1
|
Zhang Q, Shi D, Guo M, Zhao H, Zhao Y, Yang X. Radiofrequency-Activated Pyroptosis of Bi-Valent Gold Nanocluster for Cancer Immunotherapy. ACS NANO 2023; 17:515-529. [PMID: 36580577 DOI: 10.1021/acsnano.2c09242] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pyroptosis is gasdermin-mediated programmed necrosis that exhibits promising potential application in cancer immunotherapy, and the main challenge lies in how to provoke specific pyroptosis of tumor cells. Here, biGC@PNA with a precisely stoichiometric ratio of Au(I) ion/Au(0) atom induced pyroptosis of tumor cells by its radiofrequency (RF)-heating effect. An in vitro/in vivo assay on 4T1 tumor cells indicates RF-activated pyroptosis of tumor cells elicits a robust ICD effect, enhancing the synergistic antitumor efficacy of biGC@PNA with decitabine, significantly suppressing tumor metastasis and relapse by provoking systemic antitumor immune responses. Utilizing RF-activated pyroptotic immune responses, biGC@PNA efficiently enhances the antitumor efficacy of αPD-1 immunotherapy under RF irradiation and provides a promising strategy for improving cancer immunotherapy by the noninvasive RF field with high clinical transformation potential.
Collapse
Affiliation(s)
- Qingqing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Dingwen Shi
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Mengqin Guo
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Hao Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Yanbing Zhao
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan430074, People's Republic of China
- GBA Research Innovation Institute for Nanotechnology, Guangdong510530, People's Republic of China
| |
Collapse
|
2
|
Romeo S, Zeni O, Scarfì MR, Poeta L, Lioi MB, Sannino A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:2322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz-300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
Affiliation(s)
- Stefania Romeo
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Olga Zeni
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Rosaria Scarfì
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Loredana Poeta
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| | - Maria Brigida Lioi
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 85100 Potenza, Italy
| | - Anna Sannino
- CNR, Institute for Electromagnetic Sensing of the Environment (IREA) via Diocleziano 328, 80124 Napoli, Italy; (S.R.); (M.R.S.); (L.P.); (M.B.L.); (A.S.)
| |
Collapse
|
3
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
4
|
Qiu X, Dong K, Guan J, He J. Hydrogen attenuates radiation-induced intestinal damage by reducing oxidative stress and inflammatory response. Int Immunopharmacol 2020; 84:106517. [PMID: 32361189 DOI: 10.1016/j.intimp.2020.106517] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 01/23/2023]
Abstract
The small intestine is known to be particularly sensitive to radiation, and the major limiting factor of radiotherapy is the gastrointestinal syndrome that subsequently develops after its administration. The detrimental effects of radiation are mostly mediated via the overproduction of reactive oxygen species (ROS), especially the hydroxyl radical (·OH). Because hydrogen is a selective ·OH scavenger, we hypothesized that hydrogen might exert a protective effect against radiation-induced intestinal damage. Herein, radiation models were built both in mice and in an intestinal crypt epithelial cell (IEC-6) line. In the animal experiment, we demonstrated that hydrogen-rich saline significantly reduced radiation-induced intestinal mucosal damage, improved intestinal function, and increased the survival rate. In addition, radiation-induced oxidative stress damage and systemic inflammatory response were also mitigated by hydrogen treatment. Moreover, hydrogen treatment decreased cell apoptosis and maintained intestinal epithelial cell proliferation in mice. In vitro experiments using the IEC-6 cell line showed that hydrogen-rich medium significantly inhibited ROS formation, maintained cell viability, and inhibited cell apoptosis. Importantly, hydrogen treatment prevented mitochondrial depolarization, cytochrome c release, and activity of caspase-3, caspase-9, and PARP. Moreover, the decreased expression of Bcl-xl and Bcl-2 and the increased expression of Bax protein were also blocked by hydrogen treatment. In conclusion, our study concurrently demonstrated that hydrogen provides an obviously protective effect on radiation-induced intestinal and cell injuries. Our work demonstrated that this protective effect might be due to the blockage of the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of General Surgery, The Eighth Medical Center, Chinese PLA(People's Liberation Army) General Hospital, Beijing 100091, China
| | - Kaisheng Dong
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China; Postgraduate Department of Hebei North University, Zhangjiakou 075000, China
| | - Jingzhi Guan
- Department of Oncology, The Eighth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100091, China
| | - JianMiao He
- Department of General Surgery, The Eighth Medical Center, Chinese PLA(People's Liberation Army) General Hospital, Beijing 100091, China.
| |
Collapse
|
5
|
Capasso D, Di Gaetano S, Celentano V, Diana D, Festa L, Di Stasi R, De Rosa L, Fattorusso R, D'Andrea LD. Unveiling a VEGF-mimetic peptide sequence in the IQGAP1 protein. MOLECULAR BIOSYSTEMS 2018; 13:1619-1629. [PMID: 28685787 DOI: 10.1039/c7mb00190h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to modulate angiogenesis by chemical tools has several important applications in different scientific fields. With the perspective of finding novel proangiogenic molecules, we searched peptide sequences with a chemical profile similar to that of the QK peptide, a well described VEGF mimetic peptide. We found that residues 1617-1627 of the IQGAP1 protein show molecular features similar to those of the QK peptide sequence. The IQGAP1-derived synthetic peptide was analyzed by NMR spectroscopy and its biological activity was characterized in endothelial cells. These studies showed that this IQGAP1-derived peptide has a biological activity similar to that of VEGF and could be considered as a novel tool for reparative angiogenesis.
Collapse
Affiliation(s)
- Domenica Capasso
- Dipartimento di Farmacia, Università di Napoli "Federico II", Via Mezzocannone 16, Napoli, Italy
| | - Sonia Di Gaetano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| | - Veronica Celentano
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| | - Donatella Diana
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| | - Luisa Festa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| | - Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Luca D D'Andrea
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, Napoli, 80134, Italy.
| |
Collapse
|
6
|
Parham F, Portier CJ, Chang X, Mevissen M. The Use of Signal-Transduction and Metabolic Pathways to Predict Human Disease Targets from Electric and Magnetic Fields Using in vitro Data in Human Cell Lines. Front Public Health 2016; 4:193. [PMID: 27656641 PMCID: PMC5013261 DOI: 10.3389/fpubh.2016.00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
Using in vitro data in human cell lines, several research groups have investigated changes in gene expression in cellular systems following exposure to extremely low frequency (ELF) and radiofrequency (RF) electromagnetic fields (EMF). For ELF EMF, we obtained five studies with complete microarray data and three studies with only lists of significantly altered genes. Likewise, for RF EMF, we obtained 13 complete microarray datasets and 5 limited datasets. Plausible linkages between exposure to ELF and RF EMF and human diseases were identified using a three-step process: (a) linking genes associated with classes of human diseases to molecular pathways, (b) linking pathways to ELF and RF EMF microarray data, and (c) identifying associations between human disease and EMF exposures where the pathways are significantly similar. A total of 60 pathways were associated with human diseases, mostly focused on basic cellular functions like JAK–STAT signaling or metabolic functions like xenobiotic metabolism by cytochrome P450 enzymes. ELF EMF datasets were sporadically linked to human diseases, but no clear pattern emerged. Individual datasets showed some linkage to cancer, chemical dependency, metabolic disorders, and neurological disorders. RF EMF datasets were not strongly linked to any disorders but strongly linked to changes in several pathways. Based on these analyses, the most promising area for further research would be to focus on EMF and neurological function and disorders.
Collapse
Affiliation(s)
- Fred Parham
- National Institute of Environmental Health Sciences, Research Triangle Park , Durham, NC , USA
| | | | - Xiaoqing Chang
- National Institute of Environmental Health Sciences, Research Triangle Park , Durham, NC , USA
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty , University of Bern, Bern , Switzerland
| |
Collapse
|
7
|
Quality Matters: Systematic Analysis of Endpoints Related to "Cellular Life" in Vitro Data of Radiofrequency Electromagnetic Field Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070701. [PMID: 27420084 PMCID: PMC4962242 DOI: 10.3390/ijerph13070701] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions.
Collapse
|
8
|
Manna D, Ghosh R. Effect of radiofrequency radiation in cultured mammalian cells: A review. Electromagn Biol Med 2016; 35:265-301. [PMID: 27053138 DOI: 10.3109/15368378.2015.1092158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The use of mobile phone related technologies will continue to increase in the foreseeable future worldwide. This has drawn attention to the probable interaction of radiofrequency electromagnetic radiation with different biological targets. Studies have been conducted on various organisms to evaluate the alleged ill-effect on health. We have therefore attempted to review those work limited to in vitro cultured cells where irradiation conditions were well controlled. Different investigators have studied varied endpoints like DNA damage, cell cycle arrest, reactive oxygen species (ROS) formation, cellular morphology and viability to weigh the genotoxic effect of such radiation by utilizing different frequencies and dose rates under various irradiation conditions that include continuous or pulsed exposures and also amplitude- or frequency-modulated waves. Cells adapt to change in their intra and extracellular environment from different chemical and physical stimuli through organized alterations in gene or protein expression that result in the induction of stress responses. Many studies have focused on such effects for risk estimations. Though the effects of microwave radiation on cells are often not pronounced, some investigators have therefore combined radiofrequency radiation with other physical or chemical agents to observe whether the effects of such agents were augmented or not. Such reports in cultured cellular systems have also included in this review. The findings from different workers have revealed that, effects were dependent on cell type and the endpoint selection. However, contradictory findings were also observed in same cell types with same assay, in such cases the specific absorption rate (SAR) values were significant.
Collapse
Affiliation(s)
- Debashri Manna
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| | - Rita Ghosh
- a Department of Biochemistry & Biophysics , University of Kalyani , Kalyani , India
| |
Collapse
|
9
|
Wang G, Xu Y, Zhang L, Ye D, Feng X, Fu T, Bai Y. Enhancement of Apoptosis by Titanium Alloy Internal Fixations during Microwave Treatments for Fractures: An Animal Study. PLoS One 2015; 10:e0132046. [PMID: 26132082 PMCID: PMC4488932 DOI: 10.1371/journal.pone.0132046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Objective Microwaves are used in one method of physical therapy and can increase muscle tissue temperature which is useful for improving muscle, tendon and bone injuries. In the study, we sought to determine whether titanium alloy internal fixations influence apoptosis in tissues subjected to microwave treatments at 2,450 MHz and 40 W during the healing of fractures because this issue is not yet fully understood. Methods In this study, titanium alloy internal fixations were used to treat 3.0-mm transverse osteotomies in the middle of New Zealand rabbits’ femurs. After the operation, 30-day microwave treatments were applied to the 3.0 mm transverse osteotomies 3 days after the operation. The changes in the temperatures of the muscle tissues in front of the implants or the 3.0 mm transverse osteotomies were measured during the microwave treatments. To characterize the effects of titanium alloy internal fixations on apoptosis in the muscles after microwave treatment, we performed TUNEL assays, fluorescent real-time (quantitative) PCR, western blotting analyses, reactive oxygen species (ROS) detection and transmission electron microscopy examinations. Results The temperatures were markedly increased in the animals with the titanium alloy implants. Apoptosis in the muscle cells of the implanted group was significantly more extensive than that in the non-implanted control group at different time points. Transmission electron microscopy examinations of the skeletal muscles of the implanted groups revealed muscular mitochondrial swelling, vacuolization. ROS, Bax and Hsp70 were up-regulated, and Bcl-2 was down-regulated in the implanted group. Conclusion Our results suggest that titanium alloy internal fixations caused greater muscular tissue cell apoptosis following 2,450 MHz, 40 W microwave treatments in this rabbit femur fracture models.
Collapse
Affiliation(s)
- Gang Wang
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yiming Xu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lina Zhang
- Department of Biostatistics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongmei Ye
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xianxuan Feng
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Tengfei Fu
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuehong Bai
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Kumar G, McIntosh RL, Anderson V, McKenzie RJ, Wood AW. A genotoxic analysis of the hematopoietic system after mobile phone type radiation exposure in rats. Int J Radiat Biol 2015; 91:664-72. [PMID: 25955504 DOI: 10.3109/09553002.2015.1047988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In our earlier study we reported that 900 MHz continuous wave (CW) radiofrequency radiation (RFR) exposure (2 W/kg specific absorption rate [SAR]) had no significant effect on the hematopoietic system of rats. In this paper we extend the scope of the previous study by testing for possible effects at: (i) different SAR levels; (ii) both 900 and 1800 MHz, and; (iii) both CW and pulse modulated (PM) RFR. MATERIALS AND METHODS Excised long bones from rats were placed in medium and RFR exposed in (i) a Transverse Electromagnetic (TEM) cell or (ii) a waveguide. Finite-difference time-domain (FDTD) numerical analyses were used to estimate forward power needed to produce nominal SAR levels of 2/10 and 2.5/12.4 W/kg in the bone marrow. After exposure, the lymphoblasts were extracted and assayed for proliferation rate, and genotoxicity. RESULTS Our data did not indicate any significant change in these end points for any combination of CW/PM exposure at 900/1800 MHz at SAR levels of nominally 2/10 W/kg or 2.5/12.4 W/kg. CONCLUSIONS No significant changes were observed in the hematopoietic system of rats after the exposure of CW/PM wave 900 MHz/1800 MHz RF radiations at different SAR values.
Collapse
Affiliation(s)
- Gaurav Kumar
- a Brain and Psychological Sciences Research Centre, Swinburne University of Technology , Hawthorn, Victoria , Australia
| | - Robert L McIntosh
- a Brain and Psychological Sciences Research Centre, Swinburne University of Technology , Hawthorn, Victoria , Australia
| | - Vitas Anderson
- a Brain and Psychological Sciences Research Centre, Swinburne University of Technology , Hawthorn, Victoria , Australia
| | - Ray J McKenzie
- a Brain and Psychological Sciences Research Centre, Swinburne University of Technology , Hawthorn, Victoria , Australia
| | - Andrew W Wood
- a Brain and Psychological Sciences Research Centre, Swinburne University of Technology , Hawthorn, Victoria , Australia
| |
Collapse
|
11
|
Çiftçi ZZ, Kırzıoğlu Z, Nazıroğlu M, Özmen Ö. Effects of prenatal and postnatal exposure of Wi-Fi on development of teeth and changes in teeth element concentration in rats. [corrected]. Biol Trace Elem Res 2015; 163:193-201. [PMID: 25395122 DOI: 10.1007/s12011-014-0175-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
The present study determined the effects of prenatal and postnatal exposure to Wi-Fi (2.45 GHz)-induced electromagnetic radiation (EMR) on tooth and surrounding tissue development as well as the element levels in growing rats. Twenty-four rats and their offspring were equally divided into two separate groups identified as experiment and control. The experiment group was exposed to 2.45 GHz EMR for 2 h/day during the periods of pregnancy (21 days) and lactation (21 days). The offspring of these dams were also exposed to EMR up to decapitation. The control group was exposed to cage stress for 2 h per day using the same protocol established for the experimental group. On the 7th, 14th, and 21st days after birth, 8 male offspring rats from each of the two groups were decapitated, and the jaws were taken for histological and immunohistochemical examination. Caspase-3 (1/50 dilution) was used in the immunohistochemical examination for apoptotic activity. On the last day of the experiment, the rats' incisors were also collected. In samples that were histologically and immunohistochemically examined, there was an increase in apoptosis and caspase-3 in both the control and the Wi-Fi groups during the development of the teeth. However, no significant difference was observed between the two groups in terms of development and apoptotic activity. Results from the elemental analysis showed that iron and strontium concentrations were increased in the Wi-Fi group, whereas boron, copper, and zinc concentrations were decreased. There were no statistically significant differences in calcium, cadmium, potassium, magnesium, sodium, or phosphorus values between the groups. Histological and immunohistochemical examinations between the experimental and control groups showed that exposure to 2.45 GHz EMR for 2 h per day does not interfere with the development of teeth and surrounding tissues. However, there were alterations in the elemental composition of the teeth, especially affecting such oxidative stress-related elements as copper, zinc, and iron, suggesting that short-term exposure to Wi-Fi-induced EMR may cause an imbalance in the oxidative stress condition in the teeth of growing rats.
Collapse
Affiliation(s)
- Zülfikar Zahit Çiftçi
- Department of Pedodontics, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | | | | | | |
Collapse
|
12
|
Schmid G, Kuster N. The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz. Bioelectromagnetics 2015; 36:133-48. [DOI: 10.1002/bem.21895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS); Zurich Switzerland
- Swiss Federal Institute of Technology (ETH); Zurich Switzerland
| |
Collapse
|
13
|
Kahya MC, Nazıroğlu M, Çiğ B. Selenium reduces mobile phone (900 MHz)-induced oxidative stress, mitochondrial function, and apoptosis in breast cancer cells. Biol Trace Elem Res 2014; 160:285-93. [PMID: 24965080 DOI: 10.1007/s12011-014-0032-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022]
Abstract
Exposure to mobile phone-induced electromagnetic radiation (EMR) may affect biological systems by increasing free oxygen radicals, apoptosis, and mitochondrial depolarization levels although selenium may modulate the values in cancer. The present study was designed to investigate the effects of 900 MHz radiation on the antioxidant redox system, apoptosis, and mitochondrial depolarization levels in MDA-MB-231 breast cancer cell line. Cultures of the cancer cells were divided into four main groups as controls, selenium, EMR, and EMR + selenium. In EMR groups, the cells were exposed to 900 MHz EMR for 1 h (SAR value of the EMR was 0.36 ± 0.02 W/kg). In selenium groups, the cells were also incubated with sodium selenite for 1 h before EMR exposure. Then, the following values were analyzed: (a) cell viability, (b) intracellular ROS production, (c) mitochondrial membrane depolarization, (d) cell apoptosis, and (e) caspase-3 and caspase-9 values. Selenium suppressed EMR-induced oxidative cell damage and cell viability (MTT) through a reduction of oxidative stress and restoring mitochondrial membrane potential. Additionally, selenium indicated anti-apoptotic effects, as demonstrated by plate reader analyses of apoptosis levels and caspase-3 and caspase-9 values. In conclusion, 900 MHz EMR appears to induce apoptosis effects through oxidative stress and mitochondrial depolarization although incubation of selenium seems to counteract the effects on apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Mehmet Cemal Kahya
- Department of Biophysics, Faculty of Medicine, Izmir Katip Celebi University, Izmir, Turkey
| | | | | |
Collapse
|
14
|
|
15
|
Sefidbakht Y, Moosavi-Movahedi AA, Hosseinkhani S, Khodagholi F, Torkzadeh-Mahani M, Foolad F, Faraji-Dana R. Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells. Photochem Photobiol Sci 2014; 13:1082-92. [DOI: 10.1039/c3pp50451d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidative stress and response are among EMF mechanisms of action; the absorbed dose and ability of cells to respond might be summarized by the intracellular luciferase activity.
Collapse
Affiliation(s)
- Yahya Sefidbakht
- Institute of Biochemistry and Biophysics (IBB)
- University of Tehran
- Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB)
- University of Tehran
- Tehran, Iran
- Center of Excellence in Biothermodynamics (CEBiotherm)
- University of Tehran
| | - Saman Hosseinkhani
- Department of Biochemistry
- Faculty of Biological Sciences
- Tarbiat Modares University
- Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center
- Shahid Beheshti University of Medical Sciences
- Tehran, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology
- Institute of Science and High Technology and Environmental Science
- Graduate University of Advanced Technology
- Kerman, Iran
| | - Forough Foolad
- Neuroscience Research Center
- Shahid Beheshti University of Medical Sciences
- Tehran, Iran
| | - Reza Faraji-Dana
- School of Electrical and Computer Engineering
- University of Tehran
- Tehran, Iran
| |
Collapse
|
16
|
Zuo H, Lin T, Wang D, Peng R, Wang S, Gao Y, Xu X, Li Y, Wang S, Zhao L, Wang L, Zhou H. Neural cell apoptosis induced by microwave exposure through mitochondria-dependent caspase-3 pathway. Int J Med Sci 2014; 11:426-35. [PMID: 24688304 PMCID: PMC3970093 DOI: 10.7150/ijms.6540] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 02/20/2014] [Indexed: 11/24/2022] Open
Abstract
To determine whether microwave (MW) radiation induces neural cell apoptosis, differentiated PC12 cells and Wistar rats were exposed to 2.856 GHz for 5 min and 15 min, respectively, at an average power density of 30 mW/cm². JC-1 and TUNEL staining detected significant apoptotic events, such as the loss of mitochondria membrane potential and DNA fragmentation, respectively. Transmission electron microscopy and Hoechst staining were used to observe chromatin ultrastructure and apoptotic body formation. Annexin V-FITC/PI double staining was used to quantify the level of apoptosis. The expressions of Bax, Bcl-2, cytochrome c, cleaved caspase-3 and PARP were examined by immunoblotting or immunocytochemistry. Caspase-3 activity was measured using an enzyme-linked immunosorbent assay. The results showed chromatin condensation and apoptotic body formation in neural cells 6h after microwave exposure. Moreover, the mitochondria membrane potential decreased, DNA fragmentation increased, leading to an increase in the apoptotic cell percentage. Furthermore, the ratio of Bax/Bcl-2, expression of cytochrome c, cleaved caspase-3 and PARP all increased. In conclusion, microwave radiation induced neural cell apoptosis via the classical mitochondria-dependent caspase-3 pathway. This study may provide the experimental basis for further investigation of the mechanism of the neurological effects induced by microwave radiation.
Collapse
Affiliation(s)
- Hongyan Zuo
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Tao Lin
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China; ; 2. High Magnetic Field Laboratory, Hefei Material Research Institute, Chinese Academy of Science, 350, Shushanhu Road, Shushan District, Hefei 230031, China
| | - Dewen Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Ruiyun Peng
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Shuiming Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Yabing Gao
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Xinping Xu
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Yang Li
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Shaoxia Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Li Zhao
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Lifeng Wang
- 1. Department of Experimental Pathology, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| | - Hongmei Zhou
- 3. Department of Radiation Protection and Health Physics, Institute of Radiation Medicine, 27, Taiping Road, Haidian District, Beijing 100850, China
| |
Collapse
|
17
|
Zhijian C, Xiaoxue L, Wei Z, Yezhen L, Jianlin L, Deqiang L, Shijie C, Lifen J, Jiliang H. Studying the protein expression in human B lymphoblastoid cells exposed to 1.8-GHz (GSM) radiofrequency radiation (RFR) with protein microarray. Biochem Biophys Res Commun 2013; 433:36-9. [PMID: 23454122 DOI: 10.1016/j.bbrc.2013.02.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 01/06/2023]
Abstract
In the present study, the protein microarray was used to investigate the protein expression in human B-cell lymphoblastoid cells intermittently exposed to 1.8-GHz GSM radiofrequency radiation (RFR) at the specific absorption rate (SAR) of 2.0 W/kg for 24 h. The differential expression of 27 proteins was found, which were related to DNA damage repair, apoptosis, oncogenesis, cell cycle and proliferation (ratio >1.5-fold, P<0.05). The results validated with Western blot assay indicated that the expression of RPA32 was significantly down-regulated (P<0.05) while the expression of p73 was significantly up-regulated in RFR exposure group (P<0.05). Because of the crucial roles of those proteins in DNA repair and cell apoptosis, the results of present investigation may explain the biological effects of RFR on DNA damage/repair and cell apoptosis.
Collapse
Affiliation(s)
- Chen Zhijian
- Department of Environmental and Occupational Health, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, Zhejiang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Romeo S, Zeni L, Sarti M, Sannino A, Scarfì MR, Vernier PT, Zeni O. DNA electrophoretic migration patterns change after exposure of Jurkat cells to a single intense nanosecond electric pulse. PLoS One 2011; 6:e28419. [PMID: 22164287 PMCID: PMC3229573 DOI: 10.1371/journal.pone.0028419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 11/08/2011] [Indexed: 11/19/2022] Open
Abstract
Intense nanosecond pulsed electric fields (nsPEFs) interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a) development of biomedical applications of nsPEFs, including cancer therapy, and b) better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells) exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake). Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns.
Collapse
Affiliation(s)
- Stefania Romeo
- CNR – Institute for Electromagnetic Sensing of Environment, Naples, Italy
- Department of Information Engineering, Second University of Naples, Aversa, Italy
| | - Luigi Zeni
- CNR – Institute for Electromagnetic Sensing of Environment, Naples, Italy
- Department of Information Engineering, Second University of Naples, Aversa, Italy
| | - Maurizio Sarti
- CNR – Institute for Electromagnetic Sensing of Environment, Naples, Italy
| | - Anna Sannino
- CNR – Institute for Electromagnetic Sensing of Environment, Naples, Italy
- Department of Pharmaceutical Science, University of Salerno, Fisciano, Italy
| | | | - P. Thomas Vernier
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Olga Zeni
- Ming Hsieh Department of Electrical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Sannino A, Zeni O, Sarti M, Romeo S, Reddy SB, Belisario MA, Prihoda TJ, Vijayalaxmi, Scarfi MR. Induction of adaptive response in human blood lymphocytes exposed to 900 MHz radiofrequency fields: Influence of cell cycle. Int J Radiat Biol 2011; 87:993-9. [DOI: 10.3109/09553002.2011.574779] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Lee KY, Kim BC, Han NK, Lee YS, Kim T, Yun JH, Kim N, Pack JK, Lee JS. Effects of combined radiofrequency radiation exposure on the cell cycle and its regulatory proteins. Bioelectromagnetics 2010; 32:169-78. [PMID: 21365661 DOI: 10.1002/bem.20618] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/25/2010] [Indexed: 11/06/2022]
Abstract
The aim of this study was to investigate whether single or combined radio frequency (RF) radiation exposure has effects on the cell cycle and its regulatory proteins. Exposure of MCF7 cells to either single (837 MHz) or combined (837 and 1950 MHz) RF radiation was conducted at specific absorption rate values of 4 W/kg for 1 h. During the exposure period, the chamber was made isothermal by circulating water through the cavity. After RF radiation exposure, DNA synthesis rate and cell cycle distribution were assessed. The levels of cell cycle regulatory proteins, p53, p21, cyclins, and cyclin-dependent kinases were also examined. The positive control group was exposed to 0.5 and 4 Gy doses of ionizing radiation (IR) and showed changes in DNA synthesis and cell cycle distribution. The levels of p53, p21, cyclin A, cyclin B1, and cyclin D1 were also affected by IR exposure. In contrast to the IR-exposed group, neither the single RF radiation- nor the combined RF radiation-exposed group elicited alterations in DNA synthesis, cell cycle distribution, and levels of cell cycle regulatory proteins. These results indicate that neither single nor combined RF radiation affect cell cycle progression.
Collapse
Affiliation(s)
- Kwan-Yong Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Falzone N, Huyser C, Franken DR, Leszczynski D. Mobile phone radiation does not induce pro-apoptosis effects in human spermatozoa. Radiat Res 2010; 174:169-76. [PMID: 20681783 DOI: 10.1667/rr2091.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Recent reports suggest that mobile phone radiation may diminish male fertility. However, the effects of this radiation on human spermatozoa are largely unknown. The present study examined effects of the radiation on induction of apoptosis-related properties in human spermatozoa. Ejaculated, density-purified, highly motile human spermatozoa were exposed to mobile phone radiation at specific absorption rates (SARs) of 2.0 and 5.7 W/kg. At various times after exposure, flow cytometry was used to examine caspase 3 activity, externalization of phosphatidylserine (PS), induction of DNA strand breaks, and generation of reactive oxygen species. Mobile phone radiation had no statistically significant effect on any of the parameters studied. This suggests that the impairment of fertility reported in some studies was not caused by the induction of apoptosis in spermatozoa.
Collapse
Affiliation(s)
- Nadia Falzone
- Department of Biomedical Sciences, Tshwane University of Technology, Pretoria, South Africa.
| | | | | | | |
Collapse
|
22
|
Eşmekaya MA, Seyhan N, Ömeroğlu S. Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: a light, electron microscopy and immunohistochemical study. Int J Radiat Biol 2010; 86:1106-16. [PMID: 20807179 DOI: 10.3109/09553002.2010.502960] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE In the present study we investigated the possible histopathological effects of pulse modulated Radiofrequency (RF) fields on the thyroid gland using light microscopy, electron microscopy and immunohistochemical methods. MATERIALS AND METHODS Two months old male Wistar rats were exposed to a 900 MHz pulse-modulated RF radiation at a specific absorption rate (SAR) of 1.35 Watt/kg for 20 min/day for three weeks. The RF signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). To assess thyroid endocrine disruption and estimate the degree of the pathology of the gland, we analysed structural alterations in follicular and colloidal diameters and areas, colloid content of the follicles, and height of the follicular epithelium. Apoptosis was confirmed by Transmission Electron Microscopy and assessing the activites of an initiator (caspase-9) and an effector (caspase-3) caspases that are important markers of cells undergoing apoptosis. RESULTS Morphological analyses revealed hypothyrophy of the gland in the 900 MHz RF exposure group. The results indicated that thyroid hormone secretion was inhibited by the RF radiation. In addition, we also observed formation of apoptotic bodies and increased caspase-3 and caspase-9 activities in thyroid cells of the rats that were exposed to modulated RF fields. CONCLUSION The overall findings indicated that whole body exposure to pulse-modulated RF radiation that is similar to that emitted by global system for mobile communications (GSM) mobile phones can cause pathological changes in the thyroid gland by altering the gland structure and enhancing caspase-dependent pathways of apoptosis.
Collapse
Affiliation(s)
- Meriç Arda Eşmekaya
- Department of Biophysics, Faculty of Medicine & Gazi Non-ionizing Radiation Protection (GNRP) Center, Gazi University, Ankara, Turkey.
| | | | | |
Collapse
|
23
|
Sannino A, Sarti M, Reddy SB, Prihoda TJ, Vijayalaxmi, Scarfì MR. Induction of adaptive response in human blood lymphocytes exposed to radiofrequency radiation. Radiat Res 2009; 171:735-42. [PMID: 19580480 DOI: 10.1667/rr1687.1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The incidence of micronuclei was evaluated to assess the induction of an adaptive response to non-ionizing radiofrequency (RF) radiation in peripheral blood lymphocytes collected from five different human volunteers. After stimulation with phytohemagglutinin for 24 h, the cells were exposed to an adaptive dose of 900 MHz RF radiation used for mobile communications (at a peak specific absorption rate of 10 W/kg) for 20 h and then challenged with a single genotoxic dose of mitomycin C (100 ng/ml) at 48 h. Lymphocytes were collected at 72 h to examine the frequency of micronuclei in cytokinesis-blocked binucleated cells. Cells collected from four donors exhibited the induction of adaptive response (i.e., responders). Lymphocytes that were pre-exposed to 900 MHz RF radiation had a significantly decreased incidence of micronuclei induced by the challenge dose of mitomycin C compared to those that were not pre-exposed to 900 MHz RF radiation. These preliminary results suggested that the adaptive response can be induced in cells exposed to non-ionizing radiation. A similar phenomenon has been reported in cells as well as in animals exposed to ionizing radiation in several earlier studies. However, induction of adaptive response was not observed in the remaining donor (i.e., non-responder). The incidence of micronuclei induced by the challenge dose of mitomycin C was not significantly different between the cells that were pre-exposed and unexposed to 900 MHz RF radiation. Thus the overall data indicated the existence of heterogeneity in the induction of an adaptive response between individuals exposed to RF radiation and showed that the less time-consuming micronucleus assay can be used to determine whether an individual is a responder or non-responder.
Collapse
Affiliation(s)
- Anna Sannino
- CNR-Institute for Electromagnetic Sensing of Environment, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Sannino A, Di Costanzo G, Brescia F, Sarti M, Zeni O, Juutilainen J, Scarfì MR. Human Fibroblasts and 900 MHz Radiofrequency Radiation: Evaluation of DNA Damage after Exposure and Co-exposure to 3-Chloro-4-(dichloromethyl)-5-Hydroxy-2(5h)-furanone (MX). Radiat Res 2009; 171:743-51. [DOI: 10.1667/rr1642.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|