|
33
|
Arendash GW. Review of the Evidence that Transcranial Electromagnetic Treatment will be a Safe and Effective Therapeutic Against Alzheimer's Disease. J Alzheimers Dis 2016; 53:753-71. [PMID: 27258417 PMCID: PMC4981900 DOI: 10.3233/jad-160165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
Abstract
We have demonstrated in multiple studies that daily, long-term electromagnetic field (EMF) treatment in the ultra-high frequency range not only protects Alzheimer's disease (AD) transgenic mice from cognitive impairment, but also reverses such impairment in aged AD mice. Moreover, these beneficial cognitive effects appear to be through direct actions on the AD process. Based on a large array of pre-clinical data, we have initiated a pilot clinical trial to determine the safety and efficacy of EMF treatment to mild-moderate AD subjects. Since it is important to establish the safety of this new neuromodulatory approach, the main purpose of this review is to provide a comprehensive assessment of evidence supporting the safety of EMFs, particularly through transcranial electromagnetic treatment (TEMT). In addition to our own pre-clinical studies, a rich variety of both animal and cell culture studies performed by others have underscored the anticipated safety of TEMT in clinical AD trials. Moreover, numerous clinical studies have determined that short- or long-term human exposure to EMFs similar to those to be provided clinically by TEMT do not have deleterious effects on general health, cognitive function, or a variety of physiologic measures-to the contrary, beneficial effects on brain function/activity have been reported. Importantly, such EMF exposure has not been shown to increase the risk of any type of cancer in human epidemiologic studies, as well as animal and cell culture studies. In view of all the above, clinical trials of safety/efficacy with TEMT to AD subjects are clearly warranted and now in progress.
Collapse
|
34
|
Oster S, Daus AW, Erbes C, Goldhammer M, Bochtler U, Thielemann C. Long-term electromagnetic exposure of developing neuronal networks: A flexible experimental setup. Bioelectromagnetics 2016; 37:264-78. [DOI: 10.1002/bem.21974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/14/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Stefan Oster
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Andreas W. Daus
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Christian Erbes
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Michael Goldhammer
- BioMEMS Lab; Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
- Laboratory for Electromagnetic Compatibility (EMC); Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | - Ulrich Bochtler
- Laboratory for Electromagnetic Compatibility (EMC); Aschaffenburg University of Applied Sciences; Aschaffenburg Germany
| | | |
Collapse
|
35
|
Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab Brain Dis 2015; 30:1193-206. [PMID: 26033310 DOI: 10.1007/s11011-015-9689-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/22/2015] [Indexed: 12/11/2022]
Abstract
The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.
Collapse
Affiliation(s)
- Sareesh Naduvil Narayanan
- Department of Physiology, Melaka Manipal Medical College (Manipal Campus), Manipal University, Manipal, 576104, India,
| | | | | | | | | |
Collapse
|
36
|
Pall ML. Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression. J Chem Neuroanat 2015; 75:43-51. [PMID: 26300312 DOI: 10.1016/j.jchemneu.2015.08.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/01/2015] [Accepted: 08/09/2015] [Indexed: 12/16/2022]
Abstract
Non-thermal microwave/lower frequency electromagnetic fields (EMFs) act via voltage-gated calcium channel (VGCC) activation. Calcium channel blockers block EMF effects and several types of additional evidence confirm this mechanism. Low intensity microwave EMFs have been proposed to produce neuropsychiatric effects, sometimes called microwave syndrome, and the focus of this review is whether these are indeed well documented and consistent with the known mechanism(s) of action of such EMFs. VGCCs occur in very high densities throughout the nervous system and have near universal roles in release of neurotransmitters and neuroendocrine hormones. Soviet and Western literature shows that much of the impact of non-thermal microwave exposures in experimental animals occurs in the brain and peripheral nervous system, such that nervous system histology and function show diverse and substantial changes. These may be generated through roles of VGCC activation, producing excessive neurotransmitter/neuroendocrine release as well as oxidative/nitrosative stress and other responses. Excessive VGCC activity has been shown from genetic polymorphism studies to have roles in producing neuropsychiatric changes in humans. Two U.S. government reports from the 1970s to 1980s provide evidence for many neuropsychiatric effects of non-thermal microwave EMFs, based on occupational exposure studies. 18 more recent epidemiological studies, provide substantial evidence that microwave EMFs from cell/mobile phone base stations, excessive cell/mobile phone usage and from wireless smart meters can each produce similar patterns of neuropsychiatric effects, with several of these studies showing clear dose-response relationships. Lesser evidence from 6 additional studies suggests that short wave, radio station, occupational and digital TV antenna exposures may produce similar neuropsychiatric effects. Among the more commonly reported changes are sleep disturbance/insomnia, headache, depression/depressive symptoms, fatigue/tiredness, dysesthesia, concentration/attention dysfunction, memory changes, dizziness, irritability, loss of appetite/body weight, restlessness/anxiety, nausea, skin burning/tingling/dermographism and EEG changes. In summary, then, the mechanism of action of microwave EMFs, the role of the VGCCs in the brain, the impact of non-thermal EMFs on the brain, extensive epidemiological studies performed over the past 50 years, and five criteria testing for causality, all collectively show that various non-thermal microwave EMF exposures produce diverse neuropsychiatric effects.
Collapse
Affiliation(s)
- Martin L Pall
- Professor Emeritus of Biochemistry and Basic Medical Sciences, Washington State University, 638 NE 41st Avenue, Portland, OR 97232-3312, USA.
| |
Collapse
|
37
|
Igarashi Y, Matsuda Y, Fuse A, Ishiwata T, Naito Z, Yokota H. Pathophysiology of microwave-induced traumatic brain injury. Biomed Rep 2015; 3:468-472. [PMID: 26171150 DOI: 10.3892/br.2015.454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/02/2015] [Indexed: 11/06/2022] Open
Abstract
Microwave technology has been widely used in numerous applications; however, excessive microwave exposure causes adverse effects, particularly in the brain. The present study aimed to evaluate the change in the number of neural cells and presence of apoptotic cells in rats for one month after exposure to excessive microwave radiation. The rats were exposed to 3.0 kW of microwaves for 0.1 sec and were sacrificed after 24 h (n=3), or 3 (n=3), 7 (n=3), 14 (n=3) or 28 days (n=4) of exposure. The neural cells were counted in the motor cortex and hippocampus [cornu ammonis 1 (CA1) and CA2] and the percentage of positive cells stained with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) were also measured, which detected apoptotic cell death in the choroid plexus in the lateral ventricle, motor cortex and hippocampus. In the CA1, the number of neural cells decreased significantly by day 28 compared with that in the control (60.7 vs. 50.6, P=0.0358), but did not decrease before day 28. There were no significant differences on any day in the CA2 and the motor cortex. The number of cells showed a significant increase on day 7 compared to the control in the choroid plexus (2.1±1.1 vs. 21.8±19.1%, P=0.0318). There were no significant differences from the controls in the percentage of TUNEL-positive cells in the motor cortex and hippocampus. The effects of microwave exposure on the brain remain unclear; however, microwave-induced neurotrauma shows the same pathological changes as blast traumatic brain injury.
Collapse
Affiliation(s)
- Yutaka Igarashi
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Akira Fuse
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Toshiyuki Ishiwata
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Zenya Naito
- Departments of Pathology and Integrative Oncological Pathology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hiroyuki Yokota
- Department of Emergency and Critical Care Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
38
|
Tang J, Zhang Y, Yang L, Chen Q, Tan L, Zuo S, Feng H, Chen Z, Zhu G. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 2015; 1601:92-101. [PMID: 25598203 DOI: 10.1016/j.brainres.2015.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 11/24/2022]
Abstract
With the rapid increase in the number of mobile phone users, the potential adverse effects of the electromagnetic field radiation emitted by a mobile phone has become a serious concern. This study demonstrated, for the first time, the blood-brain barrier and cognitive changes in rats exposed to 900 MHz electromagnetic field (EMF) and aims to elucidate the potential molecular pathway underlying these changes. A total of 108 male Sprague-Dawley rats were exposed to a 900 MHz, 1 mW/cm(2) EMF or sham (unexposed) for 14 or 28 days (3h per day). The specific energy absorption rate (SAR) varied between 0.016 (whole body) and 2 W/kg (locally in the head). In addition, the Morris water maze test was used to examine spatial memory performance determination. Morphological changes were investigated by examining ultrastructural changes in the hippocampus and cortex, and the Evans Blue assay was used to assess blood brain barrier (BBB) damage. Immunostaining was performed to identify heme oxygenase-1 (HO-1)-positive neurons and albumin extravasation detection. Western blot was used to determine HO-1 expression, phosphorylated ERK expression and the upstream mediator, mkp-1 expression. We found that the frequency of crossing platforms and the percentage of time spent in the target quadrant were lower in rats exposed to EMF for 28 days than in rats exposed to EMF for 14 days and unexposed rats. Moreover, 28 days of EMF exposure induced cellular edema and neuronal cell organelle degeneration in the rat. In addition, damaged BBB permeability, which resulted in albumin and HO-1 extravasation were observed in the hippocampus and cortex. Thus, for the first time, we found that EMF exposure for 28 days induced the expression of mkp-1, resulting in ERK dephosphorylation. Taken together, these results demonstrated that exposure to 900 MHz EMF radiation for 28 days can significantly impair spatial memory and damage BBB permeability in rat by activating the mkp-1/ERK pathway.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
39
|
Klose M, Grote K, Spathmann O, Streckert J, Clemens M, Hansen VW, Lerchl A. Effects of early-onset radiofrequency electromagnetic field exposure (GSM 900 MHz) on behavior and memory in rats. Radiat Res 2014; 182:435-47. [PMID: 25251701 DOI: 10.1667/rr13695.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Female Wistar rats, from an age of 14 days to 19 months, were exposed in the head region for 2 h per day, 5 days per week, to a GSM-modulated 900 MHz radiofrequency electromagnetic field (RF-EMF). The average specific absorption rates (SAR) in the brain were 0 (sham), 0.7, 2.5 and 10 W/kg. To ensure a primary exposure of the head region, rats were fixed in restraining tubes of different sizes according to their increasing body weight. During the experiment, a set of 4 behavioral and learning tests (rotarod, Morris water maze, 8-arm radial maze, open field) were performed 3 times in juvenile, adult and presenile rats. In these tests, no profound differences could be identified between the groups. Only presenile rats of the cage control group showed a lower activity in two of these tests compared to the other groups presumably due to the lack of daily handling. The rotarod data revealed on some testing days significantly longer holding times for the sham-exposed rat vs. the exposed rat, but these findings were not consistent. During the first year, body weights of sham-exposed and exposed rats were not different from those of the cage controls, and thereafter only marginally lower, so that the effect of stress as confounder was probably negligible. The results of this study do not indicate harmful effects of long-term RF-EMF exposure even when begun at an early age on subsequent development, learning skills and behavior in rats, even at relatively high SAR values.
Collapse
Affiliation(s)
- Melanie Klose
- a School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Margaritis LH, Manta AK, Kokkaliaris KD, Schiza D, Alimisis K, Barkas G, Georgiou E, Giannakopoulou O, Kollia I, Kontogianni G, Kourouzidou A, Myari A, Roumelioti F, Skouroliakou A, Sykioti V, Varda G, Xenos K, Ziomas K. Drosophila oogenesis as a bio-marker responding to EMF sources. Electromagn Biol Med 2013; 33:165-89. [DOI: 10.3109/15368378.2013.800102] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lukas H. Margaritis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Areti K. Manta
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Konstantinos D. Kokkaliaris
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Dimitra Schiza
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Konstantinos Alimisis
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Georgios Barkas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Eleana Georgiou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Olympia Giannakopoulou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Ioanna Kollia
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Georgia Kontogianni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Angeliki Kourouzidou
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Angeliki Myari
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Fani Roumelioti
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Aikaterini Skouroliakou
- Department of Physics and Chemistry, T.E.I. of Athens
Agiou Spuridonos, AigaleoAthens, Greece
| | - Vasia Sykioti
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Georgia Varda
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Konstantinos Xenos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| | - Konstantinos Ziomas
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens
Panepistimiopolis, AthensGreece
| |
Collapse
|
41
|
Wang H, Peng R, Zhou H, Wang S, Gao Y, Wang L, Yong Z, Zuo H, Zhao L, Dong J, Xu X, Su Z. Impairment of long-term potentiation induction is essential for the disruption of spatial memory after microwave exposure. Int J Radiat Biol 2013; 89:1100-7. [PMID: 23786183 DOI: 10.3109/09553002.2013.817701] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the impact of microwave exposure on learning and memory and to explore the underlying mechanisms. MATERIALS AND METHODS 100 Wistar rats were exposed to a 2.856 GHz pulsed microwave field at average power densities of 0 mW/cm(2), 5 mW/cm(2), 10 mW/cm(2) and 50 mW/cm(2) for 6 min. The spatial memory was assessed by the Morris Water Maze (MWM) task. An in vivo study was conducted soon after microwave exposure to evaluate the changes of population spike (PS) amplitudes of long-term potentiation (LTP) in the medial perforant path (MPP)-dentate gyrus (DG) pathway. The structure of the hippocampus was observed by the light microscopy and the transmission electron microscopy (TEM) at 7 d after microwave exposure. RESULTS Our results showed that the rats exposed in 10 mW/cm(2) and 50 mW/cm(2) microwave displayed significant deficits in spatial learning and memory at 6 h, 1 d and 3 d after exposure. Decreased PS amplitudes were also found after 10 mW/cm(2) and 50 mW/cm(2) microwave exposure. In addition, varying degrees of degeneration of hippocampal neurons, decreased synaptic vesicles and blurred synaptic clefts were observed in the rats exposed in 10 mW/cm(2) and 50 mW/cm(2) microwave. Compared with the sham group, the rats exposed in 5 mW/cm(2) microwave showed no difference in the above experiments. CONCLUSIONS This study suggested that impairment of LTP induction and the damages of hippocampal structure, especially changes of synapses, might contribute to cognitive impairment after microwave exposure.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang L, Hao D, Wu S, Zhong R, Zeng Y. SAR and temperature distribution in the rat head model exposed to electromagnetic field radiation by 900 MHz dipole antenna. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2013; 36:251-7. [DOI: 10.1007/s13246-013-0202-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/24/2013] [Indexed: 11/30/2022]
|
43
|
Paulraj R, Behari J. Enzymatic alterations in developing rat brain cells exposed to a low-intensity 16.5 GHz microwave radiation. Electromagn Biol Med 2013; 31:233-42. [PMID: 22897404 DOI: 10.3109/15368378.2012.700295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study deals with the effects of chronic exposure of low-level microwave radiation on developing rat brain. Starting at 35 days of age, male rats were exposed to 2 h/day for another 35 days to a 16.5-GHz microwave radiation field. After the exposure period, the rats were sacrificed, and brain tissues dissected out and used for biochemical assay. Results showed that exposure to a 16.5-GHz radiation caused significant changes in the activity of protein kinase C as compared to the control group. Furthermore, electron microscopic study revealed an increase in glial cell population. These results confirm that brain cell membrane is an interactive site for electromagnetic field causing an inflammation and possibly tumor promotion.
Collapse
Affiliation(s)
- R Paulraj
- Bioelectromagnetic Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | |
Collapse
|
44
|
Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). ENVIRONMENT INTERNATIONAL 2013; 51:116-140. [PMID: 23261519 DOI: 10.1016/j.envint.2012.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE This article presents a systematic review of published scientific studies on the potential ecological effects of radiofrequency electromagnetic fields (RF-EMF) in the range of 10 MHz to 3.6 GHz (from amplitude modulation, AM, to lower band microwave, MW, EMF). METHODS Publications in English were searched in ISI Web of Knowledge and Scholar Google with no restriction on publication date. Five species groups were identified: birds, insects, other vertebrates, other organisms, and plants. Not only clear ecological articles, such as field studies, were taken into consideration, but also biological articles on laboratory studies investigating the effects of RF-EMF with biological endpoints such as fertility, reproduction, behaviour and development, which have a clear ecological significance, were also included. RESULTS Information was collected from 113 studies from original peer-reviewed publications or from relevant existing reviews. A limited amount of ecological field studies was identified. The majority of the studies were conducted in a laboratory setting on birds (embryos or eggs), small rodents and plants. In 65% of the studies, ecological effects of RF-EMF (50% of the animal studies and about 75% of the plant studies) were found both at high as well as at low dosages. No clear dose-effect relationship could be discerned. Studies finding an effect applied higher durations of exposure and focused more on the GSM frequency ranges. CONCLUSIONS In about two third of the reviewed studies ecological effects of RF-EMF was reported at high as well as at low dosages. The very low dosages are compatible with real field situations, and could be found under environmental conditions. However, a lack of standardisation and a limited number of observations limit the possibility of generalising results from an organism to an ecosystem level. We propose in future studies to conduct more repetitions of observations and explicitly use the available standards for reporting RF-EMF relevant physical parameters in both laboratory and field studies.
Collapse
Affiliation(s)
- S Cucurachi
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Banaceur S, Banasr S, Sakly M, Abdelmelek H. Whole body exposure to 2.4 GHz WIFI signals: effects on cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD). Behav Brain Res 2012. [PMID: 23195115 DOI: 10.1016/j.bbr.2012.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present investigation aimed at evaluating the effects of long-term exposure to WIFI type radiofrequency (RF) signals (2.40 GHz), two hours per day during one month at a Specific Absorption Rate (SAR) of 1.60 W/kg. The effects of RF exposure were studied on wildtype mice and triple transgenic mice (3xTg-AD) destined to develop Alzheimer's-like cognitive impairment. Mice were divided into four groups: two sham groups (WT, TG; n=7) and two exposed groups (WTS, TGS; n=7). The cognitive interference task used in this study was designed from an analogous human cognitive interference task including the Flex field activity system test, the two-compartment box test and the Barnes maze test. Our data demonstrate for the first time that RF improves cognitive behavior of 3xTg-AD mice. We conclude that RF exposure may represent an effective memory-enhancing approach in Alzheimer's disease.
Collapse
Affiliation(s)
- Sana Banaceur
- Laboratoire de Physiologie Intégrée, Faculté des sciences de Bizerte, 7021 Jarzouna, Tunisia.
| | | | | | | |
Collapse
|
46
|
Hao D, Yang L, Chen S, Tian Y, Wu S. 916 MHz electromagnetic field exposure affects rat behavior and hippocampal neuronal discharge. Neural Regen Res 2012; 7:1488-92. [PMID: 25657684 PMCID: PMC4308780 DOI: 10.3969/j.issn.1673-5374.2012.19.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 05/16/2012] [Indexed: 11/23/2022] Open
Abstract
Wistar rats were exposed to a 916 MHz, 10 W/m2 mobile phone electromagnetic field for 6 hours a day, 5 days a week. Average completion times in an eight-arm radial maze were longer in the exposed rats than control rats after 4–5 weeks of exposure. Error rates in the exposed rats were greater than the control rats at 6 weeks. Hippocampal neurons from the exposed rats showed irregular firing patterns during the experiment, and they exhibited decreased spiking activity 6–9 weeks compared with that after 2–5 weeks of exposure. These results indicate that 916 MHz electromagnetic fields influence learning and memory in rats during exposure, but long-term effects are not obvious.
Collapse
Affiliation(s)
- Dongmei Hao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Lei Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Su Chen
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Yonghao Tian
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
47
|
Laudisi F, Sambucci M, Nasta F, Pinto R, Lodato R, Altavista P, Lovisolo GA, Marino C, Pioli C. Prenatal exposure to radiofrequencies: Effects of WiFi signals on thymocyte development and peripheral T cell compartment in an animal model. Bioelectromagnetics 2012; 33:652-61. [DOI: 10.1002/bem.21733] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/12/2012] [Indexed: 11/10/2022]
|
48
|
Lu Y, Xu S, He M, Chen C, Zhang L, Liu C, Chu F, Yu Z, Zhou Z, Zhong M. Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure. Physiol Behav 2012; 106:631-7. [PMID: 22564535 DOI: 10.1016/j.physbeh.2012.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/27/2012] [Accepted: 04/19/2012] [Indexed: 11/19/2022]
Abstract
Extensive evidence indicates that glucose administration attenuates memory deficits in rodents and humans, and cognitive impairment has been associated with reduced glucose metabolism and uptake in certain brain regions including the hippocampus. In the present study, we investigated whether glucose treatment attenuated memory deficits caused by chronic low-power-density microwave (MW) exposure, and the effect of MW exposure on hippocampal glucose uptake. We exposed Wistar rats to 2.45 GHz pulsed MW irradiation at a power density of 1 mW/cm(2) for 3 h/day, for up to 30 days. MW exposure induced spatial learning and memory impairments in rats. Hippocampal glucose uptake was also reduced by MW exposure in the absence or presence of insulin, but the levels of blood glucose and insulin were not affected. However, these spatial memory deficits were reversed by systemic glucose treatment. Our results indicate that glucose administration attenuates the spatial memory deficits induced by chronic low-power-density MW exposure, and reduced hippocampal glucose uptake may be associated with cognitive impairment caused by MW exposure.
Collapse
Affiliation(s)
- Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Arendash GW, Mori T, Dorsey M, Gonzalez R, Tajiri N, Borlongan C. Electromagnetic treatment to old Alzheimer's mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit. PLoS One 2012; 7:e35751. [PMID: 22558216 PMCID: PMC3338462 DOI: 10.1371/journal.pone.0035751] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 03/22/2012] [Indexed: 01/10/2023] Open
Abstract
Few studies have investigated physiologic and cognitive effects of "long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25-1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21-27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF "ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during "ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD.
Collapse
Affiliation(s)
- Gary W Arendash
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America.
| | | | | | | | | | | |
Collapse
|
50
|
Paulraj R, Behari J. Biochemical Changes in Rat Brain Exposed to Low Intensity 9.9 GHz Microwave Radiation. Cell Biochem Biophys 2012; 63:97-102. [DOI: 10.1007/s12013-012-9344-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|