1
|
Grahm Valadie O, Brown SL, Farmer K, Nagaraja TN, Cabral G, Shadaia S, Divine GW, Knight RA, Lee IY, Dolan J, Rusu S, Joiner MC, Ewing JR. Characterization of the Response of 9L and U-251N Orthotopic Brain Tumors to 3D Conformal Radiation Therapy. Radiat Res 2023; 199:217-228. [PMID: 36656561 PMCID: PMC10174721 DOI: 10.1667/rade-22-00048.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023]
Abstract
In a study employing MRI-guided stereotactic radiotherapy (SRS) in two orthotopic rodent brain tumor models, the radiation dose yielding 50% survival (the TCD50) was sought. Syngeneic 9L cells, or human U-251N cells, were implanted stereotactically in 136 Fischer 344 rats or 98 RNU athymic rats, respectively. At approximately 7 days after implantation for 9L, and 18 days for U-251N, rats were imaged with contrast-enhanced MRI (CE-MRI) and then irradiated using a Small Animal Radiation Research Platform (SARRP) operating at 220 kV and 13 mA with an effective energy of ∼70 keV and dose rate of ∼2.5 Gy per min. Radiation doses were delivered as single fractions. Cone-beam CT images were acquired before irradiation, and tumor volumes were defined using co-registered CE-MRI images. Treatment planning using MuriPlan software defined four non-coplanar arcs with an identical isocenter, subsequently accomplished by the SARRP. Thus, the treatment workflow emulated that of current clinical practice. The study endpoint was animal survival to 200 days. The TCD50 inferred from Kaplan-Meier survival estimation was approximately 25 Gy for 9L tumors and below 20 Gy, but within the 95% confidence interval in U-251N tumors. Cox proportional-hazards modeling did not suggest an effect of sex, with the caveat of wide confidence intervals. Having identified the radiation dose at which approximately half of a group of animals was cured, the biological parameters that accompany radiation response can be examined.
Collapse
Affiliation(s)
- O. Grahm Valadie
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
| | - Katelynn Farmer
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Sheldon Shadaia
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - George W. Divine
- Department of Public Health Sciences, Henry Ford Hospital, Detroit Michigan
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
| | - Jennifer Dolan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Sam Rusu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - Michael C. Joiner
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, Michigan
- Department of Neurosurgery, Henry Ford Hospital, Detroit Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| |
Collapse
|
2
|
Kim JH, Brown SL, Gordon MN. Radiation-induced senescence: therapeutic opportunities. Radiat Oncol 2023; 18:10. [PMID: 36639774 PMCID: PMC9837958 DOI: 10.1186/s13014-022-02184-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
The limitation of cancer radiotherapy does not derive from an inability to ablate tumor, but rather to do so without excessively damaging critical tissues and organs and adversely affecting patient's quality of life. Although cellular senescence is a normal consequence of aging, there is increasing evidence showing that the radiation-induced senescence in both tumor and adjacent normal tissues contributes to tumor recurrence, metastasis, and resistance to therapy, while chronic senescent cells in the normal tissue and organ are a source of many late damaging effects. In this review, we discuss how to identify cellular senescence using various bio-markers and the role of the so-called senescence-associated secretory phenotype characteristics on the pathogenesis of the radiation-induced late effects. We also discuss therapeutic options to eliminate cellular senescence using either senolytics and/or senostatics. Finally, a discussion of cellular reprogramming is presented, another promising avenue to improve the therapeutic gain of radiotherapy.
Collapse
Affiliation(s)
- Jae Ho Kim
- grid.239864.20000 0000 8523 7701Radiobiology Research Laboratories, Department of Radiation Oncology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202 USA
| | - Stephen L. Brown
- grid.239864.20000 0000 8523 7701Radiobiology Research Laboratories, Department of Radiation Oncology, Henry Ford Health, 2799 West Grand Boulevard, Detroit, MI 48202 USA
| | - Marcia N. Gordon
- grid.17088.360000 0001 2150 1785Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI 49503 USA
| |
Collapse
|
3
|
Zhu X, Liu W, Cao Y, Ju X, Zhao X, Jiang L, Ye Y, Zhang H. Effect of stereotactic body radiotherapy dose escalation plus pembrolizumab and trametinib versus stereotactic body radiotherapy dose escalation plus gemcitabine for locally recurrent pancreatic cancer after surgical resection on survival outcomes: A secondary analysis of an open-label, randomised, controlled, phase 2 trial. EClinicalMedicine 2023; 55:101764. [PMID: 36471691 PMCID: PMC9718952 DOI: 10.1016/j.eclinm.2022.101764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND There are a lack of studies about whether radiation dose escalation synergizes with immunotherapy and targeted therapy in pancreatic cancer. In this study, we performed a secondary analysis to investigate whether a high radiation dose rather than a low dose plus pembrolizumab and trametinib provided improved survival compared with gemcitabine in post-operative locally recurrent pancreatic cancer. METHODS In this open-label, randomised, controlled, phase 2 trial, eligible patients with pancreatic ductal adenocarcinoma characterized by mutant KRAS and positive immunohistochemical staining of PD-L1 and documented post-operative local recurrence were randomly assigned using an interactive voice or web response system, without stratification, to receive stereotactic body radiation therapy (SBRT) with doses ranging from 35 to 40Gy in five fractions, pembrolizumab 200 mg every three weeks and oral trametinib 2 mg once daily (SBRT + K + M) or SBRT and gemcitabine (1000 mg/m2) on day 1 and 8 of each 21-day cycle (SBRT + G) until disease progression in our hospital in China. Those had radiotherapy, immunotherapy or targeted therapy were excluded. Patients and investigators were not masked to the assignment. In each arm, patients were stratified based on biologically effective dose (BED10; α/β = 10) of 60-65Gy and BED10 ≥65Gy. The primary endpoint was overall survival (OS) and the secondary endpoint was progression-free survival (PFS). All patients received their assigned treatment and were included in the efficacy and safety analyses. This study is registered with ClinicalTrials.gov, NCT02704156. FINDINGS Between Oct 10, 2016, and Oct 28, 2017, 147 of 170 randomly assigned participants were eligible for inclusion in this analysis. In BED10 of 60-65Gy group, 34 and 29 patients had SBRT + G and SBRT + K + M, respectively. While there were 42 and 42 patients with SBRT + G and SBRT + K + M in BED10 ≥65Gy group. Patients in the SBRT + K + M group had longer OS compared with the SBRT + G group, but this did not reach statistical significance (median: 15.1 vs. 12.4 months, HR 0.67 [95%CI 0.43-1.04]; p = 0.071). For BED10 of 60-65Gy, OS was similar between patients in the SBRT + K + M and SBRT + G groups (median, 13.6 vs. 12.4 months; HR 0.69 [95% CI 0.41-1.16]; p = 0.16). For BED10 of ≥65Gy, PFS was prolonged with SBRT + K + M versus SBRT + G (median: 8.6 vs. 5.0 months, HR 0.48 [95% CI 0.31-0.77]; p = 0.0021). For BED10 of 60-65Gy, there was no significant difference in PFS between the two groups (PFS: median, 7.9 vs. 4.3 months; HR 0.69 [95% CI 0.42-1.15]; p = 0.16). In BED10 of 60-65Gy group, 7 (20.6%) and 8 patients (27.6%) with SBRT + G and SBRT + K + M had grade 3 or 4 adverse events (p = 0.52). In BED10 ≥65Gy group, 8 (19.0%) and 12 patients (28.6%) with SBRT + G and SBRT + K + M had grade 3 or 4 adverse events (p = 0.31). No treatment-related death occurred. INTERPRETATION Dose escalation of SBRT may improve PFS with pembrolizumab and trametnib versus gemcitabine for patients with post-operative locally recurrent pancreatic cancer. However, benefits of PFS did not translate into longer OS. This may be ascribed to small sample size and post-hoc analysis that was not powered to determine the significance. Therefore, synergy of high dose of SBRT with immunotherapy and targeted therapy required further investigations in phase 3 trials. FUNDING Shanghai Shenkang Centre and Changhai Hospital.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
- Corresponding author. 168 Changhai Road, Shanghai, 200433, China.
| | - Wenyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yangsen Cao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xiaoping Ju
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Xianzhi Zhao
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Lingong Jiang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Yusheng Ye
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| | - Huojun Zhang
- Department of Radiation Oncology, Changhai Hospital affiliated to Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Kozin SV. Vascular damage in tumors: a key player in stereotactic radiation therapy? Trends Cancer 2022; 8:806-819. [PMID: 35835699 DOI: 10.1016/j.trecan.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
The use of stereotactic radiation therapy (SRT) for cancer treatment has grown in recent years, showing excellent results for some tumors. The greatly increased doses per fraction in SRT compared to conventional radiotherapy suggest a 'new biology' that determines treatment outcome. Proposed mechanisms include significant damage to tumor blood vessels and enhanced antitumor immune responses, which are also vasculature-dependent. These ideas are mostly based on the results of radiation studies in animal models because direct observations in humans are limited. However, even preclinical findings are somewhat incomplete and result in ambiguous conclusions. Current evidence of vasculature-related mechanisms of SRT is reviewed. Understanding them could result in better optimization of SRT alone or in combination with immune or other cancer therapies.
Collapse
Affiliation(s)
- Sergey V Kozin
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Orlova A, Pavlova K, Kurnikov A, Maslennikova A, Myagcheva M, Zakharov E, Skamnitskiy D, Perekatova V, Khilov A, Kovalchuk A, Moiseev A, Turchin I, Razansky D, Subochev P. Noninvasive optoacoustic microangiography reveals dose and size dependency of radiation-induced deep tumor vasculature remodeling. Neoplasia 2022; 26:100778. [PMID: 35220045 PMCID: PMC8889238 DOI: 10.1016/j.neo.2022.100778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
Tumor microvascular responses may provide a sensitive readout indicative of radiation therapy efficacy, its time course and dose dependencies. However, direct high-resolution observation and longitudinal monitoring of large-scale microvascular remodeling in deep tissues remained challenging with the conventional microscopy approaches. We report on a non-invasive longitudinal study of morphological and functional neovascular responses by means of scanning optoacoustic (ОА) microangiography. In vivo imaging of CT26 tumor response to a single irradiation at varying dose (6, 12, and 18 Gy) has been performed over ten days following treatment. Tumor oxygenation levels were further estimated using diffuse optical spectroscopy (DOS) with a contact fiber probe. OA revealed the formation of extended vascular structures on the whole tumor scale during its proliferation, whereas only short fragmented vascular regions were identified following irradiation. On the first day post treatment, a decrease in the density of small (capillary-sized) and medium-sized vessels was revealed, accompanied by an increase in their fragmentation. Larger vessels exhibited an increase in their density accompanied by a decline in the number of vascular segments. Short-lasting response has been observed after 6 and 12 Gy irradiations, whereas 18 Gy treatment resulted in prolonged responses, up to the tenth day after irradiation. DOS measurements further revealed a delayed increase of tumor oxygenation levels for 18 Gy irradiations, commencing on the sixth day post treatment. The ameliorated oxygenation is attributed to diminished oxygen consumption by inhibited tumor cells but not to the elevation of oxygen supply. This work is the first to demonstrate the differential (size-dependent) nature of vascular responses to radiation treatments at varying doses in vivo. The OA approach thus facilitates the study of radiation-induced vascular changes in an unperturbed in vivo environment while enabling deep tissue high-resolution observations at the whole tumor scale.
Collapse
|
6
|
The Extension of the LeiCNS-PK3.0 Model in Combination with the "Handshake" Approach to Understand Brain Tumor Pathophysiology. Pharm Res 2022; 39:1343-1361. [PMID: 35258766 PMCID: PMC9246813 DOI: 10.1007/s11095-021-03154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
Micrometastatic brain tumor cells, which cause recurrence of malignant brain tumors, are often protected by the intact blood–brain barrier (BBB). Therefore, it is essential to deliver effective drugs across not only the disrupted blood-tumor barrier (BTB) but also the intact BBB to effectively treat malignant brain tumors. Our aim is to predict pharmacokinetic (PK) profiles in brain tumor regions with the disrupted BTB and the intact BBB to support the successful drug development for malignant brain tumors. LeiCNS-PK3.0, a comprehensive central nervous system (CNS) physiologically based pharmacokinetic (PBPK) model, was extended to incorporate brain tumor compartments. Most pathophysiological parameters of brain tumors were obtained from literature and two missing parameters of the BTB, paracellular pore size and expression level of active transporters, were estimated by fitting existing data, like a “handshake”. Simultaneous predictions were made for PK profiles in extracellular fluids (ECF) of brain tumors and normal-appearing brain and validated on existing data for six small molecule anticancer drugs. The LeiCNS-tumor model predicted ECF PK profiles in brain tumor as well as normal-appearing brain in rat brain tumor models and high-grade glioma patients within twofold error for most data points, in combination with estimated paracellular pore size of the BTB and active efflux clearance at the BTB. Our model demonstrated a potential to predict PK profiles of small molecule drugs in brain tumors, for which quantitative information on pathophysiological alterations is available, and contribute to the efficient and successful drug development for malignant brain tumors.
Collapse
|
7
|
Lefebvre TL, Brown E, Hacker L, Else T, Oraiopoulou ME, Tomaszewski MR, Jena R, Bohndiek SE. The Potential of Photoacoustic Imaging in Radiation Oncology. Front Oncol 2022; 12:803777. [PMID: 35311156 PMCID: PMC8928467 DOI: 10.3389/fonc.2022.803777] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/07/2022] [Indexed: 12/16/2022] Open
Abstract
Radiotherapy is recognized globally as a mainstay of treatment in most solid tumors and is essential in both curative and palliative settings. Ionizing radiation is frequently combined with surgery, either preoperatively or postoperatively, and with systemic chemotherapy. Recent advances in imaging have enabled precise targeting of solid lesions yet substantial intratumoral heterogeneity means that treatment planning and monitoring remains a clinical challenge as therapy response can take weeks to manifest on conventional imaging and early indications of progression can be misleading. Photoacoustic imaging (PAI) is an emerging modality for molecular imaging of cancer, enabling non-invasive assessment of endogenous tissue chromophores with optical contrast at unprecedented spatio-temporal resolution. Preclinical studies in mouse models have shown that PAI could be used to assess response to radiotherapy and chemoradiotherapy based on changes in the tumor vascular architecture and blood oxygen saturation, which are closely linked to tumor hypoxia. Given the strong relationship between hypoxia and radio-resistance, PAI assessment of the tumor microenvironment has the potential to be applied longitudinally during radiotherapy to detect resistance at much earlier time-points than currently achieved by size measurements and tailor treatments based on tumor oxygen availability and vascular heterogeneity. Here, we review the current state-of-the-art in PAI in the context of radiotherapy research. Based on these studies, we identify promising applications of PAI in radiation oncology and discuss the future potential and outstanding challenges in the development of translational PAI biomarkers of early response to radiotherapy.
Collapse
Affiliation(s)
- Thierry L. Lefebvre
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Emma Brown
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lina Hacker
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Else
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Mariam-Eleni Oraiopoulou
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michal R. Tomaszewski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Rajesh Jena
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Bohndiek
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Adaptation of laser interstitial thermal therapy for tumor ablation under MRI monitoring in a rat orthotopic model of glioblastoma. Acta Neurochir (Wien) 2021; 163:3455-3463. [PMID: 34554269 DOI: 10.1007/s00701-021-05002-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) under magnetic resonance imaging (MRI) monitoring is being increasingly used in cytoreductive surgery of recurrent brain tumors and tumors located in eloquent brain areas. The objective of this study was to adapt this technique to an animal glioma model. METHODS A rat model of U251 glioblastoma (GBM) was employed. Tumor location and extent were determined by MRI and dynamic contrast-enhanced (DCE) MRI. A day after assessing tumor appearance, tumors were ablated during diffusion-weighted imaging (DWI)-MRI using a Visualase LITT system (n = 5). Brain images were obtained immediately after ablation and again at 24 h post-ablation to confirm the efficacy of tumor cytoablation. Untreated tumors served as controls (n = 3). Rats were injected with fluorescent isothiocyanate (FITC) dextran and Evans blue that circulated for 10 min after post-LITT MRI. The brains were then removed for fluorescence microscopy and histopathology evaluations using hematoxylin and eosin (H&E) and major histocompatibility complex (MHC) staining. RESULTS All rats showed a space-occupying tumor with T2 and T1 contrast-enhancement at pre-LITT imaging. The rats that underwent the LITT procedure showed a well-demarcated ablation zone with near-complete ablation of tumor tissue and with peri-ablation contrast enhancement at 24 h post-ablation. Tumor cytoreduction by ablation as seen on MRI was confirmed by H&E and MHC staining. CONCLUSIONS Data showed that tumor cytoablation using MRI-monitored LITT was possible in preclinical glioma models. Real-time MRI monitoring facilitated visualizing and controlling the area of ablation as it is otherwise performed in clinical applications.
Collapse
|
9
|
Yamazaki T, Young KH. Effects of radiation on tumor vasculature. Mol Carcinog 2021; 61:165-172. [PMID: 34644811 DOI: 10.1002/mc.23360] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Radiation has been utilized as a direct cytotoxic tumorcidal modality, however, the effect of radiation on tumor vasculature influences response to anticancer therapies. Although numerous reports have demonstrated vascular changes in irradiated tumors, the findings and implications are extensive and at times contradictory depending on the radiation dose, timing, and models used. In this review, we focus on the radiation-mediated effects on tumor vasculature with respect to doses used, timing postradiation, vasculogenesis, adhesion molecule expression, permeability, and pericyte coverage, including the latest findings.
Collapse
Affiliation(s)
- Tomoko Yamazaki
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA.,Radiation Oncology Division, The Oregon Clinic, Portland, Oregon, USA
| |
Collapse
|
10
|
Longitudinal Monitoring of Simulated Interstitial Fluid Pressure for Pancreatic Ductal Adenocarcinoma Patients Treated with Stereotactic Body Radiotherapy. Cancers (Basel) 2021; 13:cancers13174319. [PMID: 34503129 PMCID: PMC8430878 DOI: 10.3390/cancers13174319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/03/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary High vessel permeability, poor perfusion, low lymphatic drainage, and dense abundant stroma elevate interstitial fluid pressures (IFP) in pancreatic ductal adenocarcinoma (PDAC). The present study aims to monitor longitudinal changes in simulated tumor IFP and velocity (IFV) values using a dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) approach in PDAC. Nine PDAC patients underwent DCE-MRI acquisition on a 3-Tesla MRI scanner at pre-treatment (TX (0)), immediately after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation using the Starling Principle of fluid exchange and Darcy velocity–pressure relationship was solved in COMSOL Multiphysics software to generate IFP and IFV parametric maps using relevant tumor tissue physiological parameters. Initial results suggest that after validation, IFP and IFV can be imaging biomarkers of early response to therapy that may guide precision medicine in PDAC. Abstract The present study aims to monitor longitudinal changes in simulated tumor interstitial fluid pressure (IFP) and velocity (IFV) values using dynamic contrast-enhanced (DCE)-MRI-based computational fluid modeling (CFM) in pancreatic ductal adenocarcinoma (PDAC) patients. Nine PDAC patients underwent MRI, including DCE-MRI, on a 3-Tesla MRI scanner at pre-treatment (TX (0)), after the first fraction of stereotactic body radiotherapy (SBRT, (D1-TX)), and six weeks post-TX (D2-TX). The partial differential equation of IFP formulated from the continuity equation, incorporating the Starling Principle of fluid exchange, Darcy velocity, and volume transfer constant (Ktrans), was solved in COMSOL Multiphysics software to generate IFP and IFV maps. Tumor volume (Vt), Ktrans, IFP, and IFV values were compared (Wilcoxon and Spearman) between the time- points. D2-TX Ktrans values were significantly different from pre-TX and D1-TX (p < 0.05). The D1-TX and pre-TX mean IFV values exhibited a borderline significant difference (p = 0.08). The IFP values varying <3.0% between the three time-points were not significantly different (p > 0.05). Vt and IFP values were strongly positively correlated at pre-TX (ρ = 0.90, p = 0.005), while IFV exhibited a strong negative correlation at D1-TX (ρ = −0.74, p = 0.045). Vt, Ktrans, IFP, and IFV hold promise as imaging biomarkers of early response to therapy in PDAC.
Collapse
|
11
|
Rey JA, Ewing JR, Sarntinoranont M. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity. Biomech Model Mechanobiol 2021; 20:1981-2000. [PMID: 34363553 DOI: 10.1007/s10237-021-01488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
A biphasic computational model of a growing, vascularized glioma within brain tissue was developed to account for unique features of gliomas, including soft surrounding brain tissue, their low stiffness relative to brain tissue, and a lack of draining lymphatics. This model is the first to couple nonlinear tissue deformation with porosity and tissue hydraulic conductivity to study the mechanical interaction of leaky vasculature and solid growth in an embedded glioma. The present model showed that leaky vasculature and elevated interstitial fluid pressure produce tensile stress within the tumor in opposition to the compressive stress produced by tumor growth. This tensile effect was more pronounced in softer tissue and resulted in a compressive stress concentration at the tumor rim that increased when tumor was softer than host. Aside from generating solid stress, fluid pressure-driven tissue deformation decreased the effective stiffness of the tumor while growth increased it, potentially leading to elevated stiffness in the tumor rim. A novel prediction of reduced porosity at the tumor rim was corroborated by direct comparison with estimates from our in vivo imaging studies. Antiangiogenic and radiation therapy were simulated by varying vascular leakiness and tissue hydraulic conductivity. These led to greater solid compression and interstitial pressure in the tumor, respectively, the former of which may promote tumor infiltration of the host. Our findings suggest that vascular leakiness has an important influence on in vivo solid stress, stiffness, and porosity fields in gliomas given their unique mechanical microenvironment.
Collapse
Affiliation(s)
- Julian A Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, PO BOX 116250, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Nagaraja TN, Elmghirbi R, Brown SL, Rey JA, Schultz L, Mukherjee A, Cabral G, Panda S, Lee IY, Sarntinoranont M, Keenan KA, Knight RA, Ewing JR. Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR IN BIOMEDICINE 2021; 34:e4516. [PMID: 33817893 PMCID: PMC8978145 DOI: 10.1002/nbm.4516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 05/05/2023]
Abstract
The effect of a human vascular endothelial growth factor antibody on the vasculature of human tumor grown in rat brain was studied. Using dynamic contrast-enhanced magnetic resonance imaging, the effects of intravenous bevacizumab (Avastin; 10 mg/kg) were examined before and at postadministration times of 1, 2, 4, 8, 12 and 24 h (N = 26; 4-5 per time point) in a rat model of orthotopic, U251 glioblastoma (GBM). The commonly estimated vascular parameters for an MR contrast agent were: (i) plasma distribution volume (vp ), (ii) forward volumetric transfer constant (Ktrans ) and (iii) reverse transfer constant (kep ). In addition, extracellular distribution volume (VD ) was estimated in the tumor (VD-tumor ), tumor edge (VD-edge ) and the mostly normal tumor periphery (VD-peri ), along with tumor blood flow (TBF), peri-tumoral hydraulic conductivity (K) and interstitial flow (Flux) and tumor interstitial fluid pressure (TIFP). Studied as % changes from baseline, the 2-h post-treatment time point began showing significant decreases in vp , VD-tumor, VD-edge and VD-peri , as well as K, with these changes persisting at 4 and 8 h in vp , K, VD-tumor, -edge and -peri (t-tests; p < 0.05-0.01). Decreases in Ktrans were observed at the 2- and 4-h time points (p < 0.05), while interstitial volume fraction (ve ; = Ktrans /kep ) showed a significant decrease only at the 2-h time point (p < 0.05). Sustained decreases in Flux were observed from 2 to 24 h (p < 0.01) while TBF and TIFP showed delayed responses, increases in the former at 12 and 24 h and a decrease in the latter only at 12 h. These imaging biomarkers of tumor vascular kinetics describe the short-term temporal changes in physical spaces and fluid flows in a model of GBM after Avastin administration.
Collapse
Affiliation(s)
| | - Rasha Elmghirbi
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Julian A. Rey
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Ian Y. Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Robert A. Knight
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - James R. Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
13
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
14
|
Nagaraja TN, deCarvalho AC, Brown SL, Griffith B, Farmer K, Irtenkauf S, Hasselbach L, Mukherjee A, Bartlett S, Valadie OG, Cabral G, Knight RA, Lee IY, Divine GW, Ewing JR. The impact of initial tumor microenvironment on imaging phenotype. Cancer Treat Res Commun 2021; 27:100315. [PMID: 33571801 PMCID: PMC8127413 DOI: 10.1016/j.ctarc.2021.100315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 11/13/2022]
Abstract
Models of human cancer, to be useful, must replicate human disease with high fidelity. Our focus in this study is rat xenograft brain tumors as a model of human embedded cerebral tumors. A distinguishing signature of such tumors in humans, that of contrast-enhancement on imaging, is often not present when the human cells grow in rodents, despite the xenografts having nearly identical DNA signatures to the original tumor specimen. Although contrast enhancement was uniformly evident in all the human tumors from which the xenografts’ cells were derived, we show that long-term contrast enhancement in the model tumors may be determined conditionally by the tumor microenvironment at the time of cell implantation. We demonstrate this phenomenon in one of two patient-derived orthotopic xenograft (PDOX) models using cancer stem-like cell (CSC)-enriched neurospheres from human tumor resection specimens, transplanted to groups of immune-compromised rats in the presence or absence of a collagen/fibrin scaffolding matrix, Matrigel. The rats were imaged by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and their brains were examined by histopathology. Targeted proteomics of the PDOX tumor specimens grown from CSC implanted with and without Matrigel showed that while the levels of the majority of proteins and post-translational modifications were comparable between contrast-enhancing and non-enhancing tumors, phosphorylation of Fox038 showed a differential expression. The results suggest key proteins determine contrast enhancement and suggest a path toward the development of better animal models of human glioma. Future work is needed to elucidate fully the molecular determinants of contrast-enhancement.
Collapse
Affiliation(s)
| | | | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States; Department of Public Health, Henry Ford Hospital, Detroit, MI, United States
| | - Brent Griffith
- Department of Radiology, Henry Ford Hospital, Detroit, MI, United States
| | - Katelynn Farmer
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States
| | - Susan Irtenkauf
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | | | - Abir Mukherjee
- Department of Pathology, Henry Ford Hospital, Detroit, MI, United States
| | - Seamus Bartlett
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; School of Medicine, Wayne State University, Detroit, MI, United States
| | - O Grahm Valadie
- Department of Radiation Oncology, Wayne State University, Detroit, MI, United States
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States
| | - Robert A Knight
- Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | - George W Divine
- Department of Public Health, Henry Ford Hospital, Detroit, MI, United States
| | - James R Ewing
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; Department of Physics, Oakland University, Rochester, MI, United States; Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
15
|
Bendinger AL, Peschke P, Peter J, Debus J, Karger CP, Glowa C. High Doses of Photons and Carbon Ions Comparably Increase Vascular Permeability in R3327-HI Prostate Tumors: A Dynamic Contrast-Enhanced MRI Study. Radiat Res 2020; 194:465-475. [PMID: 33045073 DOI: 10.1667/rade-20-00112.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/04/2020] [Indexed: 11/03/2022]
Abstract
Carbon- (12C-) ion radiotherapy exhibits enhanced biological effectiveness compared to photon radiotherapy, however, the contribution of its interaction with the vasculature remains debatable. The effect of high-dose 12C-ion and photon irradiation on vascular permeability in moderately differentiated rat prostate tumors was compared using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-HI rat prostate tumors were irradiated with a single dose of either 18 or 37 Gy 12C ions, or 37 or 75 Gy 6-MV photons (sub-curative and curative dose levels, respectively). DCE-MRI was performed one day prior to and 3, 7, 14 and 21 days postirradiation. Voxel-based tumor concentration-time curves were clustered based on their curve shape and treatment response was assessed as the longitudinal changes in the relative abundance per cluster. Radiation-induced vascular damage and increased permeability occurred at day 7 postirradiation for all treatment groups except for the 75 Gy photon-irradiated group, where the onset of vascular damage was delayed until day 14. No differences between irradiation modalities were found. Therefore, early vascular damage cannot explain the higher effectiveness of 12C ions relative to photons in terms of local tumor control for this moderately differentiated prostate tumor and the applied single high doses.
Collapse
Affiliation(s)
- Alina L Bendinger
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Peter Peschke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Peter
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit, Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian P Karger
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christin Glowa
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Virani NA, Kelada OJ, Kunjachan S, Detappe A, Kwon J, Hayashi J, Vazquez-Pagan A, Biancur DE, Ireland T, Kumar R, Sridhar S, Makrigiorgos GM, Berbeco RI. Noninvasive imaging of tumor hypoxia after nanoparticle-mediated tumor vascular disruption. PLoS One 2020; 15:e0236245. [PMID: 32706818 PMCID: PMC7380644 DOI: 10.1371/journal.pone.0236245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/01/2020] [Indexed: 01/09/2023] Open
Abstract
We have previously demonstrated that endothelial targeting of gold nanoparticles followed by external beam irradiation can cause specific tumor vascular disruption in mouse models of cancer. The induced vascular damage may lead to changes in tumor physiology, including tumor hypoxia, thereby compromising future therapeutic interventions. In this study, we investigate the dynamic changes in tumor hypoxia mediated by targeted gold nanoparticles and clinical radiation therapy (RT). By using noninvasive whole-body fluorescence imaging, tumor hypoxia was measured at baseline, on day 2 and day 13, post-tumor vascular disruption. A 2.5-fold increase (P<0.05) in tumor hypoxia was measured two days after combined therapy, resolving by day 13. In addition, the combination of vascular-targeted gold nanoparticles and radiation therapy resulted in a significant (P<0.05) suppression of tumor growth. This is the first study to demonstrate the tumor hypoxic physiological response and recovery after delivery of vascular-targeted gold nanoparticles followed by clinical radiation therapy in a human non-small cell lung cancer athymic Foxn1nu mouse model.
Collapse
Affiliation(s)
- Needa A. Virani
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Olivia J. Kelada
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexandre Detappe
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts, United States of America
| | - Jihun Kwon
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiation Oncology, Hokkaido University, Sapporo, Japan
| | - Jennifer Hayashi
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Ana Vazquez-Pagan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Douglas E. Biancur
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston Massachusetts, United States of America
| | - Thomas Ireland
- LA-ICP-MS and ICP-ES Laboratories, Boston University, Boston, Massachusetts, United States of America
| | - Rajiv Kumar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - Srinivas Sridhar
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- Nanomedicine Innovation Center and Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ross I. Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
17
|
Qian J, Yu X, Li B, Fei Z, Huang X, Luo P, Zhang L, Zhang Z, Lou J, Wang H. In vivo Monitoring of Oxygen Levels in Human Brain Tumor Between Fractionated Radiotherapy Using Oxygen-enhanced MR Imaging. Curr Med Imaging 2020; 16:427-432. [PMID: 32410542 DOI: 10.2174/1573405614666180925144814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/19/2018] [Accepted: 09/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND It was known that the response of tumor cells to radiation is closely related to tissue oxygen level and fractionated radiotherapy allows reoxygenation of hypoxic tumor cells. Non-invasive mapping of tissue oxygen level may hold great importance in clinic. OBJECTIVE The aim of this study is to evaluate the role of oxygen-enhanced MR imaging in the detection of tissue oxygen levels between fractionated radiotherapy. METHODS A cohort of 10 patients with brain metastasis was recruited. Quantitative oxygen enhanced MR imaging was performed prior to, 30 minutes and 22 hours after first fractionated radiotherapy. RESULTS The ΔR1 (the difference of longitudinal relaxivity between 100% oxygen breathing and air breathing) increased in the ipsilateral tumor site and normal tissue by 242% and 152%, respectively, 30 minutes after first fractionated radiation compared to pre-radiation levels. Significant recovery of ΔR1 in the contralateral normal tissue (p < 0.05) was observed 22 hours compared to 30 minutes after radiation levels. CONCLUSION R1-based oxygen-enhanced MR imaging may provide a sensitive endogenous marker for oxygen changes in the brain tissue between fractionated radiotherapy.
Collapse
Affiliation(s)
- Junchao Qian
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiang Yu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Bingbing Li
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Zhenle Fei
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Xiang Huang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Peng Luo
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Liwei Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Zhiming Zhang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Jianjun Lou
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China
| | - Hongzhi Wang
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei Cancer Hospital, Hefei 230031, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
18
|
Mouawad M, Biernaski H, Brackstone M, Lock M, Yaremko B, Shmuilovich O, Kornecki A, Ben Nachum I, Muscedere G, Lynn K, Prato FS, Thompson RT, Gaede S, Gelman N. DCE-MRI assessment of response to neoadjuvant SABR in early stage breast cancer: Comparisons of single versus three fraction schemes and two different imaging time delays post-SABR. Clin Transl Radiat Oncol 2020; 21:25-31. [PMID: 32021911 PMCID: PMC6993055 DOI: 10.1016/j.ctro.2019.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To determine the effect of dose fractionation and time delay post-neoadjuvant stereotactic ablative radiotherapy (SABR) on dynamic contrast-enhanced (DCE)-MRI parameters in early stage breast cancer patients. MATERIALS AND METHODS DCE-MRI was acquired in 17 patients pre- and post-SABR. Five patients were imaged 6-7 days post-21 Gy/1fraction (group 1), six 16-19 days post-21 Gy/1fraction (group 2), and six 16-18 days post-30 Gy/3 fractions every other day (group 3). DCE-MRI scans were performed using half the clinical dose of contrast agent. Changes in the surrounding tissue were quantified using a signal-enhancement threshold metric that characterizes changes in signal-enhancement volume (SEV). Tumour response was quantified using Ktrans and ve (Tofts model) pre- and post-SABR. Significance was assessed using a Wilcoxin signed-rank test. RESULTS All group 1 and 4/6 group 2 patients' SEV increased post-SABR. All group 3 patients' SEV decreased. The mean Ktrans increased for group 1 by 76% (p = 0.043) while group 2 and 3 decreased 15% (p = 0.028) and 34% (p = 0.028), respectively. For ve, there was no significant change in Group 1 (p = 0.35). Groups 2 showed an increase of 24% (p = 0.043), and Group 3 trended toward an increase (23%, p = 0.08). CONCLUSION Kinetic parameters measured 2.5 weeks post-SABR in both single fraction and three fraction groups were indicative of response but only the single fraction protocol led to enhancement in the surrounding tissue. Our results also suggest that DCE-MRI one-week post-SABR may be too early for response assessment, at least for single fraction SABR, whereas 2.5 weeks appears sufficiently long to minimize confounding acute effects.
Collapse
Affiliation(s)
- Matthew Mouawad
- Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Muriel Brackstone
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
| | - Michael Lock
- London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Brian Yaremko
- London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Olga Shmuilovich
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Anat Kornecki
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Ilanit Ben Nachum
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Giulio Muscedere
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Kalan Lynn
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
| | - Frank S. Prato
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- St. Joseph’s Health Care, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| | - R. Terry Thompson
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Stewart Gaede
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- London Health Sciences Centre, London, Ontario, Canada
- Department of Oncology, Western University, London, Ontario, Canada
| | - Neil Gelman
- Medical Biophysics, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Imaging, Western University, London, Ontario, Canada
| |
Collapse
|
19
|
Bendinger AL, Seyler L, Saager M, Debus C, Peschke P, Komljenovic D, Debus J, Peter J, Floca RO, Karger CP, Glowa C. Impact of Single Dose Photons and Carbon Ions on Perfusion and Vascular Permeability: A Dynamic Contrast-Enhanced MRI Pilot Study in the Anaplastic Rat Prostate Tumor R3327-AT1. Radiat Res 2019; 193:34-45. [PMID: 31697210 DOI: 10.1667/rr15459.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We collected initial quantitative information on the effects of high-dose carbon (12C) ions compared to photons on vascular damage in anaplastic rat prostate tumors, with the goal of elucidating differences in response to high-LET radiation, using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-AT1 rat prostate tumors received a single dose of either 16 or 37 Gy 12C ions or 37 or 85 Gy 6 MV photons (iso-absorbed and iso-effective doses, respectively). The animals underwent DCE-MRI prior to, and on days 3, 7, 14 and 21 postirradiation. The extended Tofts model was used for pharmacokinetic analysis. At day 21, tumors were dissected and histologically examined. The results of this work showed the following: 1. 12C ions led to stronger vascular changes compared to photons, independent of dose; 2. Tumor growth was comparable for all radiation doses and modalities until day 21; 3. Nonirradiated, rapidly growing control tumors showed a decrease in all pharmacokinetic parameters (area under the curve, Ktrans, ve, vp) over time; 4. 12C-ion-irradiated tumors showed an earlier increase in area under the curve and Ktrans than photon-irradiated tumors; 5. 12C-ion irradiation resulted in more homogeneous parameter maps and histology compared to photons; and 6. 12C-ion irradiation led to an increased microvascular density and decreased proliferation activity in a largely dose-independent manner compared to photons. Postirradiation changes related to 12C ions and photons were detected using DCE-MRI, and correlated with histological parameters in an anaplastic experimental prostate tumor. In summary, this pilot study demonstrated that exposure to 12C ions increased the perfusion and/or permeability faster and led to larger changes in DCE-MRI parameters resulting in increased vessel density and presumably less hypoxia at the end of the observation period when compared to photons. Within this study no differences were found between curative and sub-curative doses in either modality.
Collapse
Affiliation(s)
- Alina L Bendinger
- Departments of Medical Physics in Radiology.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Lisa Seyler
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Maria Saager
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Charlotte Debus
- Departments of Translational Radiation Oncology, National Center for Tumor Diseases (NCT).,Department of High-Performance Computing, Simulation and Software Technology, German Aerospace Center (DLR), Cologne, Germany
| | - Peter Peschke
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | | | - Jürgen Debus
- Departments of Clinical Cooperation Unit, Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Jörg Peter
- Departments of Medical Physics in Radiology
| | - Ralf O Floca
- Departments of Medical Image Computing.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christian P Karger
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Christin Glowa
- Departments of Medical Physics in Radiation Oncology.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Brown SL, Kolozsvary A, Isrow DM, Al Feghali K, Lapanowski K, Jenrow KA, Kim JH. A Novel Mechanism of High Dose Radiation Sensitization by Metformin. Front Oncol 2019; 9:247. [PMID: 31024849 PMCID: PMC6465931 DOI: 10.3389/fonc.2019.00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction: Metformin, the most widely used treatment for diabetes, is lethal to cancer cells and increases in toxicity when used in combination with radiation. In addition to various molecular and metabolic mechanisms that have been previously proposed, the studies presented provide evidence of an additional, novel mechanism of sensitization following high dose radiotherapy; the magnitude of sensitization depends on the microenvironmental levels of glucose and oxygen which are in turn affected by high dose radiation. Methods: Cancer cells (A549 and MCF7) were studied in vitro under various controlled conditions. Endpoints included clonogenic cell survival and ROS expression measured by DHE and DCFDA. CD1 nu/nu athymic mice implanted with A549 cells received metformin alone (200 mg/kg, i.p.), radiation alone (15 Gy) or a combination of metformin and radiation; the effect of treatment sequence on efficacy was assessed by tumor growth delay and histology. In a separate set of experiments, tumor blood flow was measured using a tracer clearance technique using SPECT after the administration of metformin alone, radiation alone and the combined treatment. Results:In vivo, metformin provided equally effective tumor growth delay when given 24 h after radiation as when given 1 h or 4 h before radiation, an observation not previously reported and, in fact, unexpected based on published scientific literature. When drug followed radiation, the tumors were histologically characterized by massive cellular necrosis. In vitro, cancer cells when glucose depleted and/or hypoxic were preferentially killed by metformin, in a drug dose dependent manner. A549 cells exposed to 5.0 mM of metformin was reduced seven fold in survival when in a glucose deprived as compared to a low-glucose medium (0 vs. 1.0 g/L). Finally, using a SPECT detector to follow the washout of a radioactive tracer, it was shown that a high single dose of radiosurgery (15 Gy) could dramatically inhibit blood flow and presumably diminish glucose and oxygen. Discussion: Insight into the best timing of drug and radiation administration is gained through an understanding of the mechanisms of interaction. A new mechanism of metformin sensitization by high dose radiation is proposed based on the blood flow, glucose and oxygen.
Collapse
Affiliation(s)
- Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Andrew Kolozsvary
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Derek M Isrow
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Karine Al Feghali
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Karen Lapanowski
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| | - Kenneth A Jenrow
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States.,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States
| |
Collapse
|
21
|
Song CW, Glatstein E, Marks LB, Emami B, Grimm J, Sperduto PW, Kim MS, Hui S, Dusenbery KE, Cho LC. Biological Principles of Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiation Surgery (SRS): Indirect Cell Death. Int J Radiat Oncol Biol Phys 2019; 110:21-34. [PMID: 30836165 DOI: 10.1016/j.ijrobp.2019.02.047] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To review the radiobiological mechanisms of stereotactic body radiation therapy stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS). METHODS AND MATERIALS We reviewed previous reports and recent observations on the effects of high-dose irradiation on tumor cell survival, tumor vasculature, and antitumor immunity. We then assessed the potential implications of these biological changes associated with SBRT and SRS. RESULTS Irradiation with doses higher than approximately 10 Gy/fraction causes significant vascular injury in tumors, leading to secondary tumor cell death. Irradiation of tumors with high doses has also been reported to increase the antitumor immunity, and various approaches are being investigated to further elevate antitumor immunity. The mechanism of normal tissue damage by high-dose irradiation needs to be further investigated. CONCLUSIONS In addition to directly killing tumor cells, high-dose irradiation used in SBRT and SRS induces indirect tumor cell death via vascular damage and antitumor immunity. Further studies are warranted to better understand the biological mechanisms underlying the high efficacy of clinical SBRT and SRS and to further improve the efficacy of SBRT and SRS.
Collapse
Affiliation(s)
- Chang W Song
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Eli Glatstein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lawrence B Marks
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Bahman Emami
- Department of Radiation Oncology, Loyola University Medical Center, Chicago, Illinois
| | - Jimm Grimm
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Paul W Sperduto
- Minneapolis Radiation Oncology and Gamma Knife Center, University of Minnesota, Minneapolis, Minnesota
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Susanta Hui
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kathryn E Dusenbery
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - L Chinsoo Cho
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
22
|
Kim JH, Jenrow KA, Brown SL. Novel biological strategies to enhance the radiation therapeutic ratio. Radiat Oncol J 2018; 36:172-181. [PMID: 30309208 PMCID: PMC6226138 DOI: 10.3857/roj.2018.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Successful anticancer strategies require a differential response between tumor and normal tissue (i.e., a therapeutic ratio). In fact, improving the effectiveness of a cancer therapeutic is of no clinical value in the absence of a significant increase in the differential response between tumor and normal tissue. Although radiation dose escalation with the use of intensity modulated radiation therapy has permitted the maximum tolerable dose for most locally advanced cancers, improvements in tumor control without damaging normal adjacent tissues are needed. As a means of increasing the therapeutic ratio, several new approaches are under development. Drugs targeting signal transduction pathways in cancer progression and more recently, immunotherapeutics targeting specific immune cell subsets have entered the clinic with promising early results. Radiobiological research is underway to address pressing questions as to the dose per fraction, irradiated tumor volume and time sequence of the drug administration. To exploit these exciting novel strategies, a better understanding is needed of the cellular and molecular pathways responsible for both cancer and normal tissue and organ response, including the role of radiation-induced accelerated senescence. This review will highlight the current understanding of promising biologically targeted therapies to enhance the radiation therapeutic ratio.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| | - Kenneth A Jenrow
- Department of Psychology/Neuroscience Program, Central Michigan University, Mount Pleasant, MI, USA
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
23
|
Matsumoto S, Kishimoto S, Saito K, Takakusagi Y, Munasinghe JP, Devasahayam N, Hart CP, Gillies RJ, Mitchell JB, Krishna MC. Metabolic and Physiologic Imaging Biomarkers of the Tumor Microenvironment Predict Treatment Outcome with Radiation or a Hypoxia-Activated Prodrug in Mice. Cancer Res 2018; 78:3783-3792. [PMID: 29792309 PMCID: PMC8092078 DOI: 10.1158/0008-5472.can-18-0491] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/05/2018] [Accepted: 05/18/2018] [Indexed: 01/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxic niches that lead to treatment resistance. Therefore, studies of tumor oxygenation and metabolic profiling should contribute to improved treatment strategies. Here, we define two imaging biomarkers that predict differences in tumor response to therapy: (i) partial oxygen pressure (pO2), measured by EPR imaging; and (ii) [1-13C] pyruvate metabolism rate, measured by hyperpolarized 13C MRI. Three human PDAC xenografts with varying treatment sensitivity (Hs766t, MiaPaCa2, and Su.86.86) were grown in mice. The median pO2 of the mature Hs766t, MiaPaCa2, and Su.86.86 tumors was 9.1 ± 1.7, 11.1 ± 2.2, and 17.6 ± 2.6 mm Hg, and the rate of pyruvate-to-lactate conversion was 2.72 ± 0.48, 2.28 ± 0.26, and 1.98 ± 0.51 per minute, respectively (n = 6, each). These results are in agreement with steady-state data of matabolites quantified by mass spectroscopy and histologic analysis, indicating glycolytic and hypoxia profile in Hs766t, MiaPaca2, and Su.86.86 tumors. Fractionated radiotherapy (5 Gy × 5) resulted in a tumor growth delay of 16.7 ± 1.6 and 18.0 ± 2.7 days in MiaPaca2 and Su.86.86 tumors, respectively, compared with 6.3 ± 2.7 days in hypoxic Hs766t tumors. Treatment with gemcitabine, a first-line chemotherapeutic agent, or the hypoxia-activated prodrug TH-302 was more effective against Hs766t tumors (20.0 ± 3.5 and 25.0 ± 7.7 days increase in survival time, respectively) than MiaPaCa2 (2.7 ± 0.4 and 6.7 ± 0.7 days) and Su.86.86 (4.7 ± 0.6 and 0.7 ± 0.6 days) tumors. Collectively, these results demonstrate the ability of molecular imaging biomarkers to predict the response of PDAC to treatment with radiotherapy and TH-302.Significance: pO2 imaging data and clinically available metabolic imaging data provide useful insight into predicting the treatment efficacy of chemotherapy, radiation, and a hypoxia-activated prodrug as monotherapies and combination therapies in PDAC tumor xenograft models. Cancer Res; 78(14); 3783-92. ©2018 AACR.
Collapse
Affiliation(s)
- Shingo Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
- JST, PREST, Saitama, Japan
| | - Shun Kishimoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keita Saito
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yoichi Takakusagi
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
- National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jeeva P Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, Maryland
| | - Nallathamby Devasahayam
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | | | - Robert J Gillies
- Department of Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
24
|
Zhou H, Zhang Z, Denney R, Williams JS, Gerberich J, Stojadinovic S, Saha D, Shelton JM, Mason RP. Tumor physiological changes during hypofractionated stereotactic body radiation therapy assessed using multi-parametric magnetic resonance imaging. Oncotarget 2018; 8:37464-37477. [PMID: 28415581 PMCID: PMC5514922 DOI: 10.18632/oncotarget.16395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/02/2017] [Indexed: 12/25/2022] Open
Abstract
Radiation therapy is a primary treatment for non-resectable lung cancer and hypoxia is thought to influence tumor response. Hypoxia is expected to be particularly relevant to the evolving new radiation treatment scheme of hypofractionated stereotactic body radiation therapy (SBRT). As such, we sought to develop non-invasive tools to assess tumor pathophysiology and response to irradiation. We applied blood oxygen level dependent (BOLD) and tissue oxygen level dependent (TOLD) MRI, together with dynamic contrast enhanced (DCE) MRI to explore the longitudinal effects of SBRT on tumor oxygenation and vascular perfusion using A549 human lung cancer xenografts in a subcutaneous rat model. Intra-tumor heterogeneity was seen on multi-parametric maps, especially in BOLD, T2* and DCE. At baseline, most tumors showed a positive BOLD signal response (%ΔSI) and increased T2* in response to oxygen breathing challenge, indicating increased vascular oxygenation. Control tumors showed similar response 24 hours and 1 week later. Twenty-four hours after a single dose of 12 Gy, the irradiated tumors showed a significantly decreased T2* (-2.9±4.2 ms) and further decrease was observed (-4.0±6.0 ms) after 1 week, suggesting impaired vascular oxygenation. DCE revealed tumor heterogeneity, but showed minimal changes following irradiation. Rats were cured of the primary tumors by 3x12 Gy, providing long term survival, though with ultimate metastatic recurrence.
Collapse
Affiliation(s)
- Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Zhang Zhang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Rebecca Denney
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jessica S Williams
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Jeni Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Strahinja Stojadinovic
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Debabrata Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - John M Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ralph P Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
25
|
Elmghirbi R, Nagaraja TN, Brown SL, Keenan KA, Panda S, Cabral G, Bagher-Ebadian H, Divine GW, Lee IY, Ewing JR. Toward a noninvasive estimate of interstitial fluid pressure by dynamic contrast-enhanced MRI in a rat model of cerebral tumor. Magn Reson Med 2018. [PMID: 29524243 DOI: 10.1002/mrm.27163] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE This study demonstrates a DCE-MRI estimate of tumor interstitial fluid pressure (TIFP) and hydraulic conductivity in a rat model of glioblastoma, with validation against an invasive wick-in-needle (WIN) technique. An elevated TIFP is considered a mark of aggressiveness, and a decreased TIFP a predictor of response to therapy. METHODS The DCE-MRI studies were conducted in 36 athymic rats (controls and posttreatment animals) with implanted U251 cerebral tumors, and with TIFP measured using a WIN method. Using a model selection paradigm and a novel application of Patlak and Logan plots to DCE-MRI data, the MRI parameters required for estimating TIFP noninvasively were estimated. Two models, a fluid-mechanical model and a multivariate empirical model, were used for estimating TIFP, as verified against WIN-TIFP. RESULTS Using DCE-MRI, the mean estimated hydraulic conductivity (MRI-K) in U251 tumors was (2.3 ± 3.1) × 10-5 (mm2 /mmHg-s) in control studies. Significant positive correlations were found between WIN-TIFP and MRI-TIFP in both mechanical and empirical models. For instance, in the control group of the fluid-mechanical model, MRI-TIFP was a strong predictor of WIN-TIFP (R2 = 0.76, p < .0001). A similar result was found in the bevacizumab-treated group of the empirical model (R2 = 0.93, p = .014). CONCLUSION This research suggests that MRI dynamic studies contain enough information to noninvasively estimate TIFP in this, and possibly other, tumor models, and thus might be used to assess tumor aggressiveness and response to therapy.
Collapse
Affiliation(s)
- Rasha Elmghirbi
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | | | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - Kelly A Keenan
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Hassan Bagher-Ebadian
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan
| | - George W Divine
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Ian Y Lee
- Department of Neurosurgery, Henry Ford Health System, Detroit, Michigan
| | - James R Ewing
- Department of Physics, Oakland University, Rochester, Michigan.,Department of Neurology, Henry Ford Health System, Detroit, Michigan.,Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
26
|
Reproducibility and relative stability in magnetic resonance imaging indices of tumor vascular physiology over a period of 24h in a rat 9L gliosarcoma model. Magn Reson Imaging 2017; 44:131-139. [PMID: 28887206 DOI: 10.1016/j.mri.2017.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE The objective was to study temporal changes in tumor vascular physiological indices in a period of 24h in a 9L gliosarcoma rat model. METHODS Fischer-344 rats (N=14) were orthotopically implanted with 9L cells. At 2weeks post-implantation, they were imaged twice in a 24h interval using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Data-driven model-selection-based analysis was used to segment tumor regions with varying vascular permeability characteristics. The region with the maximum number of estimable parameters of vascular kinetics was chosen for comparison across the two time points. It provided estimates of three parameters for an MR contrast agent (MRCA): i) plasma volume (vp), ii) forward volumetric transfer constant (Ktrans) and interstitial volume fraction (ve, ratio of Ktrans to reverse transfer constant, kep). In addition, MRCA extracellular distribution volume (VD) was estimated in the tumor and its borders, along with tumor blood flow (TBF) and peritumoral MRCA flux. Descriptors of parametric distributions were compared between the two times. Tumor extent was examined by hematoxylin and eosin (H&E) staining. Picrosirus red staining of secreted collagen was performed as an additional index for 9L cells. RESULTS Test-retest differences between population summaries for any parameter were not significant (paired t and Wilcoxon signed rank tests). Bland-Altman plots showed no apparent trends between the differences and averages of the test-retest measures for all indices. The intraclass correlation coefficients showed moderate to almost perfect reproducibility for all of the parameters, except vp. H&E staining showed tumor infiltration in parenchyma, perivascular space and white matter tracts. Collagen staining was observed along the outer edges of main tumor mass. CONCLUSION The data suggest the relative stability of these MR indices of tumor microenvironment over a 24h duration in this gliosarcoma model.
Collapse
|
27
|
Elmghirbi R, Nagaraja TN, Brown SL, Panda S, Aryal MP, Keenan KA, Bagher-Ebadian H, Cabral G, Ewing JR. Acute Temporal Changes of MRI-Tracked Tumor Vascular Parameters after Combined Anti-angiogenic and Radiation Treatments in a Rat Glioma Model: Identifying Signatures of Synergism. Radiat Res 2017; 187:79-88. [PMID: 28001908 PMCID: PMC5381817 DOI: 10.1667/rr14358.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this study we used magnetic resonance imaging (MRI) biomarkers to monitor the acute temporal changes in tumor vascular physiology with the aim of identifying the vascular signatures that predict response to combined anti-angiogenic and radiation treatments. Forty-three athymic rats implanted with orthotopic U-251 glioma cells were studied for approximately 21 days after implantation. Two MRI studies were performed on each animal, pre- and post-treatment, to measure tumor vascular parameters. Two animal groups received treatment comprised of Cilengitide, an anti-angiogenic agent and radiation. The first group received a subcurative regimen of Cilengitide 1 h before irradiation, while the second group received a curative regimen of Cilengitide 8 h before irradiation. Cilengitide was given as a single dose (4 mg/kg; intraperitoneal) after the pretreatment MRI study and before receiving a 20 Gy radiation dose. After irradiation, the post-treatment MRI study was performed at selected time points: 2, 4, 8 and 12 h (n = ≥5 per time point). Significant changes in vascular parameters were observed at early time points after combined treatments in both treatment groups (1 and 8 h). The temporal changes in vascular parameters in the first group (treated 1 h before exposure) resembled a previously reported pattern associated with radiation exposure alone. Conversely, in the second group (treated 8 h before exposure), all vascular parameters showed an initial response at 2-4 h postirradiation, followed by an apparent lack of response at later time points. The signature time point to define the "synergy" of Cilengitide and radiation was 4 h postirradiation. For example, 4 h after combined treatments using a 1 h separation (which followed the subcurative regimen), tumor blood flow was significantly decreased, nearly 50% below baseline (P = 0.007), whereas 4 h after combined treatments using an 8 h separation (which followed the curative regimen), tumor blood flow was only 10% less than baseline. Comparison between the first and second groups further revealed that most other vascular parameters were maximally different 4 h after combined treatments. In conclusion, the data are consistent with the assertion that the delivery of radiation at the vascular normalization time window of Cilengitide improves radiation treatment outcome. The different vascular responses after the different delivery times of combined treatments in light of the known tumor responses under similar conditions would indicate that timing has a crucial influence on treatment outcome and long-term survival. Tracking acute changes in tumor physiology after monotherapy or combined treatments appears to aid in identifying the beneficial timing for administration, and perhaps has predictive value. Therefore, judicial timing of treatments may result in optimal treatment response.
Collapse
Affiliation(s)
- Rasha Elmghirbi
- Department of Physics, Oakland University, Rochester, Michigan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | | | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | | | - Madhava P. Aryal
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kelly A. Keenan
- Department of Neurosurgery, Henry Ford Hospital, Detroit, Michigan
| | - Hassan Bagher-Ebadian
- Department of Physics, Oakland University, Rochester, Michigan
- Department of Radiation Oncology, Henry Ford Hospital, Detroit, Michigan
| | - Glauber Cabral
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
| | - James R. Ewing
- Department of Physics, Oakland University, Rochester, Michigan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan
- Department of Neurology, Wayne State University, Detroit, Michigan
| |
Collapse
|
28
|
Kim MS, Kim W, Park IH, Kim HJ, Lee E, Jung JH, Cho LC, Song CW. Radiobiological mechanisms of stereotactic body radiation therapy and stereotactic radiation surgery. Radiat Oncol J 2015; 33:265-75. [PMID: 26756026 PMCID: PMC4707209 DOI: 10.3857/roj.2015.33.4.265] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023] Open
Abstract
Despite the increasing use of stereotactic body radiation therapy (SBRT) and stereotactic radiation surgery (SRS) in recent years, the biological base of these high-dose hypo-fractionated radiotherapy modalities has been elusive. Given that most human tumors contain radioresistant hypoxic tumor cells, the radiobiological principles for the conventional multiple-fractionated radiotherapy cannot account for the high efficacy of SBRT and SRS. Recent emerging evidence strongly indicates that SBRT and SRS not only directly kill tumor cells, but also destroy the tumor vascular beds, thereby deteriorating intratumor microenvironment leading to indirect tumor cell death. Furthermore, indications are that the massive release of tumor antigens from the tumor cells directly and indirectly killed by SBRT and SRS stimulate anti-tumor immunity, thereby suppressing recurrence and metastatic tumor growth. The reoxygenation, repair, repopulation, and redistribution, which are important components in the response of tumors to conventional fractionated radiotherapy, play relatively little role in SBRT and SRS. The linear-quadratic model, which accounts for only direct cell death has been suggested to overestimate the cell death by high dose per fraction irradiation. However, the model may in some clinical cases incidentally do not overestimate total cell death because high-dose irradiation causes additional cell death through indirect mechanisms. For the improvement of the efficacy of SBRT and SRS, further investigation is warranted to gain detailed insights into the mechanisms underlying the SBRT and SRS.
Collapse
Affiliation(s)
- Mi-Sook Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Wonwoo Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In Hwan Park
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Hee Jong Kim
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Eunjin Lee
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Jae-Hoon Jung
- Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Lawrence Chinsoo Cho
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Chang W Song
- Department of Radiation Oncology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
29
|
Ewing JR, Nagaraja TN, Aryal MP, Keenan KA, Elmghirbi R, Bagher-Ebadian H, Panda S, Lu M, Mikkelsen T, Cabral G, Brown SL. Peritumoral tissue compression is predictive of exudate flux in a rat model of cerebral tumor: an MRI study in an embedded tumor. NMR IN BIOMEDICINE 2015; 28:1557-69. [PMID: 26423316 PMCID: PMC4656050 DOI: 10.1002/nbm.3418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 08/18/2015] [Accepted: 08/27/2015] [Indexed: 05/22/2023]
Abstract
MRI estimates of extracellular volume and tumor exudate flux in peritumoral tissue are demonstrated in an experimental model of cerebral tumor. Peritumoral extracellular volume predicted the tumor exudate flux. Eighteen RNU athymic rats were inoculated intracerebrally with U251MG tumor cells and studied with dynamic contrast enhanced MRI (DCE-MRI) approximately 18 days post implantation. Using a model selection paradigm and a novel application of Patlak and Logan plots to DCE-MRI data, the distribution volume (i.e. tissue porosity) in the leaky rim of the tumor and that in the tissue external to the rim (the outer rim) were estimated, as was the tumor exudate flow from the inner rim of the tumor through the outer rim. Distribution volume in the outer rim was approximately half that of the inner adjacent region (p < 1 × 10(-4)). The distribution volume of the outer ring was significantly correlated (R(2) = 0.9) with tumor exudate flow from the inner rim. Thus, peritumoral extracellular volume predicted the rate of tumor exudate flux. One explanation for these data is that perfusion, i.e. the delivery of blood to the tumor, was regulated by the compression of the mostly normal tissue of the tumor rim, and that the tumor exudate flow was limited by tumor perfusion.
Collapse
Affiliation(s)
- James R. Ewing
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Neurology, Wayne State University, Detroit, MI
- Dept. of Physics, Oakland University, Rochester, MI
- Corresponding Author: James R. Ewing;
| | | | - Madhava P. Aryal
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI
| | | | - Rasha Elmghirbi
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Physics, Oakland University, Rochester, MI
| | - Hassan Bagher-Ebadian
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Physics, Oakland University, Rochester, MI
| | | | - Mei Lu
- Dept. of Public Health Sciences, Henry Ford Hospital, Detroit, MI
| | - Tom Mikkelsen
- Dept. of Neurology, Henry Ford Hospital, Detroit, MI
- Dept. of Neurosurgery, Henry Ford Hospital, Detroit, MI
| | | | | |
Collapse
|