1
|
Palma-Rojo E, Barquinero JF, Pérez-Alija J, González JR, Armengol G. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model. Int J Radiat Biol 2024; 100:1527-1540. [PMID: 39288264 DOI: 10.1080/09553002.2024.2400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Exposure to low doses (LD) of ionizing radiation (IR), such as the ones employed in computed tomography (CT) examination, can be associated with cancer risk. However, cancer development could depend on individual radiosensitivity. In the present study, we evaluated the differences in the response to a CT-scan radiation dose of 20 mGy in two lymphoblastoid cell lines with different radiosensitivity. MATERIALS AND METHODS Several parameters were studied: gene expression, DNA damage, and its repair, as well as cell viability, proliferation, and death. Results were compared with those after a medium dose of 500 mGy. RESULTS After 20 mGy of IR, the radiosensitive (RS) cell line showed an increase in DNA damage, and higher cell proliferation and apoptosis, whereas the radioresistant (RR) cell line was insensitive to this LD. Interestingly, the RR cell line showed a higher expression of an antioxidant gene, which could be used by the cells as a protective mechanism. After a dose of 500 mGy, both cell lines were affected by IR but with significant differences. The RS cells presented an increase in DNA damage and apoptosis, but a decrease in cell proliferation and cell viability, as well as less antioxidant response. CONCLUSIONS A differential biological effect was observed between two cell lines with different radiosensitivity, and these differences are especially interesting after a CT scan dose. If this is confirmed by further studies, one could think that individuals with radiosensitivity-related genetic variants may be more vulnerable to long-term effects of IR, potentially increasing cancer risk after LD exposure.
Collapse
Affiliation(s)
- Elia Palma-Rojo
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
2
|
Martin OA, Sykes PJ, Lavin M, Engels E, Martin RF. What's Changed in 75 Years of RadRes? - An Australian Perspective on Selected Topics. Radiat Res 2024; 202:309-327. [PMID: 38966925 DOI: 10.1667/rade-24-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 07/06/2024]
Abstract
Several scientific themes are reviewed in the context of the 75-year period relevant to this special platinum issue of Radiation Research. Two criteria have been considered in selecting the scientific themes. One is the exposure of the associated research activity in the annual meetings of the Radiation Research Society (RRS) and in the publications of the Society's Journal, thus reflecting the interest of members of RRS. The second criteria is a focus on contributions from Australian members of RRS. The first theme is the contribution of radiobiology to radiation oncology, featuring two prominent Australian radiation oncologists, the late Rod Withers and his younger colleague, Lester Peters. Two other themes are also linked to radiation oncology; preclinical research aimed at developing experimental radiotherapy modalities, namely microbeam radiotherapy (MRT) and Auger endoradiotherapy. The latter has a long history, in contrast to MRT, especially in Australia, given that the associated medical beamline at the Australian Synchrotron in Melbourne only opened in 2011. Another theme is DNA repair, which has a trajectory parallel to the 75-year period of interest, given the birth of molecular biology in the 1950s. The low-dose radiobiology theme has a similar timeline, predominantly prompted by the nuclear era, which is also connected to the radioprotector theme, although radioprotectors also have a long-established potential utility in cancer radiotherapy. Finally, two themes are associated with biodosimetry. One is the micronucleus assay, highlighting the pioneering contribution from Michael Fenech in Adelaide, South Australia, and the other is the γ-H2AX assay and its widespread clinical applications.
Collapse
Affiliation(s)
- Olga A Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Pamela J Sykes
- College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, SA, Australia
| | - Martin Lavin
- Centre for Clinical Research, University of Queensland, QSL, Brisbane, Australia
| | - Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), Clayton, VIC, Australia
| | - Roger F Martin
- School of Chemistry, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Au NPB, Wu T, Chen X, Gao F, Li YTY, Tam WY, Yu KN, Geschwind DH, Coppola G, Wang X, Ma CHE. Genome-wide study reveals novel roles for formin-2 in axon regeneration as a microtubule dynamics regulator and therapeutic target for nerve repair. Neuron 2023; 111:3970-3987.e8. [PMID: 38086376 DOI: 10.1016/j.neuron.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 09/02/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
Peripheral nerves regenerate successfully; however, clinical outcome after injury is poor. We demonstrated that low-dose ionizing radiation (LDIR) promoted axon regeneration and function recovery after peripheral nerve injury (PNI). Genome-wide CpG methylation profiling identified LDIR-induced hypermethylation of the Fmn2 promoter, exhibiting injury-induced Fmn2 downregulation in dorsal root ganglia (DRGs). Constitutive knockout or neuronal Fmn2 knockdown accelerated nerve repair and function recovery. Mechanistically, increased microtubule dynamics at growth cones was observed in time-lapse imaging of Fmn2-deficient DRG neurons. Increased HDAC5 phosphorylation and rapid tubulin deacetylation were found in regenerating axons of neuronal Fmn2-knockdown mice after injury. Growth-promoting effect of neuronal Fmn2 knockdown was eliminated by pharmaceutical blockade of HDAC5 or neuronal Hdac5 knockdown, suggesting that Fmn2deletion promotes axon regeneration via microtubule post-translational modification. In silico screening of FDA-approved drugs identified metaxalone, administered either immediately or 24-h post-injury, accelerating function recovery. This work uncovers a novel axon regeneration function of Fmn2 and a small-molecule strategy for PNI.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xinyu Chen
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Feng Gao
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | | | - Wing Yip Tam
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Giovanni Coppola
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Barnard S, Uwineza A, Kalligeraki A, McCarron R, Kruse F, Ainsbury EA, Quinlan RA. Lens Epithelial Cell Proliferation in Response to Ionizing Radiation. Radiat Res 2022; 197:92-99. [PMID: 33984857 DOI: 10.1667/rade-20-00294.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Lens epithelial cell proliferation and differentiation are naturally well regulated and controlled, a characteristic essential for lens structure, symmetry and function. The effect of ionizing radiation on lens epithelial cell proliferation has been demonstrated in previous studies at high acute doses, but the effect of dose and dose rate on proliferation has not yet been considered. In this work, mice received single acute doses of 0.5, 1 and 2 Gy of radiation, at dose rates of 0.063 and 0.3 Gy/min. Eye lenses were isolated postirradiation at 30 min up until 14 days and flat-mounted. Then, cell proliferation rates were determined using biomarker Ki67. As expected, radiation increased cell proliferation 2 and 24 h postirradiation transiently (undetectable 14 days postirradiation) and was dose dependent (changes were very significant at 2 Gy; P = 0.008). A dose-rate effect did not reach significance in this study (P = 0.054). However, dose rate and lens epithelial cell region showed significant interactions (P < 0.001). These observations further our mechanistic understanding of how the lens responds to radiation.
Collapse
Affiliation(s)
- S Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - A Uwineza
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - A Kalligeraki
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| | - R McCarron
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - F Kruse
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - E A Ainsbury
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - R A Quinlan
- Department of Biosciences, University of Durham, Mountjoy Science Site, Durham DH13LE, United Kingdom
| |
Collapse
|
6
|
Priya R, Das B. Global DNA methylation profile at LINE-1 repeats and promoter methylation of genes involved in DNA damage response and repair pathways in human peripheral blood mononuclear cells in response to γ-radiation. Mol Cell Biochem 2021; 477:267-281. [PMID: 34708334 DOI: 10.1007/s11010-021-04265-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023]
Abstract
DNA methylation is an epigenetic mechanism, which plays an important role in gene regulation. The present study evaluated DNA methylation profile of LINE1 repeats and promoter methylation of DNA damage response (DDR) and DNA repair (DR) genes (PARP1, ATM, BRCA1, MLH1, XPC, RAD23B, APC, TNFα, DNMT3A, MRE11A, MGMT, CDKN2A, MTHFR) in human peripheral blood mononuclear cells (PBMCs) of healthy donors in response to γ-radiation. Methylation level was correlated with gene expression profile of selected DDR and DR genes (APC, MLH1, PARP1, MRE11A, TNFα, MGMT) to understand their role in gene regulation. Blood samples were collected from 15 random healthy donors, PBMCs were isolated, exposed to 0.1 Gy (low) and 2.0 Gy (high) doses of γ-radiation and proliferated for 48 h and 72 h. Genomic DNA and total RNA were isolated from irradiated PBMCs along with un-irradiated control. Methylation profile was determined from bisulphite converted DNA and amplified by methylation sensitive high resolution melting (MS-HRM) method. Total RNA was converted to cDNA and relative expression was analysed using real time quantitative-PCR. Our results revealed that at 0.1 Gy, MRE11A and TNFα showed significant (P < 0.05) increase in methylation at 72 h. At 2.0 Gy, significant increase (P < 0.05) in methylation profile was observed at LINE1, MRE11A, PARP1, BRCA1, DNMT3A and RAD23B at 48 h and 72 h. PARP1 showed significant positive correlation of methylation status with gene expression. In conclusion, low and high doses of γ-radiation have significant influence on DNA methylation status of LINE1, DDR and DR genes suggesting their potential role as epigenetic signatures in human PBMCs, which can be further explored in human populations.
Collapse
Affiliation(s)
- Rashmi Priya
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology and Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India. .,Homi Bhabha National Institute, Anushaktinagar, Trombay, Mumbai, 400 094, India.
| |
Collapse
|
7
|
Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol 2018; 94:1116-1124. [PMID: 30359158 DOI: 10.1080/09553002.2018.1532609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Epidemiological evidence regarding the radiosensitivity of the lens of the eye and radiation cataract development has led to changes in the EU Basic Safety Standards for protection of the lens against ionizing radiation. However, mechanistic details of lens radiation response pathways and their significance for cataractogenesis remain unclear. Radiation-induced DNA damage and the potential impairment of repair pathways within the lens epithelium, a cell monolayer that covers the anterior hemisphere of the lens, are likely to be involved. MATERIALS AND METHODS In this work, the lens epithelium has been analyzed for its DNA double-strand break (DSB) repair response to ionizing radiation. The responses of epithelial cells located at the anterior pole (central region) have been compared to at the very periphery of the monolayer (germinative and transitional zones). Described here are the different responses in the two regions and across four strains (C57BL/6, 129S2, BALB/c and CBA/Ca) over a low dose (0-25 mGy) in-vivo whole body X-irradiation range up to 24 hours post exposure. RESULTS DNA damage and repair as visualized through 53BP1 staining was present across the lens epithelium, although repair kinetics appeared non-uniform. Epithelial cells in the central region have significantly more 53BP1 foci. The sensitivities of different mouse strains have also been compared. CONCLUSIONS 129S2 and BALB/c showed higher levels of DNA damage, with BALB/c showing significantly less inter-individual variability and appearing to be a more robust model for future DNA damage and repair studies. As a result of this study, BALB/c was identified as a suitable radiosensitive lens strain to detect and quantify early low dose ionizing radiation DNA damage effects in the mouse eye lens specifically, as an indicator of cataract formation.
Collapse
Affiliation(s)
- S G R Barnard
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,b Department of Biosciences , Durham University , Durham , UK
| | - J Moquet
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - S Lloyd
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,c School of Biosciences , The University of Birmingham , Edgbaston , UK
| | - M Ellender
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - E A Ainsbury
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - R A Quinlan
- b Department of Biosciences , Durham University , Durham , UK
| |
Collapse
|
8
|
Kamstra JH, Hurem S, Martin LM, Lindeman LC, Legler J, Oughton D, Salbu B, Brede DA, Lyche JL, Aleström P. Ionizing radiation induces transgenerational effects of DNA methylation in zebrafish. Sci Rep 2018; 8:15373. [PMID: 30337673 PMCID: PMC6193964 DOI: 10.1038/s41598-018-33817-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/06/2018] [Indexed: 01/08/2023] Open
Abstract
Ionizing radiation is known to cause DNA damage, yet the mechanisms underlying potential transgenerational effects of exposure have been scarcely studied. Previously, we observed effects in offspring of zebrafish exposed to gamma radiation during gametogenesis. Here, we hypothesize that these effects are accompanied by changes of DNA methylation possibly inherited by subsequent generations. We assessed DNA methylation in F1 embryos (5.5 hours post fertilization) with whole genome bisulfite sequencing following parental exposure to 8.7 mGy/h for 27 days and found 5658 differentially methylated regions (DMRs). DMRs were predominantly located at known regulatory regions, such as gene promoters and enhancers. Pathway analysis indicated the involvement of DMRs related to similar pathways found with gene expression analysis, such as development, apoptosis and cancers, which could be linked to previous observed developmental defects and genomic instability in the offspring. Follow up of 19 F1 DMRs in F2 and F3 embryos revealed persistent effects up to the F3 generation at 5 regions. These results indicate that ionizing radiation related effects in offspring can be linked to DNA methylation changes that partly can persist over generations. Monitoring DNA methylation could serve as a biomarker to provide an indication of ancestral exposures to ionizing radiation.
Collapse
Affiliation(s)
- Jorke H Kamstra
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.
| | - Selma Hurem
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Leonardo Martin Martin
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,University of Camagüey, Faculty of Agropecuary Sciences, Camagüey, 70100, Cuba
| | - Leif C Lindeman
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Juliette Legler
- Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Utrecht University, Institute for Risk Assessment Sciences, 3508, TD, Utrecht, The Netherlands
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Brit Salbu
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, 1433, Ås, Norway
| | - Jan Ludvig Lyche
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| | - Peter Aleström
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0033, Oslo, Norway
| |
Collapse
|
9
|
Koturbash I. 2017 Michael Fry Award Lecture When DNA is Actually Not a Target: Radiation Epigenetics as a Tool to Understand and Control Cellular Response to Ionizing Radiation. Radiat Res 2018; 190:5-11. [PMID: 29697303 PMCID: PMC6036898 DOI: 10.1667/rr15027.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aside from the generally accepted potential to cause DNA damage, it is becoming increasingly recognized that ionizing radiation has the capability to target the cellular epigenome. Epigenetics unifies the chemical marks and molecules that collectively facilitate the proper reading of genetic material. Among the epigenetic mechanisms of regulation, methylation of DNA is known to be the key player in the postirradiation response by controlling the expression of genetic information and activity of transposable elements. Radiation-induced alterations to DNA methylation may lead to cellular epigenetic reprogramming that, in turn, can substantially compromise the genomic integrity and has been proposed as one of the mechanisms of radiation-induced carcinogenesis. DNA methylation is strongly dependent on the one-carbon metabolism. This metabolic pathway is central to the support of DNA methylation by means of providing the donor of methyl groups, as well as for the synthesis of amino acids. To better understand the mechanisms of radiation-induced health effects, we study how exposure to radiation affects DNA methylation and one-carbon metabolism. Also, a tight interaction that exists between DNA methylation and one-carbon metabolism allows us to simultaneously manipulate both cellular epigenetic and metabolic profiles to modulate the normal and cancerous tissue response to radiotherapy.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
10
|
Shimura N, Kojima S. The Lowest Radiation Dose Having Molecular Changes in the Living Body. Dose Response 2018; 16:1559325818777326. [PMID: 29977175 PMCID: PMC6024299 DOI: 10.1177/1559325818777326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
We herein attempted to identify the lowest radiation dose causing molecular changes in the living body. We investigated the effects of radiation in human cells, animals, and humans. DNA double-strand breaks (DSBs) formed in cells at γ- or X-ray irradiation doses between 1 mGy and 0.5 Gy; however, the extent of DSB formation differed depending on the cell species. The formation of micronuclei (MNs) and nucleoplasmic bridges (NPBs) was noted at radiation doses between 0.1 and 0.2 Gy. Stress-responsive genes were upregulated by lower radiation doses than those that induced DNA DSBs or MN and NPBs. These γ- or X-ray radiation doses ranged between approximately 10 and 50 mGy. In animals, chromosomal aberrations were detected between 50 mGy and 0.1 Gy of low linear energy transfer radiation, 0.1 Gy of metal ion beams, and 9 mGy of fast neutrons. In humans, DNA damage has been observed in children who underwent computed tomography scans with an estimated blood radiation dose as low as 0.15 mGy shortly after examination. The frequencies of chromosomal translocations were lower in residents of high background areas than in those of control areas. In humans, systemic adaptive responses may have been prominently expressed at these radiation doses.
Collapse
Affiliation(s)
- Noriko Shimura
- Faculty of Pharmaceutical Sciences, Ohu University, Tomita-machi, Koriyama, Fukushima, Japan
| | - Shuji Kojima
- Faculty of Pharmaceutical Sciences, Department of Radiation Biosciences, Tokyo University of Science (TUS), Chiba, Japan
| |
Collapse
|
11
|
Galactic Cosmic Radiation Induces Persistent Epigenome Alterations Relevant to Human Lung Cancer. Sci Rep 2018; 8:6709. [PMID: 29712937 PMCID: PMC5928241 DOI: 10.1038/s41598-018-24755-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Human deep space and planetary travel is limited by uncertainties regarding the health risks associated with exposure to galactic cosmic radiation (GCR), and in particular the high linear energy transfer (LET), heavy ion component. Here we assessed the impact of two high-LET ions 56Fe and 28Si, and low-LET X rays on genome-wide methylation patterns in human bronchial epithelial cells. We found that all three radiation types induced rapid and stable changes in DNA methylation but at distinct subsets of CpG sites affecting different chromatin compartments. The 56Fe ions induced mostly hypermethylation, and primarily affected sites in open chromatin regions including enhancers, promoters and the edges ("shores") of CpG islands. The 28Si ion-exposure had mixed effects, inducing both hyper and hypomethylation and affecting sites in more repressed heterochromatic environments, whereas X rays induced mostly hypomethylation, primarily at sites in gene bodies and intergenic regions. Significantly, the methylation status of 56Fe ion sensitive sites, but not those affected by X ray or 28Si ions, discriminated tumor from normal tissue for human lung adenocarcinomas and squamous cell carcinomas. Thus, high-LET radiation exposure leaves a lasting imprint on the epigenome, and affects sites relevant to human lung cancer. These methylation signatures may prove useful in monitoring the cumulative biological impact and associated cancer risks encountered by astronauts in deep space.
Collapse
|
12
|
Schofield PN, Kondratowicz M. Evolving paradigms for the biological response to low dose ionizing radiation; the role of epigenetics. Int J Radiat Biol 2017; 94:769-781. [PMID: 29157078 DOI: 10.1080/09553002.2017.1388548] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE In the late 1990s, it had become clear that the long-standing paradigm for the action of radiation on living cells and organisms did not have sufficient power to explain the observed effects of low dose ionizing radiation. The purpose of this commentary is to examine the experiments that lead up to the modification of the classic paradigm consequent on these observations, their historical precedents, and the development of our understanding of the role of epigenetics in low dose radiation effects. RESULTS AND CONCLUSIONS We discuss how parallel advances in epigenetics from developmental biology and cancer studies, and the discovery of epigenetic modifications of chromatin, such as DNA methylation, impacted on the development of an epigenetic paradigm for low dose effects. We also assess the impact of technology development in supporting the paradigm shift. We then examine recent accumulated data on epigenetic modification in response to irradiation since that shift took place, and identify areas where bringing together data from developmental biology and cancer might answer some of the paradoxes and contradictions in this data. We predict that further paradigm shifts are imminent.
Collapse
Affiliation(s)
- Paul N Schofield
- a Department of Physiology, Development, and Neuroscience , University of Cambridge , Cambridge , UK
| | - Monika Kondratowicz
- a Department of Physiology, Development, and Neuroscience , University of Cambridge , Cambridge , UK
| |
Collapse
|
13
|
Koturbash I. LINE-1 in response to exposure to ionizing radiation. Mob Genet Elements 2017; 7:e1393491. [PMID: 29209557 DOI: 10.1080/2159256x.2017.1393491] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022] Open
Abstract
It is becoming increasingly recognized that Long Interspersed Nuclear Element, 1 (LINE-1), the most ubiquitous repetitive element in the mammalian genomes, plays an important role in the pathogenesis of disease and in the response to exposure to environmental stressors. Ionizing radiation is a known genotoxic stressor, but it is capable of targeting the cellular epigenome as well. Radiation-induced alterations in LINE-1 DNA methylation are the most frequently observed epigenetic effects of exposure. The extent of this aberrant DNA methylation, however, strongly depends on a number of factors, including the type and dose of radiation. Two other factors are being discussed in this commentary - the evolutionary age and type of the LINE-1 promoter, as well as the type of irradiated cell. This knowledge will further aid in elucidating the mechanisms of response to ionizing radiation exposure, as well in understanding the pathogenesis of the negative health effects associated with exposure.
Collapse
Affiliation(s)
- Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
14
|
Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana É, Kutanzi KR, Landes RD, Tackett AJ, Hauer-Jensen M, Zhou D, Koturbash I. Inter-Strain Differences in LINE-1 DNA Methylation in the Mouse Hematopoietic System in Response to Exposure to Ionizing Radiation. Int J Mol Sci 2017; 18:ijms18071430. [PMID: 28677663 PMCID: PMC5535921 DOI: 10.3390/ijms18071430] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons are the major repetitive elements in mammalian genomes. LINE-1s are well-accepted as driving forces of evolution and critical regulators of the expression of genetic information. Alterations in LINE-1 DNA methylation may lead to its aberrant activity and are reported in virtually all human cancers and in experimental carcinogenesis. In this study, we investigated the endogenous DNA methylation status of the 5′ untranslated region (UTR) of LINE-1 elements in the bone marrow hematopoietic stem cells (HSCs), hematopoietic progenitor cells (HPCs), and mononuclear cells (MNCs) in radioresistant C57BL/6J and radiosensitive CBA/J mice and in response to ionizing radiation (IR). We demonstrated that basal levels of DNA methylation within the 5′-UTRs of LINE-1 elements did not differ significantly between the two mouse strains and were negatively correlated with the evolutionary age of LINE-1 elements. Meanwhile, the expression of LINE-1 elements was higher in CBA/J mice. At two months after irradiation to 0.1 or 1 Gy of 137Cs (dose rate 1.21 Gy/min), significant decreases in LINE-1 DNA methylation in HSCs were observed in prone to radiation-induced carcinogenesis CBA/J, but not C57BL/6J mice. At the same time, no residual DNA damage, increased ROS, or changes in the cell cycle were detected in HSCs of CBA/J mice. These results suggest that epigenetic alterations may potentially serve as driving forces of radiation-induced carcinogenesis; however, future studies are needed to demonstrate the direct link between the LINE-1 DNA hypomethylation and radiation carcinogenesis.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Jianhui Chang
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Lijian Shao
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Étienne Nzabarushimana
- Department of Bioinformatics, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA.
| | - Kristy R Kutanzi
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Reid D Landes
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Alan J Tackett
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
15
|
Miousse IR, Kutanzi KR, Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications. Int J Radiat Biol 2017; 93:457-469. [PMID: 28134023 PMCID: PMC5411327 DOI: 10.1080/09553002.2017.1287454] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. CONCLUSIONS In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.
Collapse
Affiliation(s)
- Isabelle R Miousse
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Kristy R Kutanzi
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- a Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
16
|
Stojković R, Fucic A, Ivanković D, Jukić Z, Radulović P, Grah J, Kovačević N, Barišić L, Krušlin B. Age and sex differences in genome damage between prepubertal and adult mice after exposure to ionising radiation. Arh Hig Rada Toksikol 2016; 67:297-303. [DOI: 10.1515/aiht-2016-67-2882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
Abstract
The mechanisms that lead to sex and age differences in biological responses to exposure to ionising radiation and related health risks have still not been investigated to a satisfactory extent. The significance of sex hormones in the aetiology of radiogenic cancer types requires a better understanding of the mechanisms involved, especially during organism development. The aim of this study was to show age and sex differences in genome damage between prepubertal and adult mice after single exposure to gamma radiation. Genome damage was measured 24 h, 48 h, and 72 h after exposure of 3-week and 12-week old BALB/CJ mice to 8 Gy of gamma radiation using an in vivo micronucleus assay. There was a significantly higher genome damage in prepubertal than in adult animals of both sexes for all sampling times. Irradiation caused a higher frequency of micronuclei in males of both age groups. Our study confirms sex differences in the susceptibility to effects of ionising radiation in mice and is the first to show that such a difference occurs already at prepubertal age.
Collapse
Affiliation(s)
| | - Aleksandra Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Ksaverska c 2, Croatia
| | | | - Zoran Jukić
- Zagreb, General Hospital “Nova Gradiška”, Nova Gradiška Croatia
- School of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Petra Radulović
- Clinical Hospital Centre “Sestre Milosrdnice”, Zagreb, Croatia
| | - Josip Grah
- University Hospital “Zagreb” Croatia
- School of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | | | | | - Božo Krušlin
- Clinical Hospital Centre “Sestre Milosrdnice”, Zagreb, Croatia
| |
Collapse
|
17
|
Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. Mutat Res 2016; 787:43-53. [PMID: 26963372 DOI: 10.1016/j.mrfmmm.2016.02.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/02/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ((56)Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation.
Collapse
|
18
|
Chandrashekar DS, Dey P, Acharya KK. GREAM: A Web Server to Short-List Potentially Important Genomic Repeat Elements Based on Over-/Under-Representation in Specific Chromosomal Locations, Such as the Gene Neighborhoods, within or across 17 Mammalian Species. PLoS One 2015. [PMID: 26208093 PMCID: PMC4514817 DOI: 10.1371/journal.pone.0133647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Genome-wide repeat sequences, such as LINEs, SINEs and LTRs share a considerable part of the mammalian nuclear genomes. These repeat elements seem to be important for multiple functions including the regulation of transcription initiation, alternative splicing and DNA methylation. But it is not possible to study all repeats and, hence, it would help to short-list before exploring their potential functional significance via experimental studies and/or detailed in silico analyses. Result We developed the ‘Genomic Repeat Element Analyzer for Mammals’ (GREAM) for analysis, screening and selection of potentially important mammalian genomic repeats. This web-server offers many novel utilities. For example, this is the only tool that can reveal a categorized list of specific types of transposons, retro-transposons and other genome-wide repetitive elements that are statistically over-/under-represented in regions around a set of genes, such as those expressed differentially in a disease condition. The output displays the position and frequency of identified elements within the specified regions. In addition, GREAM offers two other types of analyses of genomic repeat sequences: a) enrichment within chromosomal region(s) of interest, and b) comparative distribution across the neighborhood of orthologous genes. GREAM successfully short-listed a repeat element (MER20) known to contain functional motifs. In other case studies, we could use GREAM to short-list repetitive elements in the azoospermia factor a (AZFa) region of the human Y chromosome and those around the genes associated with rat liver injury. GREAM could also identify five over-represented repeats around some of the human and mouse transcription factor coding genes that had conserved expression patterns across the two species. Conclusion GREAM has been developed to provide an impetus to research on the role of repetitive sequences in mammalian genomes by offering easy selection of more interesting repeats in various contexts/regions. GREAM is freely available at http://resource.ibab.ac.in/GREAM/.
Collapse
Affiliation(s)
- Darshan Shimoga Chandrashekar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Manipal University, Manipal, 576104, Karnataka state, India
| | - Poulami Dey
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Manipal University, Manipal, 576104, Karnataka state, India
| | - Kshitish K. Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Biotech Park, Electronic City, Bengaluru (Bangalore), 560100, Karnataka state, India
- Shodhaka Life Sciences Pvt. Ltd., IBAB, Biotech Park, Bengaluru (Bangalore), 560100, Karnataka state, India
- * E-mail:
| |
Collapse
|
19
|
Miousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. Response of transposable elements to environmental stressors. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2015; 765:19-39. [PMID: 26281766 PMCID: PMC4544780 DOI: 10.1016/j.mrrev.2015.05.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) comprise a group of repetitive sequences that bring positive, negative, as well as neutral effects to the host organism. Earlier considered as "junk DNA," TEs are now well-accepted driving forces of evolution and critical regulators of the expression of genetic information. Their activity is regulated by epigenetic mechanisms, including methylation of DNA and histone modifications. The loss of epigenetic control over TEs, exhibited as loss of DNA methylation and decondensation of the chromatin structure, may result in TEs reactivation, initiation of their insertional mutagenesis (retrotransposition) and has been reported in numerous human diseases, including cancer. Accumulating evidence suggests that these alterations are not the simple consequences of the disease, but often may drive the pathogenesis, as they can be detected early during disease development. Knowledge derived from the in vitro, in vivo, and epidemiological studies, clearly demonstrates that exposure to ubiquitous environmental stressors, many of which are carcinogens or suspected carcinogens, are capable of causing alterations in methylation and expression of TEs and initiate retrotransposition events. Evidence summarized in this review suggests that TEs are the sensitive endpoints for detection of effects caused by such environmental stressors, as ionizing radiation (terrestrial, space, and UV-radiation), air pollution (including particulate matter [PM]-derived and gaseous), persistent organic pollutants, and metals. Furthermore, the significance of these effects is characterized by their early appearance, persistence and presence in both, target organs and peripheral blood. Altogether, these findings suggest that TEs may potentially be introduced into safety and risk assessment and serve as biomarkers of exposure to environmental stressors. Furthermore, TEs also show significant potential to become invaluable surrogate biomarkers in clinic and possible targets for therapeutic modalities for disease treatment and prevention.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Annie Lumen
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Alesia Ferguson
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Ilias G Kavouras
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Igor Koturbash
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|