1
|
Kussainova A, Aripova A, Ibragimova M, Bersimbaev R, Bulgakova O. Radiation-Induced miRNAs Changes and cf mtDNA Level in Trauma Surgeons: Epigenetic and Molecular Biomarkers of X-ray Exposure. Int J Mol Sci 2024; 25:8446. [PMID: 39126012 PMCID: PMC11313199 DOI: 10.3390/ijms25158446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exposure to ionizing radiation can result in the development of a number of diseases, including cancer, cataracts and neurodegenerative pathologies. Certain occupational groups are exposed to both natural and artificial sources of radiation as a consequence of their professional activities. The development of non-invasive biomarkers to assess the risk of exposure to ionizing radiation for these groups is of great importance. In this context, our objective was to identify epigenetic and molecular biomarkers that could be used to monitor exposure to ionizing radiation. The impact of X-ray exposure on the miRNAs profile and the level of cf mtDNA were evaluated using the RT-PCR method. The levels of pro-inflammatory cytokines in their blood were quantified using the ELISA method. A significant decrease in miR-19a-3p, miR-125b-5p and significant increase in miR-29a-3p was observed in the blood plasma of individuals exposed to X-ray. High levels of pro-inflammatory cytokines and cf mtDNA were also detected. In silico identification of potential targets of these miRNAs was conducted using MIENTURNET. VDAC1 and ALOX5 were identified as possible targets. Our study identified promising biomarkers such as miRNAs and cf mtDNA that showed a dose-dependent effect of X-ray exposure.
Collapse
Affiliation(s)
| | | | | | | | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (A.K.); (A.A.); (M.I.); (R.B.)
| |
Collapse
|
2
|
Kannan N, Koshy T, Raavi V, Bhaskar E, Moorthy S, Pulivadula Mohanarangam VS, Srinivas Kondaveeti S, Visweswaran S, Perumal V. Candidate Gene Expression in Regional Population and Its Relevance for Radiation Triage. Cytogenet Genome Res 2023; 163:210-222. [PMID: 37253332 DOI: 10.1159/000531258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/24/2023] [Indexed: 06/01/2023] Open
Abstract
Quantification of gene expression signatures has been substantiated as a potential and rapid marker for radiation triage and biodosimetry during nuclear emergencies. Similar to the established biodosimetry assays, the gene expression assay has drawbacks such as being highly dynamic and transient, not specific to ionizing radiation, and also influenced by confounding factors such as gender, health status, lifestyle, and inflammation. In view of that, prior knowledge of baseline expression of certain candidate genes in a population could complement the discrimination of the unexposed from the exposed individuals without the need for individual pre-exposure controls. We intended to establish a baseline expression of reported radiation-responsive genes such as CDKN1A, DDB2, FDXR, and PCNA in the blood samples of healthy human participants and then compare it with diabetic/hypertension participants (as a chronic inflammatory condition) drawn from south Indian population. Further, we have examined the appropriateness of the assay for radiation triage-like situations; i.e., the expression profiles of those genes were examined in the participants who underwent X-ray-based medical imaging. Acute inflammation induced by lipopolysaccharide exposure in the blood significantly increased the fold expression of those genes (p < 0.0001) compared to the control. Whereas the basal expression level of those genes among the participants with the inflammatory condition is marginally higher than those observed in the healthy participants; despite the excess, the fold increase in those genes between the groups did not differ significantly. Consistent with the inflammatory participants, the basal expression level of those genes in the blood sample of participants who received X-radiation during neuro-interventional and computed tomography imaging is marginally higher than those observed in the pre-exposure of respective groups. Nevertheless, the fold increase in those genes did not differ significantly as the fold change fell within the two folds. Thus, overall results suggest that the utility of CDKN1A, DDB2, FDXR, and PCNA gene expression for radiation triage specific after very low-dose radiation exposure needs to be interpreted with caution for a much more reliable triage.
Collapse
Affiliation(s)
- Nandhini Kannan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Teena Koshy
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to Be University), Kolar, India
| | - Emmanuel Bhaskar
- Department of General Medicine, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Swathy Moorthy
- Department of General Medicine, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Venkata Sai Pulivadula Mohanarangam
- Department of Radiology and Imaging Sciences, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Satish Srinivas Kondaveeti
- Department of Radiation Oncology, SRMC&RI, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to Be University), Chennai, India
| |
Collapse
|
3
|
Griffiths NM, Van der Meeren A, Angulo JF, Vincent-Naulleau S. Research on the Radiotoxicology of Plutonium Using Animals: Consideration of the 3Rs-Replace, Reduce, Refine. HEALTH PHYSICS 2020; 119:133-140. [PMID: 32301862 DOI: 10.1097/hp.0000000000001258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To characterize the health effects of incorporated plutonium, many experiments have been conducted using different animal models. These range from (1) applied (tissue uptake/retention determination, decorporation therapy efficacy), (2) fundamental (gene expression, cancer induction), and (3) dosimetry models. In recent years, the use of animals for scientific purposes has become a public concern. The application of the 3Rs - Replace (use of alternative methods or animals not considered capable of experiencing pain, suffering, and distress), Reduce (reduction in animal numbers), and Refine (better animal welfare and minimization of suffering, pain and distress) - has increased to address ethical concerns and legislative requirements. The introduction of novel non-animal technologies is also an important factor as complementary options to animal experimentation. In radiotoxicology research, it seems there is a natural tendency to Replace given the possibility of data reuse obtained from contamination cases in man and animal studies. The creation of "registries" and "repositories" for nuclear industry workers (civil and military) is now a rich legacy for radiotoxicological measurements. Similarly, Reduction in animal numbers can be achieved by good experimental planning with prior statistical analyses of animal numbers required to obtain robust data. Multiple measurements in the same animal over time (external body counting, excreta collection) with appropriate detection instruments also allow Reduction. In terms of Refinement, this has become "de rigueur" and a necessity given the societal and legal concerns for animal welfare. For research in radiotoxicology, particularly long-term studies, better housing conditions within the constraints of radiation protection issues for research workers are an important concern. These are all pertinent considerations for the 3Rs remit and future research in radiotoxicology.
Collapse
Affiliation(s)
- Nina M Griffiths
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Anne Van der Meeren
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Jaime F Angulo
- Laboratoire de RadioToxicologie, CEA, Université Paris-Saclay, Bruyères-le-Châtel, 91297 ARPAJON, France
| | - Silvia Vincent-Naulleau
- Bureau des Etudes Biomédicales chez l'Animal, CEA/DRF/D3P/BEBA, 92260 FONTENAY-aux-ROSES, France
| |
Collapse
|
4
|
Abend M, Pfeiffer RM, Port M, Hatch M, Bogdanova T, Tronko MD, Mabuchi K, Azizova T, Unger K, Braselmann H, Ostheim P, Brenner AV. Utility of gene expression studies in relation to radiation exposure and clinical outcomes: thyroid cancer in the Ukrainian-American cohort and late health effects in a MAYAK worker cohort. Int J Radiat Biol 2020; 97:12-18. [PMID: 32310011 DOI: 10.1080/09553002.2020.1748739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE We herein report on changes in gene expression after radiation exposure to iodine-131 from the Chernobyl accident in the Ukrainian-American thyroid cohort and to external gamma ray or internal plutonium exposure in the Mayak Production Association radiation workers. MATERIALS AND METHODS Taking advantage of access to tissue samples from the thyroid cancer cases in the Ukrainian-American cohort, our group tried to identify candidate genes to discriminate spontaneously occurring thyroid cancers from thyroid cancers caused by radiation exposure. We also examined gene expression changes in normal and cancerous thyroid tissue in relation to iodine-131 dose separately. Gene expression changes in the peripheral blood of radiation exposed Mayak workers were examined to elucidate the dose-to-gene and gene-to-health (e.g. cardiovascular disease) relationships. CONCLUSIONS Results of both projects are discussed under the aspect of dose-response relationships (dose-to-gene) and clinical outcome relationships (gene-to-effect) in light of how mechanistic data can be translated into actionable knowledge for radiation protection or clinical purposes.
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Ruth M Pfeiffer
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | | | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Tamara Azizova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, Ozyorsk, Russia
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Integrative Biology Group, Helmholtz-Zentrum Muenchen, Neuherberg, Germany
| | - Herbert Braselmann
- Research Unit of Radiation Cytogenetics, Integrative Biology Group, Helmholtz-Zentrum Muenchen, Neuherberg, Germany
| | | | | |
Collapse
|
5
|
Morelli F, Benedetti Y, Mousseau TA, Møller AP. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 220:183-190. [PMID: 29778954 DOI: 10.1016/j.jenvman.2018.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 05/24/2023]
Abstract
Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity.
Collapse
Affiliation(s)
- Federico Morelli
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic.
| | - Yanina Benedetti
- Czech University of Life Sciences Prague, Faculty of Environmental Sciences, Department of Applied Geoinformatics and Spatial Planning, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Timothy A Mousseau
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anders Pape Møller
- Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, F-91405 Orsay Cedex, France
| |
Collapse
|
6
|
Agbenyegah S, Abend M, Atkinson MJ, Combs SE, Trott KR, Port M, Majewski M. Impact of Inter-Individual Variance in the Expression of a Radiation-Responsive Gene Panel Used for Triage. Radiat Res 2018; 190:226-235. [PMID: 29923790 DOI: 10.1667/rr15013.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In previous studies we determined a gene expression signature in baboons for predicting the severity of hematological acute radiation syndrome. We subsequently validated a set of eight of these genes in leukemia patients undergoing total-body irradiation. In the current study, we addressed the effect of intra-individual variability on the basal level of expression of those eight radiation-responsive genes identified previously, by examining baseline levels in 200 unexposed healthy human donors (122 males and 88 females with an average age of 46 years) using real-time PCR. In addition to the eight candidate genes ( DAGLA, WNT3, CD177, PLA2G16, WLS, POU2AF1, STAT4 and PRF1), we examined two more genes ( FDXR and DDB2) widely used in ex vivo whole blood experiments. Although significant sex- (seven genes) and age-dependent (two genes) differences in expression were found, the fold changes ranged only between 1.1-1.6. These were well within the twofold differences in gene expression generally considered to represent control values. Age and sex contributed less than 20-30% to the complete inter-individual variance, which is calculated as the fold change between the lowest (reference) and the highest Ct value minimum-maximum fold change (min-max FC). Min-max FCs ranging between 10-17 were observed for most genes; however, for three genes, min-max FCs of complete inter-individual variance were found to be 37.1 ( WNT3), 51.4 ( WLS) and 1,627.8 ( CD177). In addition, to determine whether discrimination between healthy and diseased baboons might be altered by replacing the published gene expression data of the 18 healthy baboons with that of the 200 healthy humans, we employed logistic regression analysis and calculated the area under the receiver operating characteristic (ROC) curve. The additional inter-individual variance of the human data set had either no impact or marginal impact on the ROC area, since up to 32-fold change gene expression differences between healthy and diseased baboons were observed.
Collapse
Affiliation(s)
- S Agbenyegah
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - M Abend
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M J Atkinson
- c Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - S E Combs
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany.,d Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - K R Trott
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - M Port
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Majewski
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
7
|
Becker BV, Richter C, Ullmann R, Beinke C, Majewski M, Exner V, Weisel G, Abend M, Port M. Exploring the Link between Radiation Exposure and Multifocal Basal Cell Carcinomas in a Former Chernobyl Clean-up Worker by Combining Different Molecular Biological Techniques. Radiat Res 2017; 188:571-578. [PMID: 28952879 DOI: 10.1667/rr14819.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thirty years after the Chernobyl nuclear power plant accident we report on a patient who was a clean-up worker, who subsequently developed multiple cutaneous basal cell carcinomas (BCCs). We used several methods to assess the biological long-term effects related to low-dose external and internal radiation exposure. Specifically, because BCC risk may be increased with ionizing radiation exposure, we endeavored to determine whether the multifocal BCCs were related to the patient's past clean-up work. We assessed cytogenetic changes using peripheral blood, and internal incorporation was measured with a whole-body counter. Gene expression alterations were determined and array-based comparative genomic hybridization was performed for copy number aberration analysis of available BCC samples. In 1,053 metaphase cells, the dicentric yield of 0.005 dicentrics, with acentrics/cell, was significantly increased compared to the established calibration curve (P < 0.001). A 2.5-fold increase in total translocations was observed compared to the expected translocation rate. No internal contamination was detected with the whole-body counter. At the RNA level, two of seven genes (HNRNPA1, AGAP4/6/8) indicated internal plutonium exposure associated with the lowest dose category found in Mayak workers (>0-0.055 Gy). Relevant DNA copy number changes were only detected within the most aggressive BCC focus. Our results suggest that the examined worker had low and more recent radiation exposure with presumably internalized radionuclides that were below the detection level of a whole-body counter. The multifocal BCC could not be related to past occupational radiation exposure. The findings from our study suggest that integrating different methodologies potentially provides an improved overall assessment of individual health risks associated with or excluding occupational radiation exposure.
Collapse
Affiliation(s)
- Benjamin V Becker
- a Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Claus Richter
- b Department of Dermatology, Bundeswehr Hospital Ulm, Ulm, Germany
| | - Reinhard Ullmann
- a Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Christina Beinke
- a Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Matthäus Majewski
- a Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Viktoria Exner
- b Department of Dermatology, Bundeswehr Hospital Ulm, Ulm, Germany
| | - Guido Weisel
- b Department of Dermatology, Bundeswehr Hospital Ulm, Ulm, Germany
| | - Michael Abend
- a Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- a Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
8
|
Hall J, Jeggo PA, West C, Gomolka M, Quintens R, Badie C, Laurent O, Aerts A, Anastasov N, Azimzadeh O, Azizova T, Baatout S, Baselet B, Benotmane MA, Blanchardon E, Guéguen Y, Haghdoost S, Harms-Ringhdahl M, Hess J, Kreuzer M, Laurier D, Macaeva E, Manning G, Pernot E, Ravanat JL, Sabatier L, Tack K, Tapio S, Zitzelsberger H, Cardis E. Ionizing radiation biomarkers in epidemiological studies - An update. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2017; 771:59-84. [PMID: 28342453 DOI: 10.1016/j.mrrev.2017.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
Recent epidemiology studies highlighted the detrimental health effects of exposure to low dose and low dose rate ionizing radiation (IR): nuclear industry workers studies have shown increased leukaemia and solid tumour risks following cumulative doses of <100mSv and dose rates of <10mGy per year; paediatric patients studies have reported increased leukaemia and brain tumours risks after doses of 30-60mGy from computed tomography scans. Questions arise, however, about the impact of even lower doses and dose rates where classical epidemiological studies have limited power but where subsets within the large cohorts are expected to have an increased risk. Further progress requires integration of biomarkers or bioassays of individual exposure, effects and susceptibility to IR. The European DoReMi (Low Dose Research towards Multidisciplinary Integration) consortium previously reviewed biomarkers for potential use in IR epidemiological studies. Given the increased mechanistic understanding of responses to low dose radiation the current review provides an update covering technical advances and recent studies. A key issue identified is deciding which biomarkers to progress. A roadmap is provided for biomarker development from discovery to implementation and used to summarise the current status of proposed biomarkers for epidemiological studies. Most potential biomarkers remain at the discovery stage and for some there is sufficient evidence that further development is not warranted. One biomarker identified in the final stages of development and as a priority for further research is radiation specific mRNA transcript profiles.
Collapse
Affiliation(s)
- Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM 1052, CNRS 5286, Univ Lyon, Université Claude Bernard, Lyon 1, Lyon, F-69424, France.
| | - Penny A Jeggo
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom
| | - Catharine West
- Translational Radiobiology Group, Institute of Cancer Sciences, The University of Manchester, Manchester Academic Health Science Centre, Christie Hospital, Manchester, M20 4BX, United Kingdom
| | - Maria Gomolka
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Olivier Laurent
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - An Aerts
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Nataša Anastasov
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Omid Azimzadeh
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Clinical Department, Ozyorsk, Russia
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Mohammed A Benotmane
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium
| | - Eric Blanchardon
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Yann Guéguen
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Siamak Haghdoost
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Mats Harms-Ringhdahl
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Julia Hess
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Michaela Kreuzer
- Federal Office for Radiation Protection, Department of Radiation Protection and Health, D-85764 Neuherberg, Germany
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Ellina Macaeva
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK·CEN, B-2400 Mol, Belgium; Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, B-9000 Ghent, Belgium
| | - Grainne Manning
- Cancer Mechanisms and Biomarkers group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, United Kingdom
| | - Eileen Pernot
- INSERM U897, Université de Bordeaux, F-33076 Bordeaux cedex, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, Univ. Grenoble Alpes, INAC-SCIB, F-38000 Grenoble, France; Commissariat à l'Énergie Atomique, INAC-SyMMES, F-38000 Grenoble, France
| | - Laure Sabatier
- Commissariat à l'Énergie Atomique, BP6, F-92265 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, F-92260 Fontenay-aux-Roses, France
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Horst Zitzelsberger
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, D-85764 Neuherberg, Germany
| | - Elisabeth Cardis
- Barcelona Institute of Global Health (ISGlobal), Centre for Research in Environmental Epidemiology, Radiation Programme, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF) (MTD formerly), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
9
|
Deltour I, Tsareva Y, Schonfeld SJ, Vostrotin VV, Okatenko P, Sokolnikov M, Schüz J. Risk of Hematologic Malignancies in the Offspring of Female Workers of the Mayak Nuclear Facility in the Southern Urals, Russian Federation. Radiat Res 2016; 186:415-421. [PMID: 27690175 DOI: 10.1667/rr14399.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Long-term effects of in utero exposure to ionizing radiation remain poorly quantified in humans. In this study, the risk of hematologic malignancies was investigated in offspring of female workers of the Mayak Production Association, a large Russian nuclear facility. Excess relative risks (ERR) for exposure to gamma radiation and plutonium were estimated in a cohort of 8,466 offspring who were born between January 1, 1948 and December 31, 1988 and followed until 2009. An unstable linear ERR of 1.12 (95% CI 0.11-3.44) per 100 mGy gamma exposure in utero was estimated based on 32 incident hematologic malignancies in 277,002 person-years under risk. The ERR was increased in the dose category 20-79 mGy gamma exposure in utero (1.75, 95% CI 0.04; 5.63), while the other dose categories showed decreased or unstable estimates. Leukemia showed an ERR of 1.76 (95% CI 0.01-8.33) per 100 mGy based on 13 cases. There was no consistent association with plutonium exposure. While an increased risk of hematologic malignancies after gamma exposure in utero was suggested, the small numbers prevented more definitive conclusions.
Collapse
Affiliation(s)
- I Deltour
- a Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France; and
| | - Y Tsareva
- b Epidemiology Laboratory and Laboratory of Radiation Safety, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Russia
| | - S J Schonfeld
- a Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France; and
| | - V V Vostrotin
- b Epidemiology Laboratory and Laboratory of Radiation Safety, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Russia
| | - P Okatenko
- b Epidemiology Laboratory and Laboratory of Radiation Safety, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Russia
| | - M Sokolnikov
- b Epidemiology Laboratory and Laboratory of Radiation Safety, Southern Urals Biophysics Institute (SUBI), Ozyorsk, Russia
| | - J Schüz
- a Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France; and
| |
Collapse
|
10
|
Paul S, Smilenov LB, Elliston CD, Amundson SA. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model. Radiat Res 2015; 184:24-32. [PMID: 26114327 DOI: 10.1667/rr14044.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate <5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event.
Collapse
Affiliation(s)
- Sunirmal Paul
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032;,b Rutgers University, Newark, New Jersey 07103; and
| | - Lubomir B Smilenov
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Carl D Elliston
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032;,c Maimonides Medical Center, Brooklyn, New York 11219
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
11
|
Chaussabel D. Assessment of immune status using blood transcriptomics and potential implications for global health. Semin Immunol 2015; 27:58-66. [PMID: 25823891 DOI: 10.1016/j.smim.2015.03.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/17/2022]
Abstract
The immune system plays a key role in health maintenance and pathogenesis of a wide range of diseases. Leukocytes that are present in the blood convey valuable information about the status of the immune system. Blood transcriptomics, which consists in profiling blood transcript abundance on genome-wide scales, has gained in popularity over the past several years. Indeed, practicality and simplicity largely makes up for what this approach may lack in terms of cell population-level resolution. An extensive survey of the literature reveals increasingly widespread use across virtually all fields of medicine as well as across a number of different animal species, including model organisms but also animals of economical importance. Dissemination across such a wide range of disciplines holds the promise of adding a new perspective, breadth or context, to the considerable depth afforded by whole genome profiling of blood transcript abundance. Indeed, it is only through such contextualization that a truly global perspective will be gained from the use of systems approaches. Also discussed are opportunities that may arise for the fields of immunology and medicine from using blood transcriptomics as a common denominator for developing interactions and cooperation across fields of research that have traditionally been and largely remain compartmentalized. Finally, an argument is made for building immunology research capacity using blood transcriptomics platforms in low-resource and high-disease burden settings.
Collapse
|
12
|
Abend M, Azizova T, Müller K, Dörr H, Doucha-Senf S, Kreppel H, Rusinova G, Glazkova I, Vyazovskaya N, Unger K, Braselmann H, Meineke V. Association of Radiation-Induced Genes with Noncancer Chronic Diseases in Mayak Workers Occupationally Exposed to Prolonged Radiation. Radiat Res 2015; 183:249-61. [DOI: 10.1667/rr13758.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, 80937 Munich, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, Ozyorsk 456780, Russia
| | - Kerstin Müller
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, 80937 Munich, Germany
| | - Harald Dörr
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, 80937 Munich, Germany
| | - Sven Doucha-Senf
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, 80937 Munich, Germany
| | - Helmut Kreppel
- Bundeswehr Medical Office, Department IX 1, CBRN Med Defence, 80937 Munich, Germany
| | - Galina Rusinova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, Ozyorsk 456780, Russia
| | - Irina Glazkova
- Southern Urals Biophysics Institute (SUBI), Russian Federation, Ozyorsk 456780, Russia
| | - Natalia Vyazovskaya
- Southern Urals Biophysics Institute (SUBI), Russian Federation, Ozyorsk 456780, Russia
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Integrative Biology Group, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Herbert Braselmann
- Research Unit of Radiation Cytogenetics, Integrative Biology Group, Helmholtz-Zentrum München, 85764 Neuherberg, Germany
| | - Viktor Meineke
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, 80937 Munich, Germany
| |
Collapse
|