1
|
Becherini C, Lancia A, Detti B, Lucidi S, Scartoni D, Ingrosso G, Carnevale MG, Roghi M, Bertini N, Orsatti C, Mangoni M, Francolini G, Marani S, Giacomelli I, Loi M, Pergolizzi S, Bonzano E, Aristei C, Livi L. Modulation of tumor-associated macrophage activity with radiation therapy: a systematic review. Strahlenther Onkol 2023; 199:1173-1190. [PMID: 37347290 PMCID: PMC10673745 DOI: 10.1007/s00066-023-02097-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/23/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVE Tumor-associated macrophages (TAMs) are the most represented cells of the immune system in the tumor microenvironment (TME). Besides its effects on cancer cells, radiation therapy (RT) can alter TME composition. With this systematic review, we provide a better understanding on how RT can regulate macrophage characterization, namely the M1 antitumor and the M2 protumor polarization, with the aim of describing new effective RT models and exploration of the possibility of integrating radiation with other available therapies. METHODS A systematic search in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was carried out in PubMed, Google Scholar, and Scopus. Articles from January 2000 to April 2020 which focus on the role of M1 and M2 macrophages in the response to RT were identified. RESULTS Of the 304 selected articles, 29 qualitative summary papers were included in our analysis (16 focusing on administration of RT and concomitant systemic molecules, and 13 reporting on RT alone). Based on dose intensity, irradiation was classified into low (low-dose irradiation, LDI; corresponding to less than 1 Gy), moderate (moderate-dose irradiation, MDI; between 1 and 10 Gy), and high (high-dose irradiation, HDI; greater than 10 Gy). While HDI seems to be responsible for induced angiogenesis and accelerated tumor growth through early M2-polarized TAM infiltration, MDI stimulates phagocytosis and local LDI may represent a valid treatment option for possible combination with cancer immunotherapeutic agents. CONCLUSION TAMs seem to have an ambivalent role on the efficacy of cancer treatment. Radiation therapy, which exerts its main antitumor activity via cell killing, can in turn interfere with TAM characterization through different modalities. The plasticity of TAMs makes them an attractive target for anticancer therapies and more research should be conducted to explore this potential therapeutic strategy.
Collapse
Affiliation(s)
- Carlotta Becherini
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
| | - Andrea Lancia
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Beatrice Detti
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy.
| | - Sara Lucidi
- Radiation Oncology, Santa Chiara Hospital, Trento, Italy
| | - Daniele Scartoni
- Proton Treatment Center, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, Perugia General Hospital, 06129, Perugia, Italy
| | - Maria Grazia Carnevale
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Manuele Roghi
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Niccolò Bertini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Carolina Orsatti
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Monica Mangoni
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| | - Giulio Francolini
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
| | - Simona Marani
- Radiation Oncology Section, Perugia General Hospital, 06129, Perugia, Italy
| | - Irene Giacomelli
- Proton Treatment Center, Azienda Provinciale per i Servizi Sanitari, Trento, Italy
| | - Mauro Loi
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
| | - Stefano Pergolizzi
- Radiation Oncology Unit-Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Elisabetta Bonzano
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, Perugia General Hospital, 06129, Perugia, Italy
| | - Lorenzo Livi
- Radiation Oncology, Azienda Universitaria Ospedaliera Careggi, Università degli Studi di Firenze, Largo Brambila 1, 50134, Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Pinto AT, Machado AB, Osório H, Pinto ML, Vitorino R, Justino G, Santa C, Castro F, Cruz T, Rodrigues C, Lima J, Sousa JLR, Cardoso AP, Figueira R, Monteiro A, Marques M, Manadas B, Pauwels J, Gevaert K, Mareel M, Rocha S, Duarte T, Oliveira MJ. Macrophage Resistance to Ionizing Radiation Exposure Is Accompanied by Decreased Cathepsin D and Increased Transferrin Receptor 1 Expression. Cancers (Basel) 2022; 15:270. [PMID: 36612268 PMCID: PMC9818572 DOI: 10.3390/cancers15010270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To identify a molecular signature of macrophages exposed to clinically relevant ionizing radiation (IR) doses, mirroring radiotherapy sessions. METHODS Human monocyte-derived macrophages were exposed to 2 Gy/ fraction/ day for 5 days, mimicking one week of cancer patient's radiotherapy. Protein expression profile by proteomics was performed. RESULTS A gene ontology analysis revealed that radiation-induced protein changes are associated with metabolic alterations, which were further supported by a reduction of both cellular ATP levels and glucose uptake. Most of the radiation-induced deregulated targets exhibited a decreased expression, as was the case of cathepsin D, a lysosomal protease associated with cell death, which was validated by Western blot. We also found that irradiated macrophages exhibited an increased expression of the transferrin receptor 1 (TfR1), which is responsible for the uptake of transferrin-bound iron. TfR1 upregulation was also found in tumor-associated mouse macrophages upon tumor irradiation. In vitro irradiated macrophages also presented a trend for increased divalent metal transporter 1 (DMT1), which transports iron from the endosome to the cytosol, and a significant increase in iron release. CONCLUSIONS Irradiated macrophages present lower ATP levels and glucose uptake, and exhibit decreased cathepsin D expression, while increasing TfR1 expression and altering iron metabolism.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Beatriz Machado
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Champalimaud Centre for the Unknown, Fundação Champalimaud, 1400-038 Lisboa, Portugal
| | - Hugo Osório
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Marta Laranjeiro Pinto
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gonçalo Justino
- Centro de Química Estrutural–Institute of Molecular Sciences, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
| | - Cátia Santa
- CNC–Center for Neuroscience and Cell Biology, Universidade de Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Flávia Castro
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Tânia Cruz
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Rodrigues
- REQUIMTE–LAQV, Chemistry Department, NOVA School of Science and Technology, Universidade de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Lima
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP–Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal
| | - José Luís R. Sousa
- Personal Health Data Science Group, Sano-Centre for Computational Personalised Medicine, 30-054 Krakow, Poland
| | - Ana Patrícia Cardoso
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar Universitário São João (CHUSJ), EPE, 4200-319 Porto, Portugal
| | - Bruno Manadas
- Institute for Interdisciplinary Research (III), Universidade de Coimbra, 3030-789 Coimbra, Portugal
| | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, 9000 Ghent, Belgium
| | - Sónia Rocha
- Institute of System, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3 GE, UK
| | - Tiago Duarte
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria José Oliveira
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB–Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Departament of Pathology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Abstract
PURPOSE Low dose radiation therapy (LDRT) using doses in the range of 30-150 cGy has been proposed as a means of mitigating the pneumonia associated with COVID-19. However, preliminary results from ongoing clinical trials have been mixed. The aim of this work is to develop a mathematical model of the viral infection and associated systemic inflammation in a patient based on the time evolution of the viral load. The model further proposes an immunomodulatory response to LDRT based on available data. Inflammation kinetics are then explored and compared to clinical results. METHODS The time evolution of a viral infection, inflammatory signaling factors, and inflammatory response are modeled by a set of coupled differential equations. Adjustable parameters are taken from the literature where available and otherwise iteratively adjusted to fit relevant data. Simple functions modeling both the suppression of pro-inflammatory signal factors and the enhancement of anti-inflammatory factors in response to low doses of radiation are developed. The inflammation response is benchmarked against C-reactive protein (CRP) levels measured for cohorts of patients with severe COVID-19. RESULTS The model fit the time-evolution of viral load data, cytokine data, and inflammation (CRP) data. When LDRT was applied early, the model predicted a reduction in peak inflammation consistent with the difference between the non-surviving and surviving cohorts. This reduction of peak inflammation diminished as the application of LDRT was delayed. CONCLUSION The model tracks the available data on viral load, cytokine levels, and inflammatory biomarkers well. An LDRT effect is large enough in principle to provide a life-saving immunomodulatory effect, though patients treated with LDRT already near the peak of their inflammation trajectory are unlikely to see drastic reductions in that peak. This result potentially explains some discrepancies in the preliminary clinical trial data.
Collapse
Affiliation(s)
- Charles Kirkby
- Department of Medical Physics, Jack Ady Cancer Centre, Lethbridge, Alberta, Canada.,Department of Oncology, University of Calgary, Calgary, Alberta, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Ishikiriyama T, Nakashima H, Endo-Umeda K, Nakashima M, Ito S, Kinoshita M, Ikarashi M, Makishima M, Seki S. Contrasting functional responses of resident Kupffer cells and recruited liver macrophages to irradiation and liver X receptor stimulation. PLoS One 2021; 16:e0254886. [PMID: 34297734 PMCID: PMC8301620 DOI: 10.1371/journal.pone.0254886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
In the murine liver, there are two major macrophage populations, namely resident Kupffer cells (resKCs) with phagocytic activity and recruited macrophages (recMφs) with cytokine-producing capacity. This study was performed to clarify the functional differences between these two populations, focusing on their susceptibility to radiation and response to stimulation via liver X receptors (LXRs), which are implicated in cholesterol metabolism and immune regulation. Liver mononuclear cells (MNCs) were obtained from C57BL/6 (WT) mice with or without 2 Gy irradiation, and the phagocytic activity against Escherichia coli (E. coli) as well as TNF-α production were compared between the two macrophage populations. To assess LXR functions, phagocytosis, TNF-α production, and endocytosis of acetylated low-density lipoprotein (LDL) were compared after synthetic LXR ligand stimulation. Furthermore, LXRα/β knockout (KO) mice and LXRα KO mice were compared with WT mice. Irradiation decreased intracellular TNF-α production by recMφs but did not affect the phagocytic activity of resKCs. In vitro LXR stimulation enhanced E. coli phagocytosis by resKCs but decreased E. coli-stimulated TNF-α production by recMφs. Phagocytic activity and acetylated LDL endocytosis were decreased in both LXRα/β KO mice and LXRα KO mice, with serum TNF-α levels after E. coli injection in the former being higher than those in WT mice. In conclusion, resKCs and recMφs exhibited different functional features in response to radiation and LXR stimulation, highlighting their distinct roles liver immunity and lipid metabolism.
Collapse
Affiliation(s)
- Takuya Ishikiriyama
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Kaori Endo-Umeda
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masami Ikarashi
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi, Tokyo, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
5
|
Rey N, Ebrahimian T, Gloaguen C, Kereselidze D, Magneron V, Bontemps CA, Demarquay C, Olsson G, Haghdoost S, Lehoux S, Ebrahimian TG. Exposure to Low to Moderate Doses of Ionizing Radiation Induces A Reduction of Pro-Inflammatory Ly6chigh Monocytes and a U-Curved Response of T Cells in APOE -/- Mice. Dose Response 2021; 19:15593258211016237. [PMID: 34163310 PMCID: PMC8191078 DOI: 10.1177/15593258211016237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
Low dose ionizing radiation (LDIR) is known to have a protective effect on atherosclerosis in rodent studies, but how it impacts different cells types involved in lesion formation remains incompletely understood. We investigated the immunomodulatory response of different doses and dose-rates of irradiation in ApoE-/- mice. Mice were exposed to external γ rays at very low (1.4 mGy.h-1) or low (50 mGy.h-1) dose-rates, with cumulative doses spanning 50 to 1000 mGy. Flow cytometry of circulating cells revealed a significant decrease in pro-inflammatory Ly6CHi monocytes at all cumulative doses at low dose-rate, but more disparate effects at very low dose-rate with reductions in Ly6CHi cells at doses of 50, 100 and 750 mGy only. In contrast, Ly6CLo monocytes were not affected by LDIR. Similarly, proportions of CD4+ T cell subsets in the spleen did not differ between irradiated mice and non-irradiated controls, whether assessing CD25+FoxP3+ regulatory or CD69+ activated lymphocytes. In the aorta, gene expression of cytokines such as IL-1 and TGF-ß and adhesion molecules such as E-Selectin, ICAM-1, and VCAM-1 were reduced at the intermediate dose of 200 mGy. These results suggest that LDIR may reduce atherosclerotic plaque formation by selectively reducing blood pro-inflammatory monocytes and by impairing adhesion molecule expression and inflammatory processes in the vessel wall. In contrast, splenic T lymphocytes were not affected by LDIR. Furthermore, some responses to irradiation were nonlinear; reductions in aortic gene expression were significant at intermediate doses, but not at either highest or lowest doses. This work furthers our understanding of the impact of LDIR with different dose-rates on immune system response in the context of atherosclerosis.
Collapse
Affiliation(s)
- N Rey
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| | - T Ebrahimian
- Lady Davis Institute, McGill University, Montreal, Canada
| | - C Gloaguen
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| | - D Kereselidze
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| | - V Magneron
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| | - C A Bontemps
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| | - C Demarquay
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| | - G Olsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - S Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,University of Caen Normandie, Aria/Cimap, GANIL, Campus Jules Horowitz, Caen, France
| | - S Lehoux
- Lady Davis Institute, McGill University, Montreal, Canada
| | - Teni G Ebrahimian
- IRSN, Institut de Radioprotection et de Sûreté Nucléaire, Laboratoire de Radiotoxicologie et Radiobiologie Experimentale, Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Venkatesulu BP, Lester S, Hsieh CE, Verma V, Sharon E, Ahmed M, Krishnan S. Low-Dose Radiation Therapy for COVID-19: Promises and Pitfalls. JNCI Cancer Spectr 2021; 5:pkaa103. [PMID: 33437924 PMCID: PMC7717342 DOI: 10.1093/jncics/pkaa103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic caused by SARS-CoV-2 has exacted an enormous toll on healthcare systems worldwide. The cytokine storm that follows pulmonary infection is causally linked to respiratory compromise and mortality in the majority of patients. The sparsity of viable treatment options for this viral infection and the sequelae of pulmonary complications have fueled the quest for new therapeutic considerations. One such option, the long-forgotten idea of using low-dose radiation therapy, has recently found renewed interest in many academic centers. We outline the scientific and logistical rationale for consideration of this option and the mechanistic underpinnings of any potential therapeutic value, particularly as viewed from an immunological perspective. We also discuss the preliminary and/or published results of prospective trials examining low-dose radiation therapy for COVID-19.
Collapse
Affiliation(s)
- Bhanu P Venkatesulu
- Department of Radiation Oncology, Loyola University Stritch School of Medicine, Chicago, IL, USA
| | - Scott Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Cheng-En Hsieh
- Department of Immunology, MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Verma
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Elad Sharon
- Radiation Research Program, Division Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Mansoor Ahmed
- Cancer Therapy Evaluation Program, Division Cancer Treatment and Diagnosis National Cancer Institute, Bethesda, MD, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
7
|
Kitabatake K, Kaji T, Tsukimoto M. ATP and ADP enhance DNA damage repair in γ-irradiated BEAS-2B human bronchial epithelial cells through activation of P2X7 and P2Y12 receptors. Toxicol Appl Pharmacol 2020; 407:115240. [PMID: 32941855 DOI: 10.1016/j.taap.2020.115240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Agents that promote DNA repair may be useful as radioprotectants to minimize side effects such as radiation pneumonia caused by damage to normal cells during radiation therapy to treat lung cancer. We have reported that extracellular nucleotides and nucleosides are involved in the P2 or P1 receptor-mediated DNA damage response (DDR) after γ-irradiation. Here, we investigated the effects of ATP, UTP, GTP, ITP and their metabolites on the γH2AX/53BP1 focus formation in nuclei (a measure of γ-irradiation-induced DDR) and the survival of γ-irradiated immortalized human bronchial epithelial (BEAS-2B) cells. Fluorescence immunostaining showed that ATP and ADP increase DDR and DNA repair, and exhibit radioprotective effects as evaluated by colony formation assay. These effects of ATP or ADP were blocked by inhibitors of P2X7 or P2Y12 receptor, respectively, and by ERK1/2 inhibitor. ATP and ADP enhanced phosphorylation of ERK1/2 by suppressing MKP-1 and MKP-3 expression after γ-irradiation. These results indicate that ATP and ADP exhibit radioprotective effects by phosphorylation of ERK1/2 via activation of P2X7 and P2Y12 receptors, respectively, to promote γ-irradiation-induced DDR and DNA repair. ATP and ADP appear to be candidates for radioprotectants to reduce damage to non-cancerous cells during lung cancer radiotherapy by promoting DDR and DNA repair.
Collapse
Affiliation(s)
- Kazuki Kitabatake
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-0022, Japan.
| |
Collapse
|
8
|
Malfitano AM, Pisanti S, Napolitano F, Di Somma S, Martinelli R, Portella G. Tumor-Associated Macrophage Status in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12071987. [PMID: 32708142 PMCID: PMC7409350 DOI: 10.3390/cancers12071987] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) represent the most abundant innate immune cells in tumors. TAMs, exhibiting anti-inflammatory phenotype, are key players in cancer progression, metastasis and resistance to therapy. A high TAM infiltration is generally associated with poor prognosis, but macrophages are highly plastic cells that can adopt either proinflammatory/antitumor or anti-inflammatory/protumor features in response to tumor microenvironment stimuli. In the context of cancer therapy, many anticancer therapeutics, apart from their direct effect on tumor cells, display different effects on TAM activation status and density. In this review, we aim to evaluate the indirect effects of anticancer therapies in the modulation of TAM phenotypes and pro/antitumor activity.
Collapse
Affiliation(s)
- Anna Maria Malfitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| | - Simona Pisanti
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Fabiana Napolitano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Sarah Di Somma
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy; (S.P.); (R.M.)
| | - Giuseppe Portella
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (F.N.); (S.D.S.)
- Correspondence: (A.M.M.); (G.P.); Tel.: +39-081-746-3056 (G.P.)
| |
Collapse
|
9
|
El-Hazek RMM, El-Sabbagh WA, El-Hazek RM, El-Gazzar MG. Anti-inflammatory and analgesic effect of LD-RT and some novel thiadiazole derivatives through COX-2 inhibition. Arch Pharm (Weinheim) 2020; 353:e2000094. [PMID: 32618021 DOI: 10.1002/ardp.202000094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
Generally, highly selective COX-2 inhibitors cause cardiovascular side effects. Celecoxib is the highly marketed coxib, so there is still a need for the synthesis of COX-2 inhibitors with less adverse effects. Moreover, low-dose radiotherapy (LD-RT) is clinically used for the treatment of inflammatory diseases. The present study aimed to investigate the analgesic and anti-inflammatory activity of a novel series of 1,3,4-thiadiazole derivatives alone or combined with LD-RT with a single dose of 0.5 Gy. Initially, in vitro COX-1/COX-2 inhibition assays were performed, identifying the sulfonamide-containing compounds 5-10 as the most potent candidates, with IC50 values in the range of 0.32-0.37 µM and the highest selectivity indices. These compounds and celecoxib were subjected to in vivo examination after their safety was assessed through the acute toxicity test. Treatment with compounds 5-10 inhibited carrageenan-induced edema by nearly 47-56%, which was nearly equivalent to celecoxib. Compounds 7 and 8 and celecoxib showed an analgesic activity of 64.15%, 49.05%, and 84.90%, respectively, whereas compounds 5, 6, 9, and 10 did not show any analgesic activity unless combined with LD-RT. Ulcerogenic activity, histological paw examination, and docking studies were performed. Compounds 5-10 were nearly similar to celecoxib, showing normal histological features with no ulcerogenic activity.
Collapse
Affiliation(s)
- Reham M M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Walaa A El-Sabbagh
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Centre for Radiation Research & Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
10
|
Hanekamp YN, Giordano J, Hanekamp JC, Khan MK, Limper M, Venema CS, Vergunst SD, Verhoeff JJC, Calabrese EJ. Immunomodulation Through Low-Dose Radiation for Severe COVID-19: Lessons From the Past and New Developments. Dose Response 2020; 18:1559325820956800. [PMID: 33013251 PMCID: PMC7513398 DOI: 10.1177/1559325820956800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Low-dose radiation therapy (LD-RT) has historically been a successful treatment for pneumonia and is clinically established as an immunomodulating therapy for inflammatory diseases. The ongoing COVID-19 pandemic has elicited renewed scientific interest in LD-RT and multiple small clinical trials have recently corroborated the historical LD-RT findings and demonstrated preliminary efficacy and immunomodulation for the treatment of severe COVID-19 pneumonia. The present review explicates archival medical research data of LD-RT and attempts to translate this into modernized evidence, relevant for the COVID-19 crisis. Additionally, we explore the putative mechanisms of LD-RT immunomodulation, revealing specific downregulation of proinflammatory cytokines that are integral to the development of the COVID-19 cytokine storm induced hyperinflammatory state. Radiation exposure in LD-RT is minimal compared to radiotherapy dosing standards in oncology care and direct toxicity and long-term risk for secondary disease are expected to be low. The recent clinical trials investigating LD-RT for COVID-19 confirm initial treatment safety. Based on our findings we conclude that LD-RT could be an important treatment option for COVID-19 patients that are likely to progress to severity. We advocate the further use of LD-RT in carefully monitored experimental environments to validate its effectiveness, risks and mechanisms of LD-RT.
Collapse
Affiliation(s)
- Yannic N. Hanekamp
- University Medical Centre Groningen, University of Groningen, the
Netherlands
| | - James Giordano
- Departments of Neurology and Biochemistry, and Pellegrino Center for
Clinical Bioethics, Georgetown University Medical Center, Washington, DC, USA
| | - Jaap C. Hanekamp
- University College Roosevelt, Middelburg, the Netherlands
- Department of Environmental Health Sciences, University of
Massachusetts, Amherst, MA, USA
| | - Mohammad K. Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory
University School of Medicine, Atlanta, GA, USA
| | - Maarten Limper
- Department of Rheumatology and Clinical Immunology, University
Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Samuel D. Vergunst
- University Medical Centre Groningen, University of Groningen, the
Netherlands
| | - Joost J. C. Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht,
Utrecht University, Utrecht, the Netherlands
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, University of
Massachusetts, Amherst, MA, USA
| |
Collapse
|
11
|
Radiobiological Principles of Radiotherapy for Benign Diseases. Radiat Oncol 2020. [DOI: 10.1007/978-3-319-52619-5_133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. Antioxid Redox Signal 2018; 29:1447-1487. [PMID: 29350049 PMCID: PMC6199630 DOI: 10.1089/ars.2017.7267] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Radiation therapy (from external beams to unsealed and sealed radionuclide sources) takes advantage of the detrimental effects of the clustered production of radicals and reactive oxygen species (ROS). Research has mainly focused on the interaction of radiation with water, which is the major constituent of living beings, and with nuclear DNA, which contains the genetic information. This led to the so-called target theory according to which cells have to be hit by ionizing particles to elicit an important biological response, including cell death. In cancer therapy, the Poisson law and linear quadratic mathematical models have been used to describe the probability of hits per cell as a function of the radiation dose. Recent Advances: However, in the last 20 years, many studies have shown that radiation generates "danger" signals that propagate from irradiated to nonirradiated cells, leading to bystander and other off-target effects. CRITICAL ISSUES Like for targeted effects, redox mechanisms play a key role also in off-target effects through transmission of ROS and reactive nitrogen species (RNS), and also of cytokines, ATP, and extracellular DNA. Particularly, nuclear factor kappa B is essential for triggering self-sustained production of ROS and RNS, thus making the bystander response similar to inflammation. In some therapeutic cases, this phenomenon is associated with recruitment of immune cells that are involved in distant irradiation effects (called "away-from-target" i.e., abscopal effects). FUTURE DIRECTIONS Determining the contribution of targeted and off-target effects in the clinic is still challenging. This has important consequences not only in radiotherapy but also possibly in diagnostic procedures and in radiation protection.
Collapse
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, CEA, CNRS INAC SyMMES UMR 5819, Grenoble, France
| |
Collapse
|
13
|
Calabrese EJ, Giordano JJ, Kozumbo WJ, Leak RK, Bhatia TN. Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacol Res 2018; 137:236-249. [DOI: 10.1016/j.phrs.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
|
14
|
Wunderlich R, Rühle PF, Deloch L, Rödel F, Fietkau R, Gaipl US, Frey B. Ionizing radiation reduces the capacity of activated macrophages to induce T-cell proliferation, but does not trigger dendritic cell-mediated non-targeted effects. Int J Radiat Biol 2018; 95:33-43. [DOI: 10.1080/09553002.2018.1490037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Roland Wunderlich
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Paul Friedrich Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S. Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Kojima S, Thukimoto M, Cuttler JM, Inoguchi K, Ootaki T, Shimura N, Koga H, Murata A. Recovery From Rheumatoid Arthritis Following 15 Months of Therapy With Low Doses of Ionizing Radiation: A Case Report. Dose Response 2018; 16:1559325818784719. [PMID: 30013458 PMCID: PMC6043934 DOI: 10.1177/1559325818784719] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/27/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that occurs commonly in old people. Hot spring radon therapy is widely practiced in Central Europe and Japan for relief from the painful symptoms. The usual duration of a spa treatment is a week or two, and the relief is temporary. This article reports on the near-complete recovery of a patient who had been suffering from RA for 10 years. The patient received 15 months of low-dose radon and γ-radiation therapy in a room that reproduced the conditions of a radon spa. The daily 40-minute exposure in the therapy room was supplemented by ten 6-minute radio-nebulizer treatments. The inflammation markers C-reactive protein and matrix metalloproteinase 3 declined strongly to the normal level of 0.07 mg/dL and the near-normal level of 48.9 ng/mL, respectively. After the patient's return to good health, the frequency of the visits was reduced to twice each month. The patient's protection systems appear to have adapted to stimulated conditions, sufficiently to sustain the recovery from RA. Such a long-term course of treatments and follow-up maintenance could be carried out in any hospital that has these low-dose radiation therapy rooms. The therapy could be scheduled to suit patient availability.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-shi, Chiba, Japan
| | - Mitsutoshi Thukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-shi, Chiba, Japan
| | | | | | | | - Noriko Shimura
- Faculty of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | - Hironobu Koga
- Lead and Company Co, Ltd, Minami-ku, Yokohama, Japan
| | | |
Collapse
|
16
|
Li J, Yao ZY, She C, Li J, Ten B, Liu C, Lin SB, Dong QR, Ren PG. Effects of low-dose X-ray irradiation on activated macrophages and their possible signal pathways. PLoS One 2017; 12:e0185854. [PMID: 29077718 PMCID: PMC5659615 DOI: 10.1371/journal.pone.0185854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
Low-dose irradiation (LDI) has been used in clinics to treat human diseases, including chronic inflammation. This study assessed the effects of LDI on the inflammatory response of activated mouse primary peritoneal macrophages, and the underlying signal pathways. Primary peritoneal macrophages were isolated from mice and then incubated with lipopolysaccharide (LPS)-coated Ti microparticles (Ti-positive control) with or without brief exposure to LDI (X-ray, 0.5 Gy) 1 h later (Ti-LDI group) or left untreated in culture medium (Ti-negative control). The macrophages were then subjected to qRT-PCR, Western blot, cell viability CCK-8 assay, and ELISA. qRT-PCR analysis revealed the Ti-LDI group expressed significantly lower levels of IL-1β, IL-6, and TNF-α mRNA than those of the Ti-positive control group, while the ELISA data showed that Ti-LDI group had significantly lower secretion of IL-1β, IL-6, and TNF-α proteins. The most significant reduction associated with LDI was the secretion TNF-α protein, which barely increased from 13 to 25 h after treatment. Western blot data demonstrated that phosphorylation of p65 and ERK was much lower in the Ti-LDI group than in the controls. The data from the current study suggests that LDI of activated mouse macrophages was associated with significantly lower inflammation responses, compared with non-exposed activated macrophages, which was possibly through inhibition of the NF-κB and ERK pathways.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen-yu Yao
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Li
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Bin Ten
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Chang Liu
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
| | - Shu-bin Lin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi-Rong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (QRD); (PGR)
| | - Pei-Gen Ren
- Department of Translational Medicine R&D Center, Shenzhen Institute of Advanced Technology, CAS, Shenzhen, Guangdong, China
- * E-mail: (QRD); (PGR)
| |
Collapse
|
17
|
Wu Q, Allouch A, Martins I, Modjtahedi N, Deutsch E, Perfettini JL. Macrophage biology plays a central role during ionizing radiation-elicited tumor response. Biomed J 2017; 40:200-211. [PMID: 28918908 PMCID: PMC6136289 DOI: 10.1016/j.bj.2017.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/01/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022] Open
Abstract
Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.
Collapse
Affiliation(s)
- Qiuji Wu
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France; Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Hubei, China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Awatef Allouch
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Isabelle Martins
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Nazanine Modjtahedi
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Eric Deutsch
- Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France
| | - Jean-Luc Perfettini
- Cell Death and Aging Team, Gystave Roussy Cancer Campus, Villejuif, France; Laboratory of Molecular Radiotherapy, INSERM U1030, Gystave Roussy Cancer Campus, Villejuif, France; Gystave Roussy Cancer Campus, Villejuif, France; Université Paris Sud - Paris Saclay, Villejuif, France.
| |
Collapse
|
18
|
Genard G, Lucas S, Michiels C. Reprogramming of Tumor-Associated Macrophages with Anticancer Therapies: Radiotherapy versus Chemo- and Immunotherapies. Front Immunol 2017; 8:828. [PMID: 28769933 PMCID: PMC5509958 DOI: 10.3389/fimmu.2017.00828] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a central role in tumor progression, metastasis, and recurrence after treatment. Macrophage plasticity and diversity allow their classification along a M1–M2 polarization axis. Tumor-associated macrophages usually display a M2-like phenotype, associated with pro-tumoral features whereas M1 macrophages exert antitumor functions. Targeting the reprogramming of TAMs toward M1-like macrophages would thus be an efficient way to promote tumor regression. This can be achieved through therapies including chemotherapy, immunotherapy, and radiotherapy (RT). In this review, we first describe how chemo- and immunotherapies can target TAMs and, second, we detail how RT modifies macrophage phenotype and present the molecular pathways that may be involved. The identification of irradiation dose inducing macrophage reprogramming and of the underlying mechanisms could lead to the design of novel therapeutic strategies and improve synergy in combined treatments.
Collapse
Affiliation(s)
- Géraldine Genard
- URBC - NARILIS, University of Namur, Namur, Belgium.,Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN/PMR) - NARILIS, University of Namur, Namur, Belgium
| | | |
Collapse
|
19
|
Rödel F, Fournier C, Wiedemann J, Merz F, Gaipl US, Frey B, Keilholz L, Seegenschmiedt MH, Rödel C, Hehlgans S. Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases. Front Immunol 2017; 8:519. [PMID: 28515727 PMCID: PMC5413517 DOI: 10.3389/fimmu.2017.00519] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/18/2017] [Indexed: 01/08/2023] Open
Abstract
For decades, low- and moderate-dose radiation therapy (RT) has been shown to exert a beneficial therapeutic effect in a multitude of non-malignant conditions including painful degenerative muscoloskeletal and hyperproliferative disorders. Dupuytren and Ledderhose diseases are benign fibroproliferative diseases of the hand/foot with fibrotic nodules and fascial cords, which determine debilitating contractures and deformities of fingers/toes, while keloids are exuberant scar formations following burn damage, surgery, and trauma. Although RT has become an established and effective option in the management of these diseases, experimental studies to illustrate cellular composites and factors involved remain to be elucidated. More recent findings, however, indicate the involvement of radiation-sensitive targets like mitotic fibroblasts/myofibroblasts as well as inflammatory cells. Radiation-related molecular mechanisms affecting these target cells include the production of free radicals to hamper proliferative activity and interference with growth factors and cytokines. Moreover, an impairment of activated immune cells involved in both myofibroblast proliferative and inflammatory processes may further contribute to the clinical effects. We here aim at briefly describing mechanisms contributing to a modulation of proliferative and inflammatory processes and to summarize current concepts of treating hyperproliferative diseases by low and moderate doses of ionizing radiation.
Collapse
Affiliation(s)
- Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Claudia Fournier
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Julia Wiedemann
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Felicitas Merz
- Department of Biophysics, GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ludwig Keilholz
- Department of Radiotherapy, Clinical Center Bayreuth, Bayreuth, Germany
| | | | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Goethe-Universität, Frankfurt am Main, Germany
| |
Collapse
|
20
|
Kojima S, Tsukimoto M, Shimura N, Koga H, Murata A, Takara T. Treatment of Cancer and Inflammation With Low-Dose Ionizing Radiation: Three Case Reports. Dose Response 2017; 15:1559325817697531. [PMID: 28539853 PMCID: PMC5433552 DOI: 10.1177/1559325817697531] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is considerable evidence from experimental studies in animals, as well as from clinical reports, that low-dose radiation hormesis is effective for the treatment of cancer and ulcerative colitis. In this study, we present 3 case reports that support the clinical efficacy of low-dose radiation hormesis in patients with these diseases. First, a patient with prostate cancer who had undergone surgical resection showed a subsequent increase in prostate-specific antigen (PSA). His PSA value started decreasing immediately after the start of repeated low-dose X-ray irradiation treatment and remained low thereafter. Second, a patient with prostate cancer with bone metastasis was treated with repeated low-dose X-ray irradiation. His PSA level decreased to nearly normal within 3 months after starting the treatment and remained at the low level after the end of hormesis treatment. His bone metastasis almost completely disappeared. Third, a patient with ulcerative colitis showed a slow initial response to repeated low-dose irradiation treatment using various modalities, including drinking radon-containing water, but within 8 months, his swelling and bleeding had completely disappeared. After 1 year, the number of bowel movements had become normal. Interest in the use of radiation hormesis in clinical practice is increasing, and we hope that these case reports will encourage further clinical investigations.
Collapse
Affiliation(s)
- Shuji Kojima
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-Shi, Chiba, Japan
| | - Mitsutoshi Tsukimoto
- Department of Radiation Biosciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), Noda-Shi, Chiba, Japan
| | - Noriko Shimura
- Faculty of Pharmaceutical Sciences, Ohu University, Koriyama, Japan
| | | | | | | |
Collapse
|
21
|
Prakash H, Klug F, Nadella V, Mazumdar V, Schmitz-Winnenthal H, Umansky L. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: lesson from insulinoma. Carcinogenesis 2016; 37:301-313. [PMID: 26785731 DOI: 10.1093/carcin/bgw007] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor infiltrating iNOS+ macrophages under the influence of immunosuppressive tumor microenvironment gets polarized to tumor-promoting and immunosuppressive macrophages, known as tumor-associated macrophages (TAM). Their recruitment and increased density in the plethora of tumors has been associated with poor prognosis in cancer patients. Therefore, retuning of TAM to M1 phenotype would be a key for effective immunotherapy. Radiotherapy has been a potential non-invasive strategy to improve cancer immunotherapy and tumor immune rejection. Irradiation of late-stage tumor-bearing Rip1-Tag5 mice twice with 2 Gy dose resulted in profound changes in the inflammatory tumor micromilieu, characterized by induction of M1-associated effecter cytokines as well as reduction in protumorigenic and M2-associated effecter cytokines. Similarly, in vitro irradiation of macrophages with 2 Gy dose-induced expression of iNOS, NO, NFκBpp65, pSTAT3 and proinflammatory cytokines secretion while downregulating p38MAPK which are involved in iNOS translation and acquisition of an M1-like phenotype. Enhancement of various M2 effecter cytokines and angiogenic reprogramming in iNOs+ macrophage depleted tumors and their subsequent reduction by 2 Gy dose in Rip1-Tag5 transgenic mice furthermore demonstrated a critical role of peritumoral macrophages in the course of gamma irradiation mediated M1 retuning of insulinoma.
Collapse
Affiliation(s)
- Hridayesh Prakash
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| | - Felix Klug
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| | - Vinod Nadella
- School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | - Varadendra Mazumdar
- School of Life Sciences , University of Hyderabad , Hyderabad 500046 , India
| | | | - Liudmila Umansky
- Translational Immunology Division , German Cancer Research Center (DKFZ) and National Center of Tumor Diseases (NCT) , Im-Neuenheimer Feld 460 , 69120 Heidelberg , Germany
| |
Collapse
|
22
|
Teresa Pinto A, Laranjeiro Pinto M, Patrícia Cardoso A, Monteiro C, Teixeira Pinto M, Filipe Maia A, Castro P, Figueira R, Monteiro A, Marques M, Mareel M, Dos Santos SG, Seruca R, Adolfo Barbosa M, Rocha S, José Oliveira M. Ionizing radiation modulates human macrophages towards a pro-inflammatory phenotype preserving their pro-invasive and pro-angiogenic capacities. Sci Rep 2016; 6:18765. [PMID: 26735768 PMCID: PMC4702523 DOI: 10.1038/srep18765] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023] Open
Abstract
In order to improve the efficacy of conventional radiotherapy, attention has been paid to immune cells, which not only modulate cancer cell response to therapy but are also highly recruited to tumours after irradiation. Particularly, the effect of ionizing radiation on macrophages, using therapeutically relevant doses, is not well understood. To evaluate how radiotherapy affects macrophage behaviour and macrophage-mediated cancer cell activity, human monocyte derived-macrophages were subjected, for a week, to cumulative ionizing radiation doses, as used during cancer treatment (2 Gy/fraction/day). Irradiated macrophages remained viable and metabolically active, despite DNA damage. NF-kappaB transcription activation and increased Bcl-xL expression evidenced the promotion of pro-survival activity. A significant increase of pro-inflammatory macrophage markers CD80, CD86 and HLA-DR, but not CCR7, TNF and IL1B was observed after 10 Gy cumulative doses, while anti-inflammatory markers CD163, MRC1, VCAN and IL-10 expression decreased, suggesting the modulation towards a more pro-inflammatory phenotype. Moreover, ionizing radiation induced macrophage morphological alterations and increased their phagocytic rate, without affecting matrix metalloproteases (MMP)2 and MMP9 activity. Importantly, irradiated macrophages promoted cancer cell-invasion and cancer cell-induced angiogenesis. Our work highlights macrophage ability to sustain cancer cell activities as a major concern that needs to be addressed to improve radiotherapy efficacy.
Collapse
Affiliation(s)
- Ana Teresa Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Laranjeiro Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Ana Patrícia Cardoso
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,FEUP-Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Cátia Monteiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal
| | - Marta Teixeira Pinto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - André Filipe Maia
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC-Institute for Molecular and Cell Biology, University of Porto, Porto, 4200-465, Portugal
| | - Patrícia Castro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, 4200-319, Portugal
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, B-9000, Belgium
| | - Susana Gomes Dos Santos
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Raquel Seruca
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| | - Mário Adolfo Barbosa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, 4050-313, Portugal
| | - Sónia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria José Oliveira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,INEB-Institute of Biomedical Engineering, University of Porto, Porto, 4200-465, Portugal.,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, 4200-319, Portugal
| |
Collapse
|
23
|
Rödel F, Frey B, Multhoff G, Gaipl U. Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 2015; 356:105-13. [DOI: 10.1016/j.canlet.2013.09.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/13/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
|
24
|
Wunderlich R, Ernst A, Rödel F, Fietkau R, Ott O, Lauber K, Frey B, Gaipl US. Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol 2015; 179:50-61. [PMID: 24730395 PMCID: PMC4260896 DOI: 10.1111/cei.12344] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
Benign painful and inflammatory diseases have been treated for decades with low/moderate doses of ionizing radiation (LD-X-irradiation). Tissue macrophages regulate initiation and resolution of inflammation by the secretion of cytokines and by acting as professional phagocytes. Having these pivotal functions, we were interested in how activated macrophages are modulated by LD-X-irradiation, also with regard to radiation protection issues and carcinogenesis. We set up an ex-vivo model in which lipopolysaccharide pre-activated peritoneal macrophages (pMΦ) of radiosensitive BALB/c mice, mimicking activated macrophages under inflammatory conditions, were exposed to X-irradiation from 0·01 Gy up to 2 Gy. Afterwards, the viability of the pMΦ, their transmigration and chemotaxis, the phagocytic behaviour, the secretion of inflammatory cytokines and underlying signalling pathways were determined. Exposure of pMΦ up to a single dose of 2 Gy did not influence their viability and phagocytic function, an important fact regarding radiation protection. However, significantly reduced migration, but increased chemotaxis of pMΦ after exposure to 0·1 or 0·5 Gy, was detected. Both might relate to the resolution of inflammation. Cytokine analyses revealed that, in particular, the moderate dose of 0·5 Gy applied in low-dose radiotherapy for inflammatory diseases results in an anti-inflammatory cytokine microenvironment of pMΦ, as the secretion of the proinflammatory cytokine interleukin (IL)-1β was reduced and that of the anti-inflammatory cytokine transforming growth factor (TGF)-β increased. Further, the reduced secretion of IL-1β correlated with reduced nuclear translocation of nuclear factor (NF)-κB p65, starting at exposure of pMΦ to 0·5 Gy of X-irradiation. We conclude that inflammation is modulated by LD-X-irradiation via changing the inflammatory phenotype of macrophages.
Collapse
Affiliation(s)
- R Wunderlich
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
EL-SAGHIRE HOUSSEIN, MICHAUX ARLETTE, THIERENS HUBERT, BAATOUT SARAH. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med 2013; 32:1407-14. [DOI: 10.3892/ijmm.2013.1514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022] Open
|
26
|
Frischholz B, Wunderlich R, Rühle PF, Schorn C, Rödel F, Keilholz L, Fietkau R, Gaipl US, Frey B. Reduced secretion of the inflammatory cytokine IL-1β by stimulated peritoneal macrophages of radiosensitive Balb/c mice after exposure to 0.5 or 0.7 Gy of ionizing radiation. Autoimmunity 2013; 46:323-8. [PMID: 23215648 DOI: 10.3109/08916934.2012.747522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Since the beginning of the 20th century, low dose radiotherapy (LD-RT) has been practiced and established as therapy of inflammatory diseases. Several clinical studies already have proven the anti-inflammatory effect of low doses of ionizing irradiation (LDR). However, further research is inevitable to reveal the underlying immune-biological mechanisms. Focus has been set on the modulation of activated macrophages by LDR, since they participate in both, initiation and resolution of inflammation. Here we examined with an ex vivo peritoneal mouse macrophage model how LDR modulates the secretion of the inflammatory cytokines IL-1β and TNF-α by activated macrophages and whether the basal radiosensitivity of the immune cells has influence on it. Peritoneal macrophages of Balb/c mice responded to exposure of 0.5 or 0.7 Gy of ionizing irradiation (X-ray) with significant decreased release of IL-1β and slightly, but not significantly, reduced release of TNF-α. Macrophages of the less radiosensitive C57BL/6 mice did not show this anti-inflammatory reaction. This was observed in both wild type and human TNF-α transgenic animals with C57BL/6 background. We conclude that only the inflammatory phenotype of more radiosensitive macrophages is reduced by LDR and that ex vivo and in vivo models with primary cells should be applied to examine how the immune system is modulated by LDR.
Collapse
Affiliation(s)
- Birgit Frischholz
- Department of Radiation Oncology University, Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Calabrese EJ, Calabrese V. Reduction of arthritic symptoms by low dose radiation therapy (LD-RT) is associated with an anti-inflammatory phenotype. Int J Radiat Biol 2012; 89:278-86. [DOI: 10.3109/09553002.2013.752594] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Rödel F, Frey B, Manda K, Hildebrandt G, Hehlgans S, Keilholz L, Seegenschmiedt MH, Gaipl US, Rödel C. Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation. Front Oncol 2012; 2:120. [PMID: 23057008 PMCID: PMC3457026 DOI: 10.3389/fonc.2012.00120] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/03/2012] [Indexed: 01/12/2023] Open
Abstract
Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice.
Collapse
Affiliation(s)
- Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital of Frankfurt, Johann Wolfgang-Goethe Universität Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Rubner Y, Wunderlich R, Rühle PF, Kulzer L, Werthmöller N, Frey B, Weiss EM, Keilholz L, Fietkau R, Gaipl US. How does ionizing irradiation contribute to the induction of anti-tumor immunity? Front Oncol 2012; 2:75. [PMID: 22848871 PMCID: PMC3404483 DOI: 10.3389/fonc.2012.00075] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/02/2012] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy (RT) with ionizing irradiation is commonly used to locally attack tumors. It induces a stop of cancer cell proliferation and finally leads to tumor cell death. During the last years it has become more and more evident that besides a timely and locally restricted radiation-induced immune suppression, a specific immune activation against the tumor and its metastases is achievable by rendering the tumor cells visible for immune attack. The immune system is involved in tumor control and we here outline how RT induces anti-inflammation when applied in low doses and contributes in higher doses to the induction of anti-tumor immunity. We especially focus on how local irradiation induces abscopal effects. The latter are partly mediated by a systemic activation of the immune system against the individual tumor cells. Dendritic cells are the key players in the initiation and regulation of adaptive anti-tumor immune responses. They have to take up tumor antigens and consecutively present tumor peptides in the presence of appropriate co-stimulation. We review how combinations of RT with further immune stimulators such as AnnexinA5 and hyperthermia foster the dendritic cell-mediated induction of anti-tumor immune responses and present reasonable combination schemes of standard tumor therapies with immune therapies. It can be concluded that RT leads to targeted killing of the tumor cells and additionally induces non-targeted systemic immune effects. Multimodal tumor treatments should therefore tend to induce immunogenic tumor cell death forms within a tumor microenvironment that stimulates immune cells.
Collapse
Affiliation(s)
- Yvonne Rubner
- Radiation Immunobiology, Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lödermann B, Wunderlich R, Frey S, Schorn C, Stangl S, Rödel F, Keilholz L, Fietkau R, Gaipl US, Frey B. Low dose ionising radiation leads to a NF-κB dependent decreased secretion of active IL-1β by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 2012; 88:727-34. [PMID: 22545750 DOI: 10.3109/09553002.2012.689464] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Therapy with low doses of ionising radiation (X-rays) exerts anti-inflammatory effects. Little is known about whether and how low doses of X-ray treatment modulate the inflammatory phenotype of macrophages, especially the secretion of Interleukin-1beta (IL-1β). MATERIALS AND METHODS Macrophages were differentiated from human THP-1 monocytes, activated with lipopolysaccharide (LPS), treated with distinct low doses of X-rays, and co-activated with monosodium urate crystals (MSU) to induce inflammasome activation. Secretion of IL-1β was analysed by an enzyme-linked immunosorbent assay (ELISA) and Western blot. Furthermore, we analysed the intracellular amounts of the serine/threonine protein kinase B (named: Akt), mitogen-activated protein kinase p38 (p38), the v-rel reticuloendotheliosis viral oncogene homolog A (RelA), and pro- and cleaved IL-1β. RESULTS Low dose X-rays led to decreased secretion of active IL-1β in a manner discontinuous with dose which was most pronounced after 0.5 or 0.7 Gy. Passive release of lactate dehydrogenase (LDH) was not influenced by X-rays. The decreased secretion of IL-1β correlated with reduced translocation of RelA, being part of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) complex, into the nucleus. After 0.5 or 0.7 Gy of X-rays, the intracellular protein amounts of up (p38) and downstream molecules (Akt) of NF-κB were reduced in activated macrophages, as were the pro- and cleaved forms of IL-1β. CONCLUSIONS Distinct low doses of X-rays induce an anti-inflammatory phenotype of activated macrophages by lowering the amount of secreted IL-1β in a NF-κB dependent manner.
Collapse
Affiliation(s)
- Barbara Lödermann
- Department of Radiation Oncology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mutou-Yoshihara Y, Funayama T, Yokota Y, Kobayashi Y. Involvement of bystander effect in suppression of the cytokine production induced by heavy-ion broad beams. Int J Radiat Biol 2011; 88:258-66. [PMID: 22040060 DOI: 10.3109/09553002.2012.636138] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Immune cells accumulate in and around cancers and cooperate with each other using specific cytokines to attack the cancer cells. The heavy-ion beams for cancer therapy may stimulate immune cells and affect on the immune system. However, it is still poorly understood how the immune cells are stimulated by ion-beams. Here, we irradiated immune cells using heavy-ion beams and analyzed changes in production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) that are important cytokine for the cancer treatment. MATERIALS AND METHODS The human THP-1 monocytes were differentiated into macrophages and then irradiated using carbon-ion broad-beams (108 keV μm(-1)). To examine the bystander response after heavy-ion irradiation, a very small fraction (approx. 0.45%) of the cell population was irradiated using heavy-ion microbeams. After irradiation, we examined the cytokine productions. RESULTS When cells were irradiated with 5 Gy, cytokine levels were reduced after both microbeam irradiation and broad-beam irradiation. TNF-α production of macrophages with the nitric oxide (NO) inhibitor-treatment increased after carbon-ion broad-beam. NO was involved in the radiation-induced suppression of TNF-α production. CONCLUSIONS The suppression of cytokine production arose after irradiation with heavy-ions, and may also be induced in the surrounding non-irradiated cells via the bystander effect.
Collapse
Affiliation(s)
- Yasuko Mutou-Yoshihara
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | | | | | | |
Collapse
|
32
|
Ramgolam VS, Sha Y, Marcus KL, Choudhary N, Troiani L, Chopra M, Markovic-Plese S. B Cells as a Therapeutic Target for IFN-β in Relapsing–Remitting Multiple Sclerosis. THE JOURNAL OF IMMUNOLOGY 2011; 186:4518-26. [DOI: 10.4049/jimmunol.1000271] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
33
|
Khaper N, Bryan S, Dhingra S, Singal R, Bajaj A, Pathak CM, Singal PK. Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Signal 2010; 13:1033-49. [PMID: 20380580 DOI: 10.1089/ars.2009.2930] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress and inflammation are each implicated independently in the development and progression of heart failure. Their interaction, however, is also evident throughout the process from initial injury to cardiac remodeling and failure. In the failing heart, the linkage between excessive reactive oxygen species (ROS) and the cytokine elaboration is manifested in shared elements and cross-promotion within downstream signaling pathways. In spite of this, the failure of anticytokine immunotherapy and antioxidant therapy, which had previously shown promise, suggests that a more complete perspective of ROS-cytokine interaction is required. The present review focuses on two of the major cytokines that are demonstrably connected to oxidative stress--the pro-inflammatory tumor necrosis factor-alpha (TNF-alpha) and the anti-inflammatory interleukin-10 (IL-10)--and their interactions in cardiac remodeling and failure. It is proposed that an optimal balance between TNF-alpha and IL-10 may be of crucial importance in mitigating both inflammation and oxidative stress processes leading to heart failure.
Collapse
Affiliation(s)
- Neelam Khaper
- Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim YB, Yang CR, Gao J. Functional proteomic pattern identification under low dose ionizing radiation. Artif Intell Med 2010; 49:177-85. [PMID: 20471810 DOI: 10.1016/j.artmed.2010.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE High dose radiation has been well known for increasing the risk of carcinogenesis. However, the understanding of biological effects of low dose radiation is limited. Low dose radiation is reported to affect several signaling pathways including deoxyribonucleic acid repair, survival, cell cycle, cell growth, and cell death. The goal of this study is to reveal the proteomic patterns influencing these pathways. METHODS AND MATERIALS To detect the possibly regulatory proteins/kinases, an emerging reverse-phase protein microarray (RPPM) in conjunction with quantum dots nano-crystal technology is used as a quantitative detection system. The dynamic responses are observed under different time points and radiation doses. To quantitatively determine the responsive protein/kinases and to discover the network motifs, we present a discriminative feature pattern identification system (DFPIS). Instead of simply identifying proteins contributing to the pathways, our methodology takes into consideration of protein dependencies which are represented as strong jumping emerging patterns (SJEPs). Furthermore, infrequent patterns, though occurred, will be considered irrelevant. RESULTS Computational results using DFPIS to analyze ataxia-telangiectasia mutated (ATM) cells treated under six different ionizing radiation doses (0cGy, 4cGy, 10cGy, 50cGy, 1Gy, and 5Gy) are presented. For each dose, the dynamic response was observed at different time points (1, 6, 24, 48, and 72h). The sets of different responsive proteins/kinases at different dose are reported. For each dose, the SJEPs for ATM-proficient and ATM-deficient cells are shown and compared. CONCLUSION By using the new RPPM technology and the DFPIS algorithm, we can observe the change of signaling patterns even at a very low radiation dosage where conventional technologies tend to fail.
Collapse
Affiliation(s)
- Young Bun Kim
- The Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | | | | |
Collapse
|