1
|
Airik M, Clayton K, Wipf P, Airik R. JP4-039 Mitigates Cisplatin-Induced Acute Kidney Injury by Inhibiting Oxidative Stress and Blocking Apoptosis and Ferroptosis in Mice. Antioxidants (Basel) 2024; 13:1534. [PMID: 39765862 PMCID: PMC11727076 DOI: 10.3390/antiox13121534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent in the treatment of a wide array of cancers. Due to its active transport into the kidney proximal tubule cells, cisplatin treatment can cause a buildup of this nephrotoxic compound in the kidney, resulting in acute kidney injury (AKI). About 30% of patients receiving cisplatin chemotherapy develop cisplatin-induced AKI. JP4-039 is a mitochondria-targeted reactive oxygen species (ROS) and electron scavenger. Recent studies have shown that JP4-039 mitigates a variety of genotoxic insults in preclinical studies in rodents by suppressing oxidative stress-mediated tissue damage and blocking apoptosis and ferroptosis. However, the benefits of JP4-039 treatment have not been tested in the setting of AKI. In this study, we investigated the potential renoprotective effect of JP4-039 on cisplatin-induced AKI. To address this goal, we treated mice with JP4-039 before or after cisplatin administration and analyzed them for functional and molecular changes in the kidney. JP4-039 co-administration attenuated cisplatin-induced renal dysfunction and histopathological changes. Upregulation of tubular injury markers was also suppressed by JP4-039. Mechanistically, JP4-039 suppressed lipid peroxidation, prevented tissue oxidative stress, and preserved the glutathione levels in cisplatin-injected mice. An increase in cisplatin-induced apoptosis and ferroptosis was also alleviated by the compound. Moreover, JP4-039 inhibited cytokine overproduction in cisplatin-injected mice. Together, our findings demonstrate that JP4-039 is a promising therapeutic agent against cisplatin-induced kidney injury.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kacian Clayton
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Fisher R, Epperly MW, Rigatti LH, Shields D, Greenberger JS, Green A, Mukherjee A. Chemical Carcinogen (3-Methylcholanthrene)-induced Pleomorphic Rhabdomyosarcomas in Fanconi Anemia Fancd2-/-, Fancg-/- (C57BL/6), Fancd2-/- (129/Sv) Mice. In Vivo 2024; 38:2582-2590. [PMID: 39477388 PMCID: PMC11535948 DOI: 10.21873/invivo.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM Radiation oncologists are reluctant to treat cancer in Fanconi Anemia (FA) patients due to their lack of homologous recombination repair of DNA strand breaks in normal tissues. To determine the therapeutic effects of irradiation and combination chemotherapy on cancer in syngeneic, radiosensitive FA mice, we derived transplantable cancers of the same genotype in three FA mouse strains. MATERIALS AND METHODS Fancd2-/- mice on a C57BL/6 or Sv/129 background and Fancg-/- mice (C57BL/6 background) that received 3-methylcholanthrene (3-MCA), were monitored for the development of subcutaneous tumors. RESULTS Tumors were induced at the site of 3-MCA injection, and tumor cell lines were established and found to be transplantable. Explanted tumors were identified as pleomorphic/rhabdomyosarcomas using immunohistochemical biomarkers. CONCLUSION These transplantable FA mouse tumor cell lines should be valuable for testing effects of new radiation therapy protocols including FLASH high dose rate radiation delivery, immunotherapies, and combined radiation and chemotherapy treatments for radiosensitive FA patients.
Collapse
Affiliation(s)
- Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Lora H Rigatti
- Department of DLAR-Veterinary Services, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| | - Anthony Green
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| |
Collapse
|
3
|
Epperly MW, Mukherjee A, Fisher R, Shields D, Hou W, Wang H, Rigatti LH, Green A, Huq MS, Greenberger JS. Chemical Carcinogen (Dimethyl-benzanthracene) Induced Transplantable Cancer in Fanconi Anemia (Fanca-/-) Mice. In Vivo 2023; 37:2421-2432. [PMID: 37905617 PMCID: PMC10621406 DOI: 10.21873/invivo.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND/AIM Patients with radiation sensitive Fanconi anemia (FA) are presenting with cancers of the oral cavity, oropharynx, and other anatomic locations. MATERIALS AND METHODS Animal models for cancer in FA mice used orthotopic tumors from wild type mice. We derived a cancer cell line from Fanca-/- mice by topical application of the chemical carcinogen dimethyl benzanthracene (DMBA). RESULTS A Fanca-/- mouse rhabdomyosarcoma was derived from a Fanca-/- (129/Sv) mouse. The in vitro clonogenic survival of the Fanca-/- clone 6 cancer cell line was consistent with the FA genotype. Transplanted tumors demonstrated hypoxic centers surrounded by senescent cells. CONCLUSION This Fanca-/- mouse syngeneic cancer should provide a valuable resource for discovery and development of new normal tissue radioprotectors for patients with FA and cancer.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Lora H Rigatti
- D.L.A.R. - Veterinary Services, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Anthony Green
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - M Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.;
| |
Collapse
|
4
|
Zinovkin RA, Lyamzaev KG, Chernyak BV. Current perspectives of mitochondria-targeted antioxidants in cancer prevention and treatment. Front Cell Dev Biol 2023; 11:1048177. [PMID: 37009472 PMCID: PMC10060896 DOI: 10.3389/fcell.2023.1048177] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Oxidative stress nearly always accompanies all stages of cancer development. At the early stages, antioxidants may help to reduce reactive oxygen species (ROS) production and exhibit anticarcinogenic effects. In the later stages, ROS involvement becomes more complex. On the one hand, ROS are necessary for cancer progression and epithelial-mesenchymal transition. On the other hand, antioxidants may promote cancer cell survival and may increase metastatic frequency. The role of mitochondrial ROS in cancer development remains largely unknown. This paper reviews experimental data on the effects of both endogenous and exogenous antioxidants on cancerogenesis focusing on the development and application of mitochondria-targeted antioxidants. We also discuss the prospects for antioxidant cancer therapy, focusing on the use of mitochondria-targeted antioxidants.
Collapse
Affiliation(s)
- Roman A. Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- The “Russian Clinical Research Center for Gerontology” of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Rodríguez A, Epperly M, Filiatrault J, Velázquez M, Yang C, McQueen K, Sambel LA, Nguyen H, Iyer DR, Juárez U, Ayala-Zambrano C, Martignetti DB, Frías S, Fisher R, Parmar K, Greenberger JS, D’Andrea AD. TGFβ pathway is required for viable gestation of Fanconi anemia embryos. PLoS Genet 2022; 18:e1010459. [PMID: 36441774 PMCID: PMC9731498 DOI: 10.1371/journal.pgen.1010459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/08/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Overexpression of the TGFβ pathway impairs the proliferation of the hematopoietic stem and progenitor cells (HSPCs) pool in Fanconi anemia (FA). TGFβ promotes the expression of NHEJ genes, known to function in a low-fidelity DNA repair pathway, and pharmacological inhibition of TGFβ signaling rescues FA HSPCs. Here, we demonstrate that genetic disruption of Smad3, a transducer of the canonical TGFβ pathway, modifies the phenotype of FA mouse models deficient for Fancd2. We observed that the TGFβ and NHEJ pathway genes are overexpressed during the embryogenesis of Fancd2-/- mice and that the Fancd2-/-Smad3-/- double knockout (DKO) mice undergo high levels of embryonic lethality due to loss of the TGFβ-NHEJ axis. Fancd2-deficient embryos acquire extensive genomic instability during gestation which is not reversed by Smad3 inactivation. Strikingly, the few DKO survivors have activated the non-canonical TGFβ-ERK pathway, ensuring expression of NHEJ genes during embryogenesis and improved survival. Activation of the TGFβ-NHEJ axis was critical for the survival of the few Fancd2-/-Smad3-/- DKO newborn mice but had detrimental consequences for these surviving mice, such as enhanced genomic instability and ineffective hematopoiesis.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Michael Epperly
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Jessica Filiatrault
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Martha Velázquez
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Chunyu Yang
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Kelsey McQueen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Larissa A. Sambel
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Huy Nguyen
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Divya Ramalingam Iyer
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Ulises Juárez
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, UNAM, Ciudad Universitaria, México, México
| | - David B. Martignetti
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sara Frías
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, México
- Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Renee Fisher
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Joel S. Greenberger
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Alan D. D’Andrea
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- Center for DNA Damage and DNA Repair, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Nguyen H, Sangha S, Pan M, Shin DH, Park H, Mohammed AI, Cirillo N. Oxidative Stress and Chemoradiation-Induced Oral Mucositis: A Scoping Review of In Vitro, In Vivo and Clinical Studies. Int J Mol Sci 2022; 23:4863. [PMID: 35563254 PMCID: PMC9101413 DOI: 10.3390/ijms23094863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chemoradiation-induced mucositis is a debilitating condition of the gastrointestinal tract eventuating from antineoplastic treatment. It is believed to occur primarily due to oxidative stress mechanisms, which generate Reactive Oxygen Species (ROS). The aim of this scoping review was to assess the role of oxidative stress in the development of Oral Mucositis (OM). Studies from the literature, published in MEDLINE and SCOPUS, that evaluated the oxidative stress pathways or antioxidant interventions for OM, were retrieved to elucidate the current understanding of their relationship. Studies failing inclusion criteria were excluded, and those suitable underwent data extraction, using a predefined data extraction table. Eighty-nine articles fulfilled criteria, and these were sub-stratified into models of study (in vitro, in vivo, or clinical) for evaluation. Thirty-five clinical studies evaluated antioxidant interventions on OM's severity, duration, and pain, amongst other attributes. A number of clinical studies sought to elucidate the protective or therapeutic effects of compounds that had been pre-determined to have antioxidant properties, without directly assessing oxidative stress parameters (these were deemed "indirect evidence"). Forty-seven in vivo studies assessed the capacity of various compounds to prevent OM. Findings were mostly consistent, reporting reduced OM severity associated with a reduction in ROS, malondialdehyde (MDA), myeloperoxidase (MPO), but higher glutathione (GSH) and superoxide dismutase (SOD) activity or expression. Twenty-one in vitro studies assessed potential OM therapeutic interventions. The majority demonstrated successful a reduction in ROS, and in select studies, secondary molecules were assessed to identify the mechanism. In summary, this review highlighted numerous oxidative stress pathways involved in OM pathogenesis, which may inform the development of novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia; (H.N.); (S.S.); (M.P.); (D.H.S.); (H.P.); (A.I.M.)
| |
Collapse
|
7
|
Greenberger JS, Mukherjee A, Epperly MW. Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase. Antioxidants (Basel) 2021; 10:1057. [PMID: 34208819 PMCID: PMC8300724 DOI: 10.3390/antiox10071057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD) is a dominant component of the antioxidant defense system in mammalian cells. Since ionizing irradiation induces profound oxidative stress, it was logical to test the effect of overexpression of MnSOD on radioresistance. This task was accomplished by introduction of a transgene for MnSOD into cells in vitro and into organs in vivo, and both paradigms showed clear radioresistance following overexpression. During the course of development and clinical application of using MnSOD as a radioprotector, several prominent observations were made by Larry Oberley, Joel Greenberger, and Michael Epperly which include (1) mitochondrial localization of either manganese superoxide dismutase or copper/zinc SOD was required to provide optimal radiation protection; (2) the time required for optimal expression was 12-18 h, and while acceptable for radiation protection, the time delay was impractical for radiation mitigation; (3) significant increases in intracellular elevation of MnSOD activity were required for effective radioprotection. Lessons learned during the development of MnSOD gene therapy have provided a strategy for delivery of small molecule SOD mimics, which are faster acting and have shown the potential for both radiation protection and mitigation. The purpose of this review is to summarize the current status of using MnSOD-PL and SOD mimetics as radioprotectors and radiomitigators.
Collapse
Affiliation(s)
- Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.); (M.W.E.)
| | | | | |
Collapse
|
8
|
van Gisbergen MW, Zwilling E, Dubois LJ. Metabolic Rewiring in Radiation Oncology Toward Improving the Therapeutic Ratio. Front Oncol 2021; 11:653621. [PMID: 34041023 PMCID: PMC8143268 DOI: 10.3389/fonc.2021.653621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
To meet the anabolic demands of the proliferative potential of tumor cells, malignant cells tend to rewire their metabolic pathways. Although different types of malignant cells share this phenomenon, there is a large intracellular variability how these metabolic patterns are altered. Fortunately, differences in metabolic patterns between normal tissue and malignant cells can be exploited to increase the therapeutic ratio. Modulation of cellular metabolism to improve treatment outcome is an emerging field proposing a variety of promising strategies in primary tumor and metastatic lesion treatment. These strategies, capable of either sensitizing or protecting tissues, target either tumor or normal tissue and are often focused on modulating of tissue oxygenation, hypoxia-inducible factor (HIF) stabilization, glucose metabolism, mitochondrial function and the redox balance. Several compounds or therapies are still in under (pre-)clinical development, while others are already used in clinical practice. Here, we describe different strategies from bench to bedside to optimize the therapeutic ratio through modulation of the cellular metabolism. This review gives an overview of the current state on development and the mechanism of action of modulators affecting cellular metabolism with the aim to improve the radiotherapy response on tumors or to protect the normal tissue and therefore contribute to an improved therapeutic ratio.
Collapse
Affiliation(s)
- Marike W van Gisbergen
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands.,Department of Dermatology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Emma Zwilling
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Neoadjuvant Radiotherapy-Related Wound Morbidity in Soft Tissue Sarcoma: Perspectives for Radioprotective Agents. Cancers (Basel) 2020; 12:cancers12082258. [PMID: 32806601 PMCID: PMC7465163 DOI: 10.3390/cancers12082258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Historically, patients with localized soft tissue sarcomas (STS) of the extremities would undergo limb amputation. It was subsequently determined that the addition of radiation therapy (RT) delivered prior to (neoadjuvant) or after (adjuvant) a limb-sparing surgical resection yielded equivalent survival outcomes to amputation in appropriate patients. Generally, neoadjuvant radiation offers decreased volume and dose of high-intensity radiation to normal tissue and increased chance of achieving negative surgical margins-but also increases wound healing complications when compared to adjuvant radiotherapy. This review elaborates on the current neoadjuvant/adjuvant RT approaches, wound healing complications in STS, and the potential application of novel radioprotective agents to minimize radiation-induced normal tissue toxicity.
Collapse
|
10
|
Thermozier S, Hou W, Zhang X, Shields D, Fisher R, Bayir H, Kagan V, Yu J, Liu B, Bahar I, Epperly MW, Wipf P, Wang H, Huq MS, Greenberger JS. Anti-Ferroptosis Drug Enhances Total-Body Irradiation Mitigation by Drugs that Block Apoptosis and Necroptosis. Radiat Res 2020; 193:435-450. [PMID: 32134361 PMCID: PMC7299160 DOI: 10.1667/rr15486.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitigation of total-body irradiation (TBI) in C57BL/6 mice by two drugs, which target apoptosis and necroptosis respectively, increases survival compared to one drug alone. Here we investigated whether the biomarker (signature)directed addition of a third anti-ferroptosis drug further mitigated TBI effects. C57BL/6NTac female mice (30-33 g) received 9.25 Gy TBI, and 24 h or later received JP4-039 (20 mg/kg), necrostatin-1 (1.65 mg/kg) and/or lipoxygenase-15 inhibitor (baicalein) (50 mg/kg) in single-, dual- or three-drug regimens. Some animals were sacrificed at days 0, 1, 2, 3, 4 or 7 postirradiation, while the majority in each group were maintained beyond 30 days. For those mice sacrificed at the early time points, femur bone marrow, intestine (ileum), lung and blood plasma were collected and analyzed for radiation-induced and mitigator-modified levels of 33 pro-inflammatory and stress response proteins. Each single mitigator administered [JP4-039 (24 h), necrostatin-1 (48 h) or baicalein (24 h)] improved survival at day 30 after TBI to 25% (P = 0.0432, 0.2816 or 0.1120, respectively) compared to 5% survival of 9.25 Gy TBI controls. Mice were administered the drug individually based on weight (mg/kg). Drug vehicles comprised 30% cyclodextrin for JP4-039 and baicalein, and 10% Cremphor-EL/10% ethanol/80% water for necrostatin-1; thus, dual-vehicle controls were also tested. The dual-drug combinations further enhanced survival: necrostatin-1 (delayed to 72 h) with baicalein 40% (P = 0.0359); JP4-039 with necrostatin-1 50% (P = 0.0062); and JP4-039 with baicalein 60% (P = 0.0064). The three-drug regimen, timed to signature directed evidence of onset after TBI of each death pathway in marrow and intestine, further increased the 30-day survival to 75% (P = 0.0002), and there was optimal normalization to preirradiation levels of inflammatory cytokine and stress response protein levels in plasma, intestine and marrow. In contrast, lung protein levels were minimally altered by 9.25 Gy TBI or mitigators over 7 days. Significantly, elevated intestinal proteins at day 7 after TBI were reduced by necrostatin-1-containing regimens; however, normalization of plasma protein levels at day 7 required the addition of JP4-039 and baicalein. These findings indicate that mitigator targeting to three distinct cell death pathways increases survival after TBI.
Collapse
Affiliation(s)
- Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Valerian Kagan
- Departments of Environmental/Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bing Liu
- Departments of Computational and Biology Systems, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ivet Bahar
- Departments of Computational and Biology Systems, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
11
|
Seminotti B, Leipnitz G, Karunanidhi A, Kochersperger C, Roginskaya VY, Basu S, Wang Y, Wipf P, Van Houten B, Mohsen AW, Vockley J. Mitochondrial energetics is impaired in very long-chain acyl-CoA dehydrogenase deficiency and can be rescued by treatment with mitochondria-targeted electron scavengers. Hum Mol Genet 2020; 28:928-941. [PMID: 30445591 PMCID: PMC6400046 DOI: 10.1093/hmg/ddy403] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common defect of mitochondrial long-chain fatty acid β-oxidation. Patients present with heterogeneous clinical phenotypes affecting heart, liver and skeletal muscle predominantly. The full pathophysiology of the disease is unclear and patient response to current therapeutic regimens is incomplete. To identify additional cellular alterations and explore more effective therapies, mitochondrial bioenergetics and redox homeostasis were assessed in VLCAD-deficient fibroblasts, and several protective compounds were evaluated. The results revealed cellular and tissue changes, including decreased respiratory chain (RC) function, increased reactive oxygen species (ROS) production and altered mitochondrial function and signaling pathways in a variety of VLCAD-deficient fibroblasts. The mitochondrially enriched electron and free radical scavengers JP4-039 and XJB-5-131 improved RC function and decreased ROS production significantly, suggesting that they are viable candidate compounds to further develop to treat VLCAD-deficient patients.
Collapse
Affiliation(s)
- Bianca Seminotti
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Anuradha Karunanidhi
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Kochersperger
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vera Y Roginskaya
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shrabani Basu
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yudong Wang
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Al-Walid Mohsen
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jerry Vockley
- Division Medical Genetics, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Epperly MW, Fisher R, Zhang X, Hou W, Shields D, Wipf P, Wang H, Thermozier S, Greenberger JS. Fanconi Anemia Mouse Genotype-specific Mitigation of Total Body Irradiation by GS-Nitroxide JP4-039. In Vivo 2020; 34:33-38. [PMID: 31882460 PMCID: PMC6984088 DOI: 10.21873/invivo.11742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND/AIM Radiation mitigator, GS-nitroxide, JP4-039, was evaluated for mitigation of total body irradiation (TBI) in Fanconi anemia (FA) Fancd2-/- (129/Sv), Fancg-/- (B6), and Fanca-/- (129/Sv) mice. MATERIALS AND METHODS JP4-039 dissolved in 30% 2-hydroxypropyl-β-cyclodextrin was injected intramuscularly 24 h after total body irradiation (9.25 Gy) into Fanca-/-, Fancd2-/- and Fancg-/- mice. Irradiation survival curves were performed in vitro using bone marrow stromal cell lines derived from Fanca-/-, Fancd2-/- and Fancg-/- mice. RESULTS FA mice demonstrate genotype specific differences in TBI mitigation by JP4-039. Radiation effects in derived bone marrow stromal cell lines in vitro were mitigated by drugs that block apoptosis, but not necroptosis or ferroptosis. CONCLUSION FA mouse models are valuable for elucidating DNA repair pathways in cell and tissue responses to TBI, and the role of drugs that target distinct cell death pathways.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
13
|
Mitochondria regulation in ferroptosis. Eur J Cell Biol 2019; 99:151058. [PMID: 31810634 DOI: 10.1016/j.ejcb.2019.151058] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is recognized as a new form of regulated cell death which is initiated by severe lipid peroxidation relying on reactive oxygen species (ROS) generation and iron overload. This iron-dependent cell death manifests evident morphological, biochemical and genetic differences from other forms of regulated cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Ferroptosis was primarily characterized by condensed mitochondrial membrane densities and smaller volume than normal mitochondria, as well as the diminished or vanished of mitochondria crista and outer membrane ruptured. Mitochondria take the center role in iron metabolism, as well as substance and energy metabolism as it's the major organelle in iron utilization, catabolic and anabolic pathways. Interference of key regulators of mitochondrial lipid metabolism (e.g., ASCF2 and CS), iron homeostasis (e.g., ferritin, mitoferrin1/2 and NEET proteins), glutamine metabolism and other signaling pathways make a difference to ferroptotic sensitivity. Targeted induction of ferroptosis was also considered as a potential therapeutic strategy to some oxidative stress diseases, including neurodegenerative disorders, ischemia-reperfusion injury, traumatic spinal cord injury. However, the pertinence between mitochondria and ferroptosis is still in dispute. Here we systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis.
Collapse
|
14
|
Quinn TJ, Ding X, Li X, Wilson GD, Buelow K, Sivananthan A, Thermozier S, Henderson A, Epperly MW, Franicola D, Wipf P, Greenberger JS, Stevens CW, Kabolizadeh P. Amelioration of Mucositis in Proton Therapy of Fanconi Anemia Fanca -/- Mice by JP4-039. In Vivo 2019; 33:1757-1766. [PMID: 31662500 PMCID: PMC6899135 DOI: 10.21873/invivo.11666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM We tested JP4-039, a GS-nitroxide radiation damage mitigator in proton therapy of Fanconi anemia (FA) mice. MATERIALS AND METHODS Fanca-/- and Fanca+/+ bone marrow stromal cells were pre-treated with JP4-039 and irradiated with either protons or photons (0-10 GyRBE) followed by clonogenic survival and β-Galactosidase senescence analysis. Fanca-/- and Fanca+/+ mice were pretreated with JP4-039 for 10 min prior to oropharyngeal irradiation with either protons or photons (0 or 30 GyRBE) followed by sacrifice and measurement of oral cavity ulceration, distant hematopoietic suppression, and real-time polymerase chain reaction analysis. RESULTS JP4-039 reduced oral cavity ulceration in Fanca-/- mice, transcripts Nfkb, Ap1, Sp1, and Nrf2, and proton therapy induced distant marrow suppression. CONCLUSION JP4-039 protected Fanca-/- and Fanca+/+ cells and mouse oral cavity from both proton and photon radiation.
Collapse
Affiliation(s)
- Thomas J Quinn
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A
| | - George D Wilson
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A
| | - Katie Buelow
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A
| | - Aranee Sivananthan
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Andrew Henderson
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Craig W Stevens
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, U.S.A.
| |
Collapse
|
15
|
Thermozier S, Zhang X, Hou W, Fisher R, Epperly MW, Liu B, Bahar I, Wang H, Greenberger JS. Radioresistance of Serpinb3a-/- Mice and Derived Hematopoietic and Marrow Stromal Cell Lines. Radiat Res 2019; 192:267-281. [PMID: 31295086 PMCID: PMC6759811 DOI: 10.1667/rr15379.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Serpins are a group of serine-proteases involved in multiple signal transduction pathways in mammalian cells. In particular, Serpinb3a is involved in the lysosomal necrosis cell death pathway with components that overlap with radiation-induced apoptosis. We investigated the radiation response of Serpinb3a-/- mice compared to Serpinb3a+/+ mice on the Balb/c background. Serpinb3a-/- mice showed significant radioresistance to a dose of 8.0 Gy total-body irradiation, compared to Serpinb3a+/+ Balb/c mice. Long-term bone marrow cultures from Serpinb3a-/- mice showed increased longevity. In clonogenic survival assays, fresh bone marrow hematopoietic progenitors, as well as clonal interleukin-3 (IL-3)-dependent hematopoietic progenitor and bone marrow stromal cell lines from Serpinb3a-/- mice were radioresistant. Serpinb3a-/- mouse bone marrow-derived stromal cell lines had increased baseline and postirradiation antioxidant capacity. Serpinb3a-/- bone marrow stromal cells showed increased radiation-induced RNA transcripts for MnSOD and p21, and decreased levels of p53 and TGF-b. Both irradiated Serpinb3a-/- mouse bone marrow stromal cell lines and plasma removed from total-body irradiated mice had decreased levels of expression of stress response and inflammation-associated proteins. Abrogation of Serpinb3a may be a potential new target for mitigation of radiation effects.
Collapse
Affiliation(s)
- Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Bing Liu
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ivet Bahar
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
16
|
Amenábar JM, Torres‐Pereira CC, Tang KD, Punyadeera C. Two enemies, one fight: An update of oral cancer in patients with Fanconi anemia. Cancer 2019; 125:3936-3946. [DOI: 10.1002/cncr.32435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- José M. Amenábar
- Stomatology Department Federal University of Parana Curitiba Parana Brazil
- Saliva and Liquid Biopsy Translational Research Team, School of Biomedical Sciences, Institute of Health and Biomedical Innovations Queensland University of Technology Brisbane Queensland Australia
| | | | - Kai D. Tang
- Saliva and Liquid Biopsy Translational Research Team, School of Biomedical Sciences, Institute of Health and Biomedical Innovations Queensland University of Technology Brisbane Queensland Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Research Team, School of Biomedical Sciences, Institute of Health and Biomedical Innovations Queensland University of Technology Brisbane Queensland Australia
| |
Collapse
|
17
|
Epperly MW, Fisher R, Rigatti L, Watkins S, Zhang X, Hou W, Shields D, Franicola D, Bayir H, Wang H, Thermozier S, Henderson A, Donnelly C, Wipf P, Greenberger JS. Amelioration of Amyotrophic Lateral Sclerosis in SOD1 G93A Mice by M 2 Microglia from Transplanted Marrow. In Vivo 2019; 33:675-688. [PMID: 31028184 PMCID: PMC6559904 DOI: 10.21873/invivo.11526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Background/Aim: The cause of fatal neuromuscular amyotrophic lateral sclerosis (ALS) is not known. Materials and Methods: Ninety-day-old superoxide-dismutase-1 G93A (SOD1 G93A ) mice demonstrating level 1 paralysis, received 9.0 Gy total body irradiation (TBI) from a cesium source at 340 cGy per minute, and intravenous transplantation with 1×10 6 C57BL/6 green fluorescent protein (GFP)+ donor bone marrow cells. Results: Paralysis-free survival was prolonged in TBI and bone marrow-transplanted SOD1 G93A mice from 100 to over 250 days (p=0.0018). Other mice transplanted with SOD1 G93A marrow or marrow treated with the free-radical scavenger MMS350 showed no therapeutic effect. GFP+ macrophage-2 (M2) microglial cells of bone marrow origin, were seen at sites of degenerating anterior horn motor neurons. SOD1 G93A mice had a disruption in the blood-brain barrier permeability which was reversed by marrow transplant from C57BL/6 mice. SOD1 G93A marrow showed unexpected robust hematopoiesis in vitro, and radioresistance. Conclusion: After TBI, M2 microglial cells from transplanted donor marrow extended the paralysis-free interval in SOD1 G93A mice.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Lora Rigatti
- Division of Laboratory Animal Resources (DLAR), University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Simon Watkins
- Department of Cell Biology and Center for Images, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Andrew Henderson
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | | | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
18
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Shabeeb D, Musa AE, Fallah H, Najafi M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13:3-16. [PMID: 29911259 PMCID: PMC6381372 DOI: 10.1007/s12079-018-0473-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Zhang X, Fisher R, Shields D, Hou W, Franicola D, Wang H, Epperly MW, Rigatti L, Greenberger JS. Malignant Transformation of Fanconi Anemia Complementation Group D2-deficient ( Fancd2 -/-) Hematopoietic Progenitor Cells by a Single HPV16 Oncogene. In Vivo 2019; 33:303-311. [PMID: 30804107 DOI: 10.21873/invivo.11476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/29/2018] [Accepted: 01/11/2019] [Indexed: 01/30/2023]
Abstract
AIM To demonstrate that Fanconi anemia complementation group D2-deficient (Fancd2-/-) hematopoietic progenitor cell lines can be transformed by transfection with a plasmid containing either the E6 or E7 oncogene of human papillomavirus (HPV) to generate malignant plasmacytoma-inducing cell lines. MATERIALS AND METHODS In order to determine whether a single HPV type 16 (HPV16) oncogene induced malignant transformation, Fancd2-/- and Fancd2+/+ interleukin 3 (IL3)-dependent hematopoietic progenitor cell lines were transfected with plasmids containing E6 or E7 oncogene, or control empty plasmid. RESULTS Fancd2-/- but not Fancd2+/+ cells were transformed into malignant IL3-independent cells by both E6, and E7 oncogenes, but not by empty plasmid. Hematopoietic cell lines and tumors induced by Fancd2-/- E6 and Fancd2-/- E7 cell lines were positive for each respective HPV RNA and protein. CONCLUSION A single HPV16 oncogene is adequate to produce malignant transformation of Fancd2-/- hematopoietic cells.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Lora Rigatti
- Department of Veterinary Medicine, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, PA, U.S.A.
| |
Collapse
|
20
|
Mortezaee K, Shabeeb D, Musa AE, Najafi M, Farhood B. Metformin as a Radiation Modifier; Implications to Normal Tissue Protection and Tumor Sensitization. CURRENT CLINICAL PHARMACOLOGY 2019; 14:41-53. [PMID: 30360725 DOI: 10.2174/1574884713666181025141559] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nowadays, ionizing radiation is used for several applications in medicine, industry, agriculture, and nuclear power generation. Besides the beneficial roles of ionizing radiation, there are some concerns about accidental exposure to radioactive sources. The threat posed by its use in terrorism is of global concern. Furthermore, there are several side effects to normal organs for patients who had undergone radiation treatment for cancer. Hence, the modulation of radiation response in normal tissues was one of the most important aims of radiobiology. Although, so far, several agents have been investigated for protection and mitigation of radiation injury. Agents such as amifostine may lead to severe toxicity, while others may interfere with radiation therapy outcomes as a result of tumor protection. Metformin is a natural agent that is well known as an antidiabetic drug. It has shown some antioxidant effects and enhances DNA repair capacity, thereby ameliorating cell death following exposure to radiation. Moreover, through targeting endogenous ROS production within cells, it can mitigate radiation injury. This could potentially make it an effective radiation countermeasure. In contrast to other radioprotectors, metformin has shown modulatory effects through induction of several genes such as AMPK, which suppresses reduction/ oxidation (redox) reactions, protects cells from accumulation of unrepaired DNA, and attenuates initiation of inflammation as well as fibrotic pathways. Interestingly, these properties of metformin can sensitize cancer cells to radiotherapy. CONCLUSION In this article, we aimed to review the interesting properties of metformin such as radioprotection, radiomitigation and radiosensitization, which could make it an interesting adjuvant for clinical radiotherapy, as well as an interesting candidate for mitigation of radiation injury after a radiation disaster.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
21
|
Willis J, Epperly MW, Fisher R, Zhang X, Shields D, Hou W, Wang H, Li S, Wipf P, Parmar K, Guinan E, Steinman J, Greenberger JS. Amelioration of Head and Neck Radiation-Induced Mucositis and Distant Marrow Suppression in Fanca -/- and Fancg -/- Mice by Intraoral Administration of GS-Nitroxide (JP4-039). Radiat Res 2018; 189:560-578. [PMID: 29584588 DOI: 10.1667/rr14878.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Squamous cell carcinomas of the head and neck are appearing with increased frequency in both marrow transplanted and non-transplanted Fanconi anemia (FA) patients. FA patients commonly display radiosensitivity of epithelial tissues, complicating effective radiotherapy. Fancd2-/- mice (C57BL/6J and 129/Sv background) demonstrate epithelial tissue sensitivity to single-fraction or fractionated irradiation to the head and neck and distant marrow suppression (abscopal effect), both ameliorated by intraoral administration of the mitochondrial-targeted antioxidant, GS-nitroxide, JP4-039. We now report that mice of two other FA genotypes, Fancg-/- (B6) and the most prevalent human genotype Fanca-/- (129/Sv), also demonstrate: 1. reduced longevity of hematopoiesis in long-term bone marrow cultures; 2. radiosensitivity of bone marrow stromal cell lines; and 3. head and neck radiation-induced severe mucositis and abscopal suppression of distant marrow hematopoiesis. Intraoral administration of JP4-039/F15, but not non-mitochondrial-targeted 4-amino-Tempo/F15 or F15 alone, prior to each radiation treatment ameliorated both local and abscopal radiation effects. Head and neck irradiated TGF-β-resistant SMAD3-/- (129/Sv) mice and double-knockout SMAD3-/- Fancd2-/- (129/Sv) mice treated daily with TGF-β receptor antagonist, LY364947, still displayed abscopal bone marrow suppression, implicating a non-TGF-β mechanism. Thus, amelioration of both local normal tissue radiosensitivity and distant marrow suppression by intraoral administration of JP4-039 in Fancg-/- and Fanca-/- mice supports a clinical trial of this locally administered normal tissue radioprotector and mitigator during head and neck irradiation in FA patients.
Collapse
Affiliation(s)
- John Willis
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael W Epperly
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna Shields
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hong Wang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Song Li
- b Departments of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Peter Wipf
- c Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kalindi Parmar
- d Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Eva Guinan
- d Dana Farber Cancer Institute, Boston, Massachusetts 02115
| | - Justin Steinman
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Joel S Greenberger
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
22
|
Steinman J, Epperly M, Hou W, Willis J, Wang H, Fisher R, Liu B, Bahar I, McCaw T, Kagan V, Bayir H, Yu J, Wipf P, Li S, Huq MS, Greenberger JS. Improved Total-Body Irradiation Survival by Delivery of Two Radiation Mitigators that Target Distinct Cell Death Pathways. Radiat Res 2018; 189:68-83. [PMID: 29140165 PMCID: PMC5808408 DOI: 10.1667/rr14787.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The acute lethality of total-body irradiation (TBI) involves damage to multiple organs, including bone marrow and intestine. Ionizing radiation mitigators that are effective when delivered 24 h or later after TBI include the anti-apoptotic drug, JP4-039 and the anti-necroptotic drug, necrostatin-1. In contrast to effective delivery of JP4-039 at 24 h after TBI, necrostatin-1 is most effective when delivery is delayed until 48 h, a time that correlates with the elevation of necroptosis-inducing inflammatory cytokines and necroptosis-induced serine phosphorylation of receptor-interacting serine/threonine-protein kinase-3 (RIP3) in tissues. The goal of this work was to determine whether administration of JP4-039 influenced the optimal delivery time for necrostatin-1. We measured daily levels of 33 proteins in plasma compared to intestine and bone marrow of C57BL/6NTac female mice over a 7-day time period after 9.25 Gy TBI (LD50/30). Protein responses to TBI in plasma were different from those measured in intestine or bone marrow. In mice that were given JP4-039 at 24 h after TBI, we delayed necrostatin-1 delivery for 72 h after TBI based on measured delay in RIP-3 kinase elevation in marrow and intestine. Sequential delivery of these two radiation mitigator drugs significantly increased survival compared to single drug administration.
Collapse
Affiliation(s)
- Justin Steinman
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - John Willis
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Renee Fisher
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Bing Liu
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Travis McCaw
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Valerian Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Department ofChemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Song Li
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - M. Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Patyar RR, Patyar S. Role of drugs in the prevention and amelioration of radiation induced toxic effects. Eur J Pharmacol 2017; 819:207-216. [PMID: 29221951 DOI: 10.1016/j.ejphar.2017.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/25/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
As the use of radiation technology for nuclear warfare or for the benefits of mankind (e.g. in radiotherapy or radio-diagnosis) is increasing tremendously, the risk of associated side effects is becoming a cause of concern. These effects, ranging from nausea/vomiting to death, may result from accidental or deliberate exposure and begin in seconds. Through this review paper, efforts have been done to critically review different compounds which have been investigated as radioprotectors and radiation mitigators. Radioprotectors are compounds which are administered just before or at the time of irradiation so as to minimize the radiation induced damage to normal tissues. And radiation mitigators are the compounds which can even minimize or ameliorate post irradiaion-toxicity provided they are administered before the onset of toxic symptoms. A variety of agents have been investigated for their preventive and ameliorative potential against radiation induced toxic effects. This review article has focused on various aspects of the promising representative agents belonging to different classes of radioprotectors and mitigators. Many compounds have shown promising results, but till date only amifostine and palifermin are clinically approved by FDA. To fill this void in pharmacological armamentarium, focus should be shifted towards novel approaches.
Collapse
Affiliation(s)
| | - Sazal Patyar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
24
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1045] [Impact Index Per Article: 130.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
25
|
Epperly MW, Rhieu BH, Franicola D, Dixon T, Cao S, Zhang X, Shields D, Wang H, Wipf P, Greenberger JS. Induction of TGF-β by Irradiation or Chemotherapy in Fanconi Anemia (FA) Mouse Bone Marrow Is Modulated by Small Molecule Radiation Mitigators JP4-039 and MMS350. ACTA ACUST UNITED AC 2017; 31:159-168. [PMID: 28358695 DOI: 10.21873/invivo.11040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIM Total-body irradiation and/or administration of chemotherapy drugs in bone marrow transplantation induce cytokines that can suppress engraftment. Fanconi Anemia (FA) patients have a hyperactive responsiveness to the inhibitory cytokine, transforming growth factor-beta (TGF-β). Small molecule radiation mitigator drugs, JP4-039 and MMS350, were evaluated for suppression of irradiation or drug-induced TGF-β. MATERIALS AND METHODS In vivo induction of TGF-β by total-body ionizing irradiation (TBI), L-phenylalanine mustard (L-PAM), busulfan or fludarabine, was quantified. In parallel, mitigator drug amelioration of TGF-β induction in FA D2-/- (FANCD2-/-) mouse bone marrow, was studied in vitro. Tissue culture medium, cell lysates, and mouse plasma were analyzed for TGF-β levels. RESULTS Induction of TGF-β levels in FANCD2-/- and FANCD2+/+ mice and in mouse bone marrow were modulated by both JP4-039 and MMS350. CONCLUSION Bone marrow transplantation in FA recipients may benefit from administration of small molecule agents that suppress TGF-β induction.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Byung-Han Rhieu
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Shaonan Cao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
26
|
Epperly MW, Sacher JR, Krainz T, Zhang X, Wipf P, Liang M, Fisher R, Li S, Wang H, Greenberger JS. Effectiveness of Analogs of the GS-Nitroxide, JP4-039, as Total Body Irradiation Mitigators. ACTA ACUST UNITED AC 2017; 31:39-43. [PMID: 28064218 DOI: 10.21873/invivo.11022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Mitochondrial-targeted gramicidin S (GS)-nitroxide, JP4-039, has been demonstrated to be a potent radiation mitigator, and safe over a wide dose range. In addition, JP4-039 has organ-specific effectiveness when locally applied. MATERIALS AND METHODS We tested the effect of another GS-nitroxide, XJB-5-131, which has more effective mitochondrial localization, and compared these results to those for radiation mitigation against the hematopoietic syndrome, and two analogs of JP4-039, which have the same mitochondrial localization signal, but different chemical payloads: JRS527.084 contains a second nitroxide per molecule, and TK649.030 contains an ester group attached to the nitroxide. RESULTS The results demonstrate the superiority of JP4-039 as a systemic radiation mitigator. CONCLUSION Structure-activity relationships and bioassays demonstrate that JP4-039 is an optimized small-molecule radiation mitigator.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Joshua R Sacher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Tanja Krainz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Xiaolin Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Mary Liang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Song Li
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
27
|
Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS, Tang D. FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun 2016; 480:443-449. [PMID: 27773819 PMCID: PMC6591579 DOI: 10.1016/j.bbrc.2016.10.068] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Bone marrow injury remains a serious concern in traditional cancer treatment. Ferroptosis is an iron- and oxidative-dependent form of regulated cell death that has become part of an emerging strategy for chemotherapy. However, the key regulator of ferroptosis in bone marrow injury remains unknown. Here, we show that Fanconi anemia complementation group D2 (FANCD2), a nuclear protein involved in DNA damage repair, protects against ferroptosis-mediated injury in bone marrow stromal cells (BMSCs). The classical ferroptosis inducer erastin remarkably increased the levels of monoubiquitinated FANCD2, which in turn limited DNA damage in BMSCs. FANCD2-deficient BMSCs were more sensitive to erastin-induced ferroptosis (but not autophagy) than FANCD2 wild-type cells. Knockout of FANCD2 increased ferroptosis-associated biochemical events (e.g., ferrous iron accumulation, glutathione depletion, and malondialdehyde production). Mechanically, FANCD2 regulated genes and/or expression of proteins involved in iron metabolism (e.g., FTH1, TF, TFRC, HAMP, HSPB1, SLC40A1, and STEAP3) and lipid peroxidation (e.g., GPX4). Collectively, these findings indicate that FANCD2 plays a novel role in the negative regulation of ferroptosis. FANCD2 could represent an amenable target for the development of novel anticancer therapies aiming to reduce the side effects of ferroptosis inducers.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yangchun Xie
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaofang Sun
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China.
| |
Collapse
|
28
|
Zhang X, Hou W, Epperly MW, Rigatti L, Wang H, Franicola D, Sivanathan A, Greenberger JS. Evolution of malignant plasmacytoma cell lines from K14E7 Fancd2-/- mouse long-term bone marrow cultures. Oncotarget 2016; 7:68449-68472. [PMID: 27637088 PMCID: PMC5356567 DOI: 10.18632/oncotarget.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022] Open
Abstract
We tested the effect of expression of the Human Papilloma Virus (HPV E7) oncogene on hematopoiesis in long-term bone marrow cultures (LTBMCs) derived from K14E7 (FVB) Fancd2-/- (129/Sv), K14E7 Fancd2+/+, Fancd2-/-, and control (FVB X 129/Sv) Fl mice. K14E7 Fancd2-/- and Fancd2-/- LTBMCs showed decreased duration of production of total nonadherent hematopoietic cells and progenitors forming day 7 and day 14 multilineage CFU-GEMM colonies in secondary cultures (7 wks and 8 wks respectively) compared to cultures from K14E7 Fancd2+/+ (17 wks) or control mice (18 wks) p < 0.0001. Marrow stromal cell lines derived from both K14E7 Fancd2-/- and Fancd2-/- cultures were radiosensitive, as were IL-3 dependent hematopoietic progenitor cell lines derived from K14E7 Fancd2-/- cultures. In contrast, Fancd2-/- mouse hematopoietic progenitor cell lines and fresh marrow were radioresistant. K14E7 Fancd2-/- mouse freshly explanted bone marrow expressed no detectable K14 or E7; however, LTBMCs produced K14 positive factor-independent (FI) clonal malignant plasmacytoma forming cell lines in which E7 was detected in the nucleus with p53 and Rb. Transfection of an E6/E7 plasmid into Fancd2-/-, but not control Fancd2+/+ IL-3 dependent hematopoietic progenitor cell lines, increased cloning efficiency, cell growth, and induced malignant cell lines. Therefore, the altered radiobiology of hematopoietic progenitor cells and malignant transformation in vitro by K14E7 expression in cells of the Fancd2-/- genotype suggests a potential role of HPV in hematopoietic malignancies in FA patients.
Collapse
Affiliation(s)
- Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Lora Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, 15260 PA, USA
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Aranee Sivanathan
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, 15232 PA, USA
| |
Collapse
|
29
|
Krainz T, Gaschler M, Lim C, Sacher JR, Stockwell BR, Wipf P. A Mitochondrial-Targeted Nitroxide Is a Potent Inhibitor of Ferroptosis. ACS CENTRAL SCIENCE 2016; 2:653-659. [PMID: 27725964 PMCID: PMC5043442 DOI: 10.1021/acscentsci.6b00199] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 05/05/2023]
Abstract
Discovering compounds and mechanisms for inhibiting ferroptosis, a form of regulated, nonapoptotic cell death, has been of great interest in recent years. In this study, we demonstrate the ability of XJB-5-131, JP4-039, and other nitroxide-based lipid peroxidation mitigators to prevent ferroptotic cell death in HT-1080, BJeLR, and panc-1 cells. Several analogues of the reactive oxygen species (ROS) scavengers XJB-5-131 and JP4-039 were synthesized to probe structure-activity relationships and the influence of subcellular localization on the potency of these novel ferroptosis suppressors. Their biological activity correlated well over several orders of magnitude with their structure, relative lipophilicity, and respective enrichment in mitochondria, revealing a critical role of intramitochondrial lipid peroxidation in ferroptosis. These results also suggest that preventing mitochondrial lipid oxidation might offer a viable therapeutic opportunity in ischemia/reperfusion-induced tissue injury, acute kidney injury, and other pathologies that involve ferroptotic cell death pathways.
Collapse
Affiliation(s)
- Tanja Krainz
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Michael
M. Gaschler
- Department of Biological Sciences and Department of Chemistry, Columbia University, 550 West 120th Street, Northwest Corner Building,
MC 4846, New York, New York 10027, United States
| | - Chaemin Lim
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua R. Sacher
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Brent R. Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, 550 West 120th Street, Northwest Corner Building,
MC 4846, New York, New York 10027, United States
- E-mail:
| | - Peter Wipf
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
- E-mail:
| |
Collapse
|
30
|
Greenberger J, Kagan V, Bayir H, Wipf P, Epperly M. Antioxidant Approaches to Management of Ionizing Irradiation Injury. Antioxidants (Basel) 2015; 4:82-101. [PMID: 26785339 PMCID: PMC4665573 DOI: 10.3390/antiox4010082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/25/2022] Open
Abstract
Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.
Collapse
Affiliation(s)
- Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, USA.
| | - Valerian Kagan
- Department of Environmental/Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Hulya Bayir
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, USA.
| |
Collapse
|