1
|
Zhao N, Wang G, Long S, Lv X, Ran X, Wang J, Su Y, Wang T. The antiprotease Spink7 promotes inflammation resolution by modulating multiple proteases activities during wound healing. Clin Transl Med 2025; 15:e70291. [PMID: 40147022 PMCID: PMC11949503 DOI: 10.1002/ctm2.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Effective control of inflammation is crucial for the healing of cutaneous wounds, but the molecular mechanisms governing inflammation resolution during wound closure are still not yet clear. Here, we describe a homeostatic mechanism that facilitates the inflammation resolution by timely regulating the targeted proteases activities through antiprotease Spink7 (serine peptidase inhibitor, kazal type 7). METHODS The expression pattern of Spink7 was investigated by quantitative RT-PCR, immunohistochemistry (IHC) and in situ hybridization. In both Spink7 knockdown and knockout models, quantitative comparisons were made between the healing rate of wounds and histopathological morphometric analysis. Microarrays, multiple chemokine assays, IHC, immunofluorescence, protease activity measurement were performed to explore the underlying mechanisms of Spink7 knockout in impaired wound healing. Radiation-wound combined injury (R-W-CI) model was employed to evaluate the therapeutic effects of Spink7 manipulation. RESULTS Our study demonstrates that Spink7 is significantly upregulated in the differentiated epidermal granular keratinocytes of proliferative phase during murine wound closure. Both local knockdown of Spink7 levels in wounds using siRNA gel and systemic knockout of Spink7 using KO mice resulted in delayed wound closure with sustained neutrophil infiltration. Loss of Spink7 leads to augmented inflammatory responses, increased production of multiple chemokines/cytokines, and impaired M2 polarization of macrophages in wound healing. Furthermore, loss of Spink7 results in elevated proteolytic activities of uPA, MMP2/9 and KLK5/7 in proliferative phase. However, inhibiting KLK5/7 downstream PAR2 activation exacerbates the phenotype of KO mice. In R-W-CI model, further significant induction of Spink7 is observed in wounds with insufficient inflammatory response. Local suppression of Spink7 promotes wound healing in the R-W-CI model by augmenting inflammation. CONCLUSIONS Maintaining an endogenous balance between Spink7 and its target proteases is a crucial checkpoint for regulating inflammation resolution during healing. Therefore, manipulating levels of Spink7 might be an effective treatment for impaired wounds caused by inflammatory dysregulation.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- Institute of Materia Medica and Department of PharmaceuticsCollege of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Guojian Wang
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shuang Long
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaofan Lv
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xinze Ran
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Junping Wang
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- State Key Laboratory of Trauma and Chemical PoisoningChongqingChina
| | - Yongping Su
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Tao Wang
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
2
|
Kumar R, Sharma AK, Kirti, Kalonia A, Shaw P, Yashvarddhan MH, Vibhuti A, Shukla SK. Understanding innate and adaptive responses during radiation combined burn injuries. Int Rev Immunol 2024; 44:31-43. [PMID: 39262163 DOI: 10.1080/08830185.2024.2402023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.
Collapse
Affiliation(s)
- Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
- Department of Biotechnology, SRM University, Sonepat, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - M H Yashvarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Sonepat, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| |
Collapse
|
3
|
Lv X, Zhao N, Long S, Wang G, Ran X, Gao J, Wang J, Wang T. 3D skin bioprinting as promising therapeutic strategy for radiation-associated skin injuries. Wound Repair Regen 2024; 32:217-228. [PMID: 38602068 DOI: 10.1111/wrr.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/16/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.
Collapse
Affiliation(s)
- Xiaofan Lv
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuang Long
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guojian Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinze Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
4
|
Kiang JG, Blakely WF. Combined radiation injury and its impacts on radiation countermeasures and biodosimetry. Int J Radiat Biol 2023; 99:1055-1065. [PMID: 36947602 PMCID: PMC10947598 DOI: 10.1080/09553002.2023.2188933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Preparedness for medical responses to major radiation accidents and the increasing threat of nuclear warfare worldwide necessitates an understanding of the complexity of combined radiation injury (CI) and identifying drugs to treat CI is inevitably critical. The vital sign and survival after CI were presented. The molecular mechanisms, such as microRNA pathways, NF-κB-iNOS-IL-18 pathway, C3 production, the AKT-MAPK cross-talk, and TLR/MMP increases, underlying CI in relation to organ injury and mortality were analyzed. At present, no FDA-approved drug to protect, mitigate, or treat CI is available. The development of CI-specific medical countermeasures was reviewed. Because of the worsened acute radiation syndrome resulting from CI, diagnostic triage can be problematic. Therefore, biodosimetry and CI are bundled together with the need to establish effective triage methods with CI. CONCLUSIONS CI mouse model studies at AFRRI are reviewed addressing molecular responses, findings from medical countermeasures, and a proposed plasma proteomic biodosimetry approach based on a panel of radiation-responsive biomarkers (i.e., CD27, Flt-3L, GM-CSF, CD45, IL-12, TPO) negligibly influenced by wounding in an algorithm used for dose predictions is described.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William F. Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
5
|
Cherniavskiy I, Vinnikov V. Prognostic assessment of the zone of occurrence of radiation combined injuries within a nuclear blast area. Int J Radiat Biol 2021; 98:878-889. [PMID: 34699327 DOI: 10.1080/09553002.2021.1998707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND A detonation of nuclear weapon (NW) is considered as one of the most devastating radiological scenarios in the list of modern global threats. An essential proportion of victims in a mass casualty radiation event may require an immediate medical care due to radiation combined injuries (RCI). Surprisingly, there is a lack of clear guidance for quantitative prognosis of the spatial distribution of expected RCI casesin a given nuclear explosion scenario. PURPOSE This work is aimed at the presentation of a new, improved model, allowing more confident evaluation of the contributions from different NW destructive forces to RCI formation, thus leading to more accurate approximation of the zone around the epicenter for a guided search for RCI cases. MATERIALS AND METHODS The model is made compatible with a classic approach and provides the estimates of radial distance from the epicenter, at which NW explosion can produce RCI. Mathematical formalism comprises a set of equations for the reciprocal assessment of a distance-effect for radiation dose (separately for neutrons and gamma-rays), thermal wave and blast shock wave depending on the NW type, detonation yield and altitude, environmental conditions (i.e. season) and shielding factors. The model's capabilities were demonstrated using an example of the RCI grade causing a profound operational performance decrement of military personnel in two marginal scenarios: Troops deployed in an open area or a tank crew. RESULTS A remarkable difference in the expected radial zones of possible RCI occurrence was found between the actions of a 'historical' atomic bomb, thermonuclear weapons, and low-yield neutron munitions, also with a noticeable impact of the season factor (summer/winter). For a tank crew the clinically manageable RCI are possible only in very high yield explosion scenarios, while the damage caused by radiation alone possess much higher risk. CONCLUSIONS Suggested formalism may provide guidance for a preliminary planning of countermeasures, targeting of radiation reconnaissance, and clarification of triage results in a broad range of radiological scenarios based on NW detonation. Further improvement of the model is possible by considering neutrons' and gamma-rays' relative biological efficacy, possible shielding factors, and a synergetic effect of NW's destructive forces.
Collapse
Affiliation(s)
- Igor Cherniavskiy
- Department of Radiation, Chemical and Biological Protection, Military Institute of Tank Forces of the National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine
| | - Volodymyr Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
| |
Collapse
|
6
|
Wang L, Zhai M, Lin B, Cui W, Hull L, Li X, Anderson MN, Smith JT, Umali MV, Jiang S, Kiang JG, Xiao M. PEG-G-CSF and L-Citrulline Combination Therapy for Mitigating Skin Wound Combined Radiation Injury in a Mouse Model. Radiat Res 2021; 196:113-127. [PMID: 33914884 PMCID: PMC8344563 DOI: 10.1667/rade-20-00151.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/26/2021] [Indexed: 11/03/2022]
Abstract
Radiation combined injury (RCI, radiation exposure coupled with other forms of injury, such as burn, wound, hemorrhage, blast, trauma and/or sepsis) comprises approximately 65% of injuries from a nuclear explosion, and greatly increases the risk of morbidity and mortality when compared to that of radiation injury alone. To date, no U.S. Food and Drug Administration (FDA)-approved countermeasures are available for RCI. Currently, three leukocyte growth factors (Neupogen®, Neulasta® and Leukine®) have been approved by the FDA for mitigating the hematopoietic acute radiation syndrome. However these granulocyte-colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) products have failed to increase 30-day survival of mice after RCI, suggesting a more complicated biological mechanism is in play for RCI than for radiation injury. In the current study, the mitigative efficacy of combination therapy using pegylated (PEG)-G-CSF (Neulasta) and -citrulline was evaluated in an RCI mouse model. L-citrulline is a neutral alpha-amino acid shown to improve vascular endothelial function in cardiovascular diseases. Three doses of PEG-G-CSF at 1 mg/kg, subcutaneously administered on days 1, 8 and 15 postirradiation, were supplemented with oral -citrulline (1 g/kg), once daily from day 1 to day 21 postirradiation. The combination treatment significantly improved the 30-day survival of mice after RCI from 15% (vehicle-treated) to 42%, and extended the median survival time by 4 days, as compared to vehicle controls. In addition, the combination therapy significantly increased body weight and bone marrow stem and progenitor cell clonogenicity in RCI mice, and accelerated recovery from RCI-induced intestinal injury, compared to animals treated with vehicle. Treatment with -citrulline alone also accelerated skin wound healing after RCI. In conclusion, these data indicate that the PEG-G-CSF and -citrulline combination therapy is a potentially effective countermeasure for mitigating RCI, likely by enhancing survival of the hematopoietic stem/progenitor cells and accelerating recovery from the RCI-induced intestinal injury and skin wounds.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Xianghong Li
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Maria Victoria Umali
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
- Department of Pharmacology and Molecular Therapy, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
7
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
8
|
Zhao B, Li X, Li X, Quan D, Zhang F, Hu B. Ilomastat contributes to the survival of mouse after irradiation via promoting the recovery of hematopoietic system. PLoS One 2021; 16:e0238209. [PMID: 33513143 PMCID: PMC7845947 DOI: 10.1371/journal.pone.0238209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/19/2020] [Indexed: 11/21/2022] Open
Abstract
Ilomastat, a broad-spectrum inhibitor of matrix metalloproteinases (MMPs), has drawn attentions for its function in alleviating radiation damage. However, the detailed mechanisms of Ilomastat’s protection from animal model remain not fully clear. In this study, the C57BL/6 mice were pre-administrated with Ilomastat or vihicle for 2 h, and then total body of mice were exposed to 6 Gy of γ-rays. The protective effect of Ilomastat on the hematopoietic system in the irradiated mice were investigated. We found that pretreatment with Ilomastat significantly reduced the level of TGF-β1 and TNF-α, and elevated the number of bone marrow (BM) mononuclear cells in the irradiated mice. Ilomastat pretreatment also increased the fraction of BM hematopoietic progenitor cells (HPCs) and hematopoietic stem cells (HSCs) at day 30 after irradiation, and protected the spleen of mouse from irradiation. These results suggest that Ilomastat promotes the recovery of hematopoietic injury in the irradiated mice, and thus contributes to the survival of mouse after irradiation.
Collapse
Affiliation(s)
- Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
- * E-mail:
| | - Xiaoman Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Department of Radiation Medicine, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingzhou Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Dongqin Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Fang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Burong Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
9
|
Kiang JG, Smith JT, Cannon G, Anderson MN, Ho C, Zhai M, Cui W, Xiao M. Ghrelin, a novel therapy, corrects cytokine and NF-κB-AKT-MAPK network and mitigates intestinal injury induced by combined radiation and skin-wound trauma. Cell Biosci 2020; 10:63. [PMID: 32426105 PMCID: PMC7216502 DOI: 10.1186/s13578-020-00425-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Compared to radiation injury alone (RI), radiation injury combined wound (CI) further enhances acute radiation syndrome and subsequently mortality. We previously reported that therapy with Ghrelin, the 28-amino-acid-peptide secreted from the stomach, significantly increased 30-day survival and mitigated hematopoietic death by enhancing and sustaining granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in the blood and bone marrow; increasing circulating white blood cell depletion; inhibiting splenocytopenia; and accelerating skin-wound healing on day 30 after CI. Herein, we aimed to study the efficacy of Ghrelin on intestinal injury at early time points after CI. METHODS B6D2F1/J female mice were exposed to 60Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral), followed by 15% total-body-surface-area skin wounds. Several endpoints were measured: at 4-5 h and on days 1, 3, 7, and 15. RESULTS Ghrelin therapy mitigated CI-induced increases in IL-1β, IL-6, IL-17A, IL-18, KC, and TNF-α in serum but sustained G-CSF, KC and MIP-1α increases in ileum. Histological analysis of ileum on day 15 showed that Ghrelin treatment mitigated ileum injury by increasing villus height, crypt depth and counts, as well as decreasing villus width and mucosal injury score. Ghrelin therapy increased AKT activation and ERK activation; suppressed JNK activation and caspase-3 activation in ileum; and reduced NF-κB, iNOS, BAX and Bcl-2 in ileum. This therapy recovered the tight junction protein and mitigated bacterial translocation and lipopolysaccharides levels. The results suggest that the capacity of Ghrelin therapy to reduce CI-induced ileum injury is mediated by a balanced NF-κB-AKT-MAPK network that leads to homeostasis of pro-inflammatory and anti-inflammatory cytokines. CONCLUSIONS Our novel results are the first to suggest that Ghrelin therapy effectively decreases intestinal injury after CI.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814 USA
| | - Joan T. Smith
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Marsha N. Anderson
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Connie Ho
- Department of Biochemistry, University of California, Berkeley, CA 94720 USA
| | - Min Zhai
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Wanchang Cui
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Mang Xiao
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| |
Collapse
|
10
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
11
|
Long S, Wang G, Shen M, Zhao N, Wan H, Xu Y, Wang S, Wang C, Gao J, Hao Y, Wang A, Li R, Ran X, Su Y, Wang J, Wang T. dTMP-GH Fusion Protein Therapy Improves Survival after Radiation Injury Combined with Skin-Burn Trauma in Mice. Radiat Res 2019; 191:360-368. [PMID: 30759046 DOI: 10.1667/rr5218.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to ionizing radiation combined with traumatic tissue injury is an important life-threatening condition found in the civilian populations after nuclear and radiological events. The significance feature of radiation combined injury (RCI) is the severe combined effect, which makes the injury more complicated. At present, there are limited measures available to treat RCI. Here we show that a chimeric protein dTMP-GH, fusing human growth hormone (hGH) with a tandem dimer of thrombopoietin mimetic peptide (dTMP), could be an effective therapy agent for RCI in a mice model. In this study, using a RCI mouse model exposed to 60Co γ-ray photons (6.0 Gy, 0.3 Gy/min) followed by a 20% total-body-surface-area burns (henceforth called: RB-CI) was established. Administration of dTMP-GH (200 ug/kg) for 10 consecutive days beginning at 24 h after injury improved survival rate during a 30-day observation period compared with the control vehicle group. dTMP-GH treatment also showed enhanced bone marrow hematopoiesis recovery determined by peripheral blood analysis and bone marrow histopathology. Meanwhile, dTMP-GH treatment accelerated skin wound closure and mitigated ileum injury in the RCI model. These results suggest that dTMP-GH may prove to be an effective therapeutic drug for RCI.
Collapse
Affiliation(s)
- Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Guojian Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kiang JG, Anderson MN, Smith JT. Ghrelin therapy mitigates bone marrow injury and splenocytopenia by sustaining circulating G-CSF and KC increases after irradiation combined with wound. Cell Biosci 2018; 8:27. [PMID: 29632660 PMCID: PMC5887249 DOI: 10.1186/s13578-018-0225-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/30/2018] [Indexed: 01/02/2023] Open
Abstract
Background Radiation injury combined wound (CI) enhances acute radiation syndrome and subsequently mortality as compared to radiation injury alone (RI). We previously reported that ghrelin (a 28-amino-acid-peptide secreted from the stomach) treatment significantly increased a 30-day survival, mitigated hematopoietic death, circulating white blood cell (WBC) depletion and splenocytopenia and accelerated skin-wound healing on day 30 after CI. Herein, we aimed to study the ghrelin efficacy at early time points after CI. Methods B6D2F1/J female mice were exposed to 60Co-γ-photon radiation at 9.5 Gy (LD50/30) followed by a 15% total-body-surface-area skin wound. Several endpoints were measured at 4-5 h, days 1, 3, 7 and 15. Results Histological analysis of sternums on day 15 showed that CI induced more adipocytes and less megakaryocytes than RI. Bone marrow cell counts from femurs also indicated CI resulted in lower bone marrow cell counts on days 1, 7 and 15 than RI. Ghrelin treatment mitigated these CI-induced adverse effects. RI and CI decreased WBCs within 4-5 h and continued to decrease to day 15. Ghrelin treatment mitigated decreases in CI mice, mainly from all types of WBCs, but not RBCs, hemoglobin levels and hematocrit values. Ghrelin mitigated the CI-induced thrombocytopenia and splenocytopenia. CI increased granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in blood and bone marrow. Ghrelin therapy was able to enhance and sustain the increases in serum on day 15, probably contributed by spleen and ileum, suggesting the correlation between G-CSF and KC increases and the neutropenia mitigation. Activated caspase-3 levels in bone marrow cells were significantly mitigated by ghrelin therapy on days 3 and 15. Conclusions Our novel results are the first to suggest that ghrelin therapy effectively decreases hematopoietic death and splenocytopenia by sustaining circulating G-CSF and KC increases after CI. These results demonstrate efficacy of ghrelin as a radio-mitigator/therapy agent for CI.
Collapse
Affiliation(s)
- Juliann G Kiang
- 1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA.,2Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA.,3Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Marsha N Anderson
- 1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| | - Joan T Smith
- 1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
13
|
Liu C, Hao Y, Huang J, Li H, Yang Z, Zeng Y, Liu J, Li R. Ghrelin accelerates wound healing in combined radiation and wound injury in mice. Exp Dermatol 2018; 26:186-193. [PMID: 27676309 DOI: 10.1111/exd.13224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Abstract
Impaired wound healing caused by radiation happens frequently in clinical practice, and the exact mechanisms remain partly unclear. Various countermeasures have been taken to tackle with this issue. Ghrelin was considered as a potent endogenous growth hormone-releasing peptide, and its role in enhancing wound repair and regeneration was firstly investigated in whole-body irradiated (γ-ray) mice in this study. Collagen deposition and neovascularization were mostly discussed. The results demonstrated that ghrelin administration promoted cutaneous wound healing in irradiated mice, followed with reduced average wound closure time, increased spleen index (SI) and improved haematopoiesis. After isolation and analysis of granulation tissues in combined radiation and wound injury (CRWI) mice treated with and without ghrelin, a phenomenon of increased DNA, hexosamine, nitrate and nitrite synthesis, elevated collagen content and enhanced neovascularization was observed after ghrelin treatment. Western blotting indicated that ghrelin also increased the expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β), both responsible for wound healing. However, previous administration of growth hormone secretagogue receptor 1a (GHS-R1a) blocker blunted these therapeutic effects of ghrelin on CRWI mice. Our results identify ghrelin as a novel peptide that could be used for radiation-induced impaired wound healing.
Collapse
Affiliation(s)
- Cong Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yuhui Hao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jiawei Huang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Hong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhangyou Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yiping Zeng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jing Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| |
Collapse
|
14
|
Kiang JG, Zhai M, Liao PJ, Elliott TB, Gorbunov NV. Ghrelin therapy improves survival after whole-body ionizing irradiation or combined with burn or wound: amelioration of leukocytopenia, thrombocytopenia, splenomegaly, and bone marrow injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:215858. [PMID: 25374650 PMCID: PMC4211157 DOI: 10.1155/2014/215858] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/19/2014] [Indexed: 12/21/2022]
Abstract
Exposure to ionizing radiation alone (RI) or combined with traumatic tissue injury (CI) is a crucial life-threatening factor in nuclear and radiological events. In our laboratory, mice exposed to (60)Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral) followed by 15% total-body-surface-area skin wounds (R-W CI) or burns (R-B CI) experienced an increment of ≥18% higher mortality over a 30-day observation period compared to RI alone. CI was accompanied by severe leukocytopenia, thrombocytopenia, erythropenia, and anemia. At the 30th day after injury, numbers of WBC and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were recovered towards preirradiation levels. Only RI induced splenomegaly. RI and CI resulted in bone-marrow cell depletion. In R-W CI mice, ghrelin (a hunger-stimulating peptide) therapy increased survival, mitigated body-weight loss, accelerated wound healing, and increased hematocrit. In R-B CI mice, ghrelin therapy increased survival and numbers of neutrophils, lymphocytes, and platelets and ameliorated bone-marrow cell depletion. In RI mice, this treatment increased survival, hemoglobin, and hematocrit and inhibited splenomegaly. Our novel results are the first to suggest that ghrelin therapy effectively improved survival by mitigating CI-induced leukocytopenia, thrombocytopenia, and bone-marrow injury or the RI-induced decreased hemoglobin and hematocrit.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Pei-Jyun Liao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Thomas B. Elliott
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Nikolai V. Gorbunov
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| |
Collapse
|
15
|
Gao F, Fish BL, Szabo A, Schock A, Narayanan J, Jacobs ER, Moulder JE, Lazarova Z, Medhora M. Enhanced survival from radiation pneumonitis by combined irradiation to the skin. Int J Radiat Biol 2014; 90:753-61. [PMID: 24827855 DOI: 10.3109/09553002.2014.922722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To develop mitigators for combined irradiation to the lung and skin. METHODS Rats were treated with X-rays as follows: (1) 12.5 or 13 Gy whole thorax irradiation (WTI); (2) 30 Gy soft X-rays to 10% area of the skin only; (3) 12.5 or 13 Gy WTI + 30 Gy skin irradiation after 3 hours; (4) 12.5 Gy WTI + skin irradiation and treated with captopril (160 mg/m(2)/day) started after 7 days. Our end points were survival (primary) based on IACUC euthanization criteria and secondary measurements of breathing intervals and skin injury. Lung collagen at 210 days was measured in rats surviving 13 Gy WTI. RESULTS After 12.5 Gy WTI with or without skin irradiation, one rat (12.5 Gy WTI) was euthanized. Survival was less than 10% in rats receiving 13 Gy WTI, but was enhanced when combined with skin irradiation (p < 0.0001). Collagen content was increased at 210 days after 13 Gy WTI vs. 13 Gy WTI + 30 Gy skin irradiation (p < 0.05). Captopril improved radiation-dermatitis after 12.5 Gy WTI + 30 Gy skin irradiation (p = 0.008). CONCLUSIONS Radiation to the skin given 3 h after WTI mitigated morbidity during pneumonitis in rats. Captopril enhanced the rate of healing of radiation-dermatitis after combined irradiations to the thorax and skin.
Collapse
Affiliation(s)
- Feng Gao
- Department of Radiation Oncology
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Garrett J, Orschell CM, Mendonca MS, Bigsby RM, Dynlacht JR. Subcutaneous wounding postirradiation reduces radiation lethality in mice. Radiat Res 2014; 181:578-83. [PMID: 24811864 DOI: 10.1667/rr13267.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The detonation of an improvised nuclear device during a radiological terrorist attack could result in the exposure of thousands of civilians and first responders to lethal or potentially lethal doses of ionizing radiation (IR). There is a major effort in the United States to develop phamacological mitigators of radiation lethality that would be effective particularly if administered after irradiation. We show here that giving female C57BL/6 mice a subcutaneous surgical incision after whole body exposure to an LD50/30 X-ray dose protects against radiation lethality and increases survival from 50% to over 90% (P = 0.0001). The increase in survival, at least in part, appears to be due to enhanced recovery of hematopoiesis, notably red blood cells, neutrophils and platelets. While a definitive mechanism has yet to be elucidated, we propose that this approach may be used to identify potentially novel mechanisms and pathways that could aid in the development of novel pharmacological radiation countermeasures.
Collapse
|
17
|
Kiang JG, Zhai M, Liao PJ, Bolduc DL, Elliott TB, Gorbunov NV. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:481392. [PMID: 24738019 PMCID: PMC3964894 DOI: 10.1155/2014/481392] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/22/2014] [Indexed: 01/12/2023]
Abstract
Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to (60)Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Pei-Jyun Liao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - David L. Bolduc
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Thomas B. Elliott
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Nikolai V. Gorbunov
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| |
Collapse
|
18
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Ducey EJ, Seed TM. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:41-53. [PMID: 23814114 PMCID: PMC3885121 DOI: 10.1093/jrr/rrt088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 05/28/2023]
Abstract
The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.
Collapse
Affiliation(s)
- Vijay K. Singh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4417 Maple Avenue, Bethesda, MD, USA
| | - Stephen Y. Wise
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Oluseyi O. Fatanmi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Lindsay A. Beattie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Elizabeth J. Ducey
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
19
|
Wang F, Cheng J, Liu D, Sun H, Zhao J, Wang J, Chen J, Su Y, Zou Z. P53-participated cellular and molecular responses to irradiation are cell differentiation-determined in murine intestinal epithelium. Arch Biochem Biophys 2013; 542:21-7. [PMID: 24315958 DOI: 10.1016/j.abb.2013.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/18/2013] [Accepted: 11/30/2013] [Indexed: 12/26/2022]
Abstract
AIM Cells respond differently to DNA damaging agents, which may related to cell context and differentiation status. The aim of present study was to observe the cellular and molecular responses of cells in different differentiation status to ionizing irradiation (IR). METHODS Crypt-villus unit of murine small intestine was adopted as a cell differentiation model. DNA damage responses (DDRs) of crypt and villus were observed 1-24 h after 12 Gy IR using gene expression microarray analysis, immunohistochemical staining, Western blotting and Electrophoretic Mobility Shift Assay. RESULTS Microarray analysis revealed that most differentially expressed genes were related to p53 signaling pathway in crypt 4h after IR and in both crypt and villus 24h after IR. In crypt stem cells/progenitor cells, H2AX was phosphorylated and dephosphorylated quickly, Ki67 attenuated, cell apoptosis enhanced, phosphorylated P53 increased and translocated into nuclear with the ability to bind p53-specific sequence. In upper crypt (transit amplifying cells) and crypt-villus junction, cells kept survive and proliferate as indicated by retained Ki67 expression, suppressed p53 activation, and rare apoptosis. CONCLUSIONS DDRs varied with cell differentiation status and cell function in small intestinal epithelium. P53 signaling pathway could be an important regulatory mechanism of DDRs.
Collapse
Affiliation(s)
- Fengchao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jin Cheng
- Department of Chemical Defense, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Dengquan Liu
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Jiqing Zhao
- Department of Chemical Defense, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China
| | - Junjie Chen
- Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Room Number Y3.6006, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Department of Radiation Medicine, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| | - Zhongmin Zou
- Department of Chemical Defense, School of Preventive Medicine, The Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
20
|
Jung E, Perrone EE, Brahmamdan P, McDonough JS, Leathersich AM, Dominguez JA, Clark AT, Fox AC, Dunne WM, Hotchkiss RS, Coopersmith CM. Inhibition of intestinal epithelial apoptosis improves survival in a murine model of radiation combined injury. PLoS One 2013; 8:e77203. [PMID: 24204769 PMCID: PMC3810465 DOI: 10.1371/journal.pone.0077203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/03/2013] [Indexed: 12/11/2022] Open
Abstract
World conditions place large populations at risk from ionizing radiation (IR) from detonation of dirty bombs or nuclear devices. In a subgroup of patients, ionizing radiation exposure would be followed by a secondary infection. The effects of radiation combined injury are potentially more lethal than either insult in isolation. The purpose of this study was to determine mechanisms of mortality and possible therapeutic targets in radiation combined injury. Mice were exposed to IR with 2.5 Gray (Gy) followed four days later by intratracheal methicillin-resistant Staphylococcus aureus (MRSA). While either IR or MRSA alone yielded 100% survival, animals with radiation combined injury had 53% survival (p = 0.01). Compared to IR or MRSA alone, mice with radiation combined injury had increased gut apoptosis, local and systemic bacterial burden, decreased splenic CD4 T cells, CD8 T cells, B cells, NK cells, and dendritic cells, and increased BAL and systemic IL-6 and G-CSF. In contrast, radiation combined injury did not alter lymphocyte apoptosis, pulmonary injury, or intestinal proliferation compared to IR or MRSA alone. In light of the synergistic increase in gut apoptosis following radiation combined injury, transgenic mice that overexpress Bcl-2 in their intestine and wild type mice were subjected to IR followed by MRSA. Bcl-2 mice had decreased gut apoptosis and improved survival compared to WT mice (92% vs. 42%; p<0.01). These data demonstrate that radiation combined injury results in significantly higher mortality than could be predicted based upon either IR or MRSA infection alone, and that preventing gut apoptosis may be a potential therapeutic target.
Collapse
Affiliation(s)
- Enjae Jung
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Erin E. Perrone
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pavan Brahmamdan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jacquelyn S. McDonough
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ann M. Leathersich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica A. Dominguez
- Department of Basic Sciences, Bastyr University California, San Diego, California, United States of America
| | - Andrew T. Clark
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amy C. Fox
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - W. Michael Dunne
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Richard S. Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Craig M. Coopersmith
- The Emory Center for Critical Care and Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kiang JG, Garrison BR, Burns TM, Zhai M, Dews IC, Ney PH, Cary LH, Fukumoto R, Elliott TB, Ledney GD. Wound trauma alters ionizing radiation dose assessment. Cell Biosci 2012; 2:20. [PMID: 22686656 PMCID: PMC3469379 DOI: 10.1186/2045-3701-2-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/11/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Wounding following whole-body γ-irradiation (radiation combined injury, RCI) increases mortality. Wounding-induced increases in radiation mortality are triggered by sustained activation of inducible nitric oxide synthase pathways, persistent alteration of cytokine homeostasis, and increased susceptibility to bacterial infection. Among these factors, cytokines along with other biomarkers have been adopted for biodosimetric evaluation and assessment of radiation dose and injury. Therefore, wounding could complicate biodosimetric assessments. RESULTS In this report, such confounding effects were addressed. Mice were given 60Co γ-photon radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, body-weight loss, and wound healing. Analyses of DNA damage in bone-marrow cells and peripheral blood mononuclear cells (PBMCs), changes in hematology and cytokine profiles, and fundamental clinical signs were evaluated. Early biomarkers (1 d after RCI) vs. irradiation alone included significant decreases in survivin expression in bone marrow cells, enhanced increases in γ-H2AX formation in Lin+ bone marrow cells, enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood, and concomitant decreases in γ-H2AX formation in PBMCs and decreases in numbers of splenocytes, lymphocytes, and neutrophils. Intermediate biomarkers (7 - 10 d after RCI) included continuously decreased γ-H2AX formation in PBMC and enhanced increases in IL-1β, IL-6, IL-8, and G-CSF concentrations in blood. The clinical signs evaluated after RCI were increased water consumption, decreased body weight, and decreased wound healing rate and survival rate. Late clinical signs (30 d after RCI) included poor survival and wound healing. CONCLUSION Results suggest that confounding factors such as wounding alters ionizing radiation dose assessment and agents inhibiting these responses may prove therapeutic for radiation combined injury and reduce related mortality.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, Uniformed Services University of The Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of The Health Sciences, Bethesda, MD 20814, USA
| | - Bradley R Garrison
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - True M Burns
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - Ian C Dews
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - Patrick H Ney
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - Lynnette H Cary
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - Risaku Fukumoto
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - Thomas B Elliott
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| | - G David Ledney
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889-5603, USA
| |
Collapse
|
22
|
Zong ZW, Li N, Cheng TM, Ran XZ, Shen Y, Zhao YF, Guo QS, Zhang LY. Current state and future perspectives of trauma care system in mainland China. Injury 2011; 42:874-8. [PMID: 21081228 DOI: 10.1016/j.injury.2010.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/09/2010] [Accepted: 09/27/2010] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the current state of trauma care in mainland China, and to propose possible future suggestions for the development of the trauma care system in mainland China. METHOD An extensive Medline/PubMed search on the topic of trauma care or trauma care system was conducted. Publications in Chinese that could best describe the state of trauma care in China were also included. In addition, two meetings were held by Group for Trauma Emergency Care and Multiple Injuries, Trauma Society of Chinese Medical Association to discuss the development and perspectives of trauma care system in mainland China. Important conclusions from the two meetings were included in this publication. RESULTS Trauma has become an increasing public health problem in mainland China in association with the rapid growth of the economy over the past 30 years. Although great progress has been made in regards to the care of the injured, there is still no government agency dedicated to deal with trauma-related issues, or a national trauma care system operating on the Chinese mainland. Various trauma prevention measures have been taken, but with little effect. Funds contributed to trauma-related research has increased in recent years and promoted rapid development in this field, but further improvement in research is needed. However, many groups such as the Trauma Society of the Chinese Medical Association have continued to explore mechanisms for the treatment of trauma patients and have developed various types of regional trauma care systems, resulting in improved trauma care and a better outcome for the injured. CONCLUSIONS Although great progress has been made in trauma care in mainland China, there are many failings. To improve trauma care in China, the establishment of a sophisticated trauma system and various enhancements on trauma prevention are urgently required.
Collapse
Affiliation(s)
- Zhao-wen Zong
- Department of Trauma Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, ChongQing 400042, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yan G, Sun H, Wang F, Wang J, Wang F, Zou Z, Cheng T, Ai G, Su Y. Topical application of hPDGF-A-modified porcine BMSC and keratinocytes loaded on acellular HAM promotes the healing of combined radiation-wound skin injury in minipigs. Int J Radiat Biol 2011; 87:591-600. [DOI: 10.3109/09553002.2011.570854] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Ran XZ, Shi CM, Zheng HE, Su YP, Cheng TM. Experimental research on the management of combined radiation-burn injury in China. Radiat Res 2010; 175:382-9. [PMID: 21388282 DOI: 10.1667/rr2198.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Combined radiation-burn injury can occur in people exposed to nuclear explosions, nuclear accidents or radiological terrorist attacks. Using different combined radiation-burn injury animal models, the pathological mechanisms underlying combined radiation-burn injury and effective medical countermeasures have been explored for several years in China, mainly at our institute. Targeting key features of combined radiation-burn injury, several countermeasures have been developed. Fluid transfusion and the calcium antagonist verapamil can prevent early shock and improve myocardial function after combined radiation-burn injury. Recombinant human interleukin 4 (rhIL-4) is able to effectively reduce bacterial infection and increase intestinal immunological ability. Chitosan-wrapped human defensin 5 (HD5) and glucagon-like peptide 2 (GLP-2) nanoparticles can increase the average survival time of animals with severe combined radiation-burn injury. After treatment by cervical sympathetic ganglia block (SB), hematopoietic function is promoted and the release of inflammatory cytokines is suppressed. The optimal time for escharectomy and allo-skin grafting is 24 h after injury. Transfusion of irradiated (20 Gy) or stored (4°C, 7 days) blood improves the survival of allo-skin grafting and allo-bone marrow cells. In conclusion, as our understanding of the mechanisms of combined radiation-burn injury has progressed, new countermeasures have been developed for its treatment. Because of the complexity of its pathology and the difficulty in clinical management, further efforts are needed to improve the treatment of this kind of injury.
Collapse
Affiliation(s)
- Xin-Ze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, College of Military Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Chongqing 400038, PR China.
| | | | | | | | | |
Collapse
|
25
|
Kiang JG, Garrison BR, Gorbunov NV. Radiation Combined Injury: DNA Damage, Apoptosis, and Autophagy. ACTA ACUST UNITED AC 2010; 2:1-10. [PMID: 34616567 DOI: 10.4247/am.2010.aba004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Radiation combined injury is defined as an ionizing radiation exposure received in combination with other trauma or physiological insults. The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist nuclear incident, and many of these exposure scenarios include the likelihood of additional traumatic injury. Radiation combined injury sensitizes target organs and cells and exacerbates acute radiation syndrome. Organs and cells with high sensitivity to combined injury are the skin, the hematopoietic system, the gastrointestinal tract, spermatogenic cells, and the vascular system. Among its many effects, radiation combined injury results in decreases in lymphocytes, macrophages, neutrophils, platelets, stem cells, and tissue integrity; activation of the iNOS/NF-κB/NF-IL6 and p53/Bax pathways; and increases in DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, and cytochrome c release from mitochondria to cytoplasm. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. There is a pressing need to understand more about the body's response to combined injury in order to be able to develop effective countermeasures, since few currently exist. In this review, we summarize what is known about how combined injury modifies the radiation response, with a special emphasis on DNA damage/repair, signal transduction pathways, apoptosis, and autophagy. We also describe current and prospective countermeasures relevant to the treatment and prevention of combined injury.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute.,Department of Radiation Biology and of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889-5603, U.S.A
| | - Bradley R Garrison
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute
| | - Nikolai V Gorbunov
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute
| |
Collapse
|
26
|
Kiang JG, Jiao W, Cary LH, Mog SR, Elliott TB, Pellmar TC, Ledney GD. Wound trauma increases radiation-induced mortality by activation of iNOS pathway and elevation of cytokine concentrations and bacterial infection. Radiat Res 2010; 173:319-32. [PMID: 20199217 PMCID: PMC10113926 DOI: 10.1667/rr1892.1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Although it is documented that concurrent wounding increases mortality from radiation injury, the molecular mechanism of combined injury is unknown. In this study, mice were exposed to gamma radiation followed by skin wounding. Wound trauma exacerbated radiation-induced mortality, reducing the LD(50/30) from 9.65 Gy to 8.95 Gy. Analyses of histopathology, inducible nitric oxide synthase (iNOS), and serum cytokines were performed on mouse ileum and skin at various times after 9.75 Gy and/or wounding. In the ileum, the villi were significantly shortened 3 days postirradiation but not after wounding; combined injury resulted in decreased villus width and tunica muscularis thickness. The skin of mice subjected to combined injury was less cellular and had a smaller healing bud than the skin of mice subjected to wounding alone. Combined injury significantly delayed wound closure times; it also prolonged the increased levels of iNOS protein in the skin and ileum. iNOS up-regulation was correlated with increases in transcription factors, including NF-kappaB and NF-IL6. The increase in NF-IL6 may be due to increases in cytokines, including IL-1beta, -6, -8, -9, -10 and -13, G-CSF, eotaxin, INF-gamma, MCP-1, MIP-1alpha and MIP-1beta. Combined injury resulted in early detection of bacteria in the blood of the heart and liver, whereas radiation alone resulted in later detection of bacteria; only a transient bacteremia occurred after wounding alone. Results suggest that enhancement of iNOS, cytokines and bacterial infection triggered by combined injury may contribute to mortality. Agents that inhibit these responses may prove to be therapeutic for combined injury and may reduce related mortality.
Collapse
Affiliation(s)
- Juliann G Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889-5603, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Grace MB, Moyer BR, Prasher J, Cliffer KD, Ramakrishnan N, Kaminski J, Coleman CN, Manning RG, Maidment BW, Hatchett R. Rapid radiation dose assessment for radiological public health emergencies: roles of NIAID and BARDA. HEALTH PHYSICS 2010; 98:172-178. [PMID: 20065680 DOI: 10.1097/01.hp.0000348001.60905.c0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A large-scale radiological incident would result in an immediate critical need to assess the radiation doses received by thousands of individuals to allow for prompt triage and appropriate medical treatment. Measuring absorbed doses of ionizing radiation will require a system architecture or a system of platforms that contains diverse, integrated diagnostic and dosimetric tools that are accurate and precise. For large-scale incidents, rapidity and ease of screening are essential. The National Institute of Allergy and Infectious Diseases of the National Institutes of Health is the focal point within the Department of Health and Human Services (HHS) for basic research and development of medical countermeasures for radiation injuries. The Biomedical Advanced Research and Development Authority within the HHS Office of the Assistant Secretary for Preparedness and Response coordinates and administers programs for the advanced development and acquisition of emergency medical countermeasures for the Strategic National Stockpile. Using a combination of funding mechanisms, including funds authorized by the Project BioShield Act of 2004 and those authorized by the Pandemic and All-Hazards Preparedness Act of 2006, HHS is enhancing the nation's preparedness by supporting the radiation dose assessment capabilities that will ensure effective and appropriate use of medical countermeasures in the aftermath of a radiological or nuclear incident.
Collapse
Affiliation(s)
- Marcy B Grace
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC 20201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med 2010; 16:137-43. [PMID: 20101281 DOI: 10.2119/molmed.2009.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/15/2010] [Indexed: 02/02/2023] Open
Abstract
The threat of nuclear terrorism has led to growing worldwide concern about exposure to radiation. Acute radiation syndrome, or radiation sickness, develops after whole-body or a partial-body irradiation with a high dose of radiation. In the terrorist radiation exposure scenario, however, radiation victims likely suffer from additional injuries such as trauma, burns, wounds or sepsis. Thus, high-dose radiation injuries and appropriate therapeutic interventions must be studied. Despite advances in our understanding of the pathophysiology of radiation injury, very little information is available on the therapeutic approaches to radiation combined injury. In this review, we describe briefly the pathological consequences of ionizing radiation and provide an overview of the animal models of radiation combined injury. We highlight the combined radiation and sepsis model we recently established and suggest the use of ghrelin, a novel gastrointestinal hormone, as a potential therapy for radiation combined injury.
Collapse
Affiliation(s)
- Asha Jacob
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America and Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Great Neck, New York, United States of America
| | | | | | | |
Collapse
|
29
|
Jiao W, Kiang JG, Cary L, Elliott TB, Pellmar TC, Ledney GD. COX-2 inhibitors are contraindicated for treatment of combined injury. Radiat Res 2009; 172:686-97. [PMID: 19929415 DOI: 10.1667/rr1581.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Casualties of radiation dispersal devices, nuclear detonation or major ionizing radiation accidents, in addition to radiation exposure, may sustain physical and/or thermal trauma. Radiation exposure plus additional tissue trauma is known as combined injury. There are no definitive therapeutic agents. Cyclooxygenase-2 (COX-2), an inducible enzyme expressed in pathological disorders and radiation injury, plays an important role in inflammation and the production of cytokines and prostaglandin E(2) (PGE(2)) and could therefore affect the outcome for victims of combined injury. The COX-2 inhibitors celecoxib and meloxicam were evaluated for their therapeutic value against combined injury in mice. In survival studies, the COX-2 inhibitors had no beneficial effect on 30-day survival, wound healing or body weight gain after radiation injury alone or after combined injury. Meloxicam accelerated death in both wounded and combined injury mice. These drugs also induced severe hepatic toxicity, exaggerated inflammatory processes, and did not enhance hematopoietic cell regeneration. This study points to potential contraindications for use of COX-2 inhibitors in patients undergoing therapy for radiation injury and combined injury.
Collapse
Affiliation(s)
- W Jiao
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Avenue, Bethesda, Maryland 20889-5603, USA
| | | | | | | | | | | |
Collapse
|
30
|
Chen XH, Ran XZ, Sun RS, Shi CM, Su Y, Guo CH, Cheng TM. Protective effect of an extract from Periplaneta americana on hematopoiesis in irradiated rats. Int J Radiat Biol 2009; 85:607-13. [DOI: 10.1080/09553000902985110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|