1
|
Rogers CL, Lageman SK, Fontanesi J, Wilson GD, Boling PA, Bansal S, Karis JP, Sabbagh M, Mehta MP, Harris TJ. Low-Dose Whole Brain Radiation Therapy for Alzheimer's Dementia: Results From a Pilot Trial in Humans. Int J Radiat Oncol Biol Phys 2023; 117:87-95. [PMID: 36935024 DOI: 10.1016/j.ijrobp.2023.03.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE We report neurocognitive, imaging, ophthalmologic, and safety outcomes following low-dose whole brain radiation therapy (LD-WBRT) for patients with early Alzheimer dementia (eAD) treated in a pilot trial. METHODS AND MATERIALS Trial-enrolled patients were at least 55 years of age, had eAD meeting NINCDS-ADRDA (National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association) Alzheimer's Criteria with confirmatory fluorodeoxyglucose and florbetapir positron emission tomography findings; had the capacity to complete neurocognitive function, psychological function, and quality-of-life assessments; had a Rosen modified Hachinski score ≤4; and had estimated survival >12 months. RESULTS Five patients were treated with LD-WBRT (2 Gy × 5 over 1 week; 3 female; mean age, 73.2 years [range, 69-77]). Four of 5 patients had improved (n = 3) or stable (n = 1) Mini-Mental State Examination (second edition) T-scores at 1 year. The posttreatment scores of all 3 patients who improved increased to the average range. There were additional findings of stability of naming and other cognitive skills as well as stability to possible improvement in imaging findings. No safety issues were encountered. The only side effect was temporary epilation with satisfactory hair regrowth. CONCLUSIONS Our results from 5 patients with eAD treated with LD-WBRT (10 Gy in 5 fractions) demonstrate a positive safety profile and provide preliminary, hypothesis-generating data to suggest that this treatment stabilizes or improves cognition. These findings will require further evaluation in larger, definitive, randomized trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Surbhi Bansal
- Virginia Commonwealth University, Richmond, Virginia
| | | | | | | | | |
Collapse
|
2
|
The Effects of Galactic Cosmic Rays on the Central Nervous System: From Negative to Unexpectedly Positive Effects That Astronauts May Encounter. BIOLOGY 2023; 12:biology12030400. [PMID: 36979092 PMCID: PMC10044754 DOI: 10.3390/biology12030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Galactic cosmic rays (GCR) pose a serious threat to astronauts’ health during deep space missions. The possible functional alterations of the central nervous system (CNS) under GCR exposure can be critical for mission success. Despite the obvious negative effects of ionizing radiation, a number of neutral or even positive effects of GCR irradiation on CNS functions were revealed in ground-based experiments with rodents and primates. This review is focused on the GCR exposure effects on emotional state and cognition, emphasizing positive effects and their potential mechanisms. We integrate these data with GCR effects on adult neurogenesis and pathological protein aggregation, forming a complete picture. We conclude that GCR exposure causes multidirectional effects on cognition, which may be associated with emotional state alterations. However, the irradiation in space-related doses either has no effect or has performance enhancing effects in solving high-level cognition tasks and tasks with a high level of motivation. We suppose the model of neurotransmission changes after irradiation, although the molecular mechanisms of this phenomenon are not fully understood.
Collapse
|
3
|
Yoo JY, Lee YJ, Kim YJ, Baik TK, Lee JH, Lee MJ, Woo RS. Multiple low-dose radiation-induced neuronal cysteine transporter expression and oxidative stress are rescued by N-acetylcysteine in neuronal SH-SY5Y cells. Neurotoxicology 2023; 95:205-217. [PMID: 36796651 DOI: 10.1016/j.neuro.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Recently, several studies have demonstrated that low-dose radiation (LDR) therapy has positively impacts on the treatment of Alzheimer's disease (AD). LDR suppresses the production of pro-neuroinflammation molecules and improves cognitive function in AD. However, it is unclear whether direct exposure to LDR causes beneficial effects and what mechanism is involved in neuronal cells. In this study, we first determined the effect of high-dose radiation (HDR) alone on C6 cells and SH-SY5Y cells. We found that SH-SY5Y cells were more vulnerable than C6 cells to HDR. Moreover, in neuronal SH-SY5Y cells exposed to single or multiple LDR, N-type cells showed decreased cell viability with increasing radiation exposure time and frequency, but S-type cells were unaffected. Multiple LDR increased proapoptotic molecules such as p53, Bax and cleaved caspase-3, and decreased anti-apoptotic molecule (Bcl2). Multiple LDR also generated free radicals in neuronal SH-SY5Y cells. We detected a change in the expression of the neuronal cysteine transporter EAAC1. Pretreatment with N-acetylcysteine (NAC) rescued the increased in EAAC1 expression and the generation of ROS in neuronal SH-SY5Y cells after multiple LDR. Furthermore, we verified whether the increased in EAAC1 expression induces cell defense or cell death promotion signaling. We showed that transient overexpression of EAAC1 reduced the multiple LDR-induced p53 overexpression in neuronal SH-SY5Y cells. Our results indicate that neuronal cells can be injured by increased production of ROS not only by HDR but also by multiple LDR, which suggests that combination treatment with anti-free radical agents such as NAC may be useful in multiple LDR therapy.
Collapse
Affiliation(s)
- Ji-Young Yoo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Ye-Ji Lee
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Yu-Jin Kim
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Tai-Kyoung Baik
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | - Jun-Ho Lee
- Department of Emergency Medical Technology, Daejeon University, Daejeon 34520, Republic of Korea
| | - Mi-Jo Lee
- Department of Radiation Oncology, Eulji University Hospital, Daejeon 35233, Republic of Korea.
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon 301-746, Republic of Korea.
| |
Collapse
|
4
|
Radiation as a Tool against Neurodegeneration-A Potential Treatment for Amyloidosis in the Central Nervous System. Int J Mol Sci 2022; 23:ijms232012265. [PMID: 36293118 PMCID: PMC9603404 DOI: 10.3390/ijms232012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/20/2022] Open
Abstract
Radiotherapy (RT) is a relatively safe and established treatment for cancer, where the goal is to kill tumoral cells with the lowest toxicity to healthy tissues. Using it for disorders involving cell loss is counterintuitive. However, ionizing radiation has a hormetic nature: it can have deleterious or beneficial effects depending on how it is applied. Current evidence indicates that radiation could be a promising treatment for neurodegenerative disorders involving protein misfolding and amyloidogenesis, such as Alzheimer's or Parkinson's diseases. Low-dose RT can trigger antioxidant, anti-inflammatory and tissue regeneration responses. RT has been used to treat peripheral amyloidosis, which is very similar to other neurodegenerative disorders from a molecular perspective. Ionizing radiation prevents amyloid formation and other hallmarks in cell cultures, animal models and pilot clinical trials. Although some hypotheses have been formulated, the mechanism of action of RT on systemic amyloid deposits is still unclear, and uncertainty remains regarding its impact in the central nervous system. However, new RT modalities such as low-dose RT, FLASH, proton therapy or nanoparticle-enhanced RT could increase biological effects while reducing toxicity. Current evidence indicates that the potential of RT to treat neurodegeneration should be further explored.
Collapse
|
5
|
Khan A, Sati J, Kamal R, Dhawan DK, Chadha VD. Amelioration of cognitive and biochemical impairment in Aβ-based rodent model of Alzheimer's disease following fractionated X-irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:205-219. [PMID: 35325276 DOI: 10.1007/s00411-022-00967-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Alzheimer's disease is characterized by deposition of amyloid-beta plaques in the brain. Available pharmaceuticals provide temporary symptomatic relief without affecting disease progression. Use of radiation was found effective in treating extra-cranial amyloidosis, therefore, the present study was designed to investigate the neuroprotective role of fractionated X-irradiation in Aβ1-42-based rodent model of Alzheimer's disease. S.D. female rats were randomly divided into four groups: sham control (Group 1), Aβ1-42 injected (Group 2), cranial X-irradiated (Group 3) and Aβ1-42 injected followed by cranial X-irradiation (Group 4). A single dose of 5 µL Aβ1-42 peptide was administered through intracerebroventricular (icv) injection in Group 2 and 4 animals, while Group 1 animals were administered 5 µL of bi-distilled water (icv). The group 4 animals were further subjected to 10 Gy X-irradiation (fractionated dose, 2 Gy × 5 days) after 4 weeks of Aβ1-42 infusion of peptide. The animals in Group 3 were subjected to same dose of cranial fractionated X-irradiation (2 Gy × 5 days) only. Significant decrease in amyloid deposits were observed in the Aβ1-42 + radiation-treated animals confirmed by histopathological analysis. These finding were in concordance with neurobehavioral tests that showed a significant improvement in Aβ1-42-induced memory impairment in the animals subjected to fractionated cranial X-irradiation. Restoration of alterations in neurochemical and antioxidant defense indices further supported our results. The present study highlights the underexplored role of fractionated X-irradiation in curtailing the Aβ1-42-induced neurotoxicity, suggesting a novel treatment option for Alzheimer's disease-associated pathologies.
Collapse
Affiliation(s)
- Anna Khan
- Centre for Nuclear Medicine, University Institute for Emerging Areas in Science and Technology, Panjab University, Block IV, South Campus, Chandigarh, 160014, India
| | - Jasmine Sati
- Centre for Nuclear Medicine, University Institute for Emerging Areas in Science and Technology, Panjab University, Block IV, South Campus, Chandigarh, 160014, India
| | - Rozy Kamal
- Department of Nuclear Medicine, Manipal College of Health Professions, Karnataka, 576104, India
| | - Devinder K Dhawan
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Vijayta D Chadha
- Centre for Nuclear Medicine, University Institute for Emerging Areas in Science and Technology, Panjab University, Block IV, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Ceyzériat K, Tournier BB, Millet P, Dipasquale G, Koutsouvelis N, Frisoni GB, Garibotto V, Zilli T. Low-Dose Radiation Therapy Reduces Amyloid Load in Young 3xTg-AD Mice. J Alzheimers Dis 2022; 86:641-653. [DOI: 10.3233/jad-215510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Low-dose radiation therapy (LD-RT) has been shown to decrease amyloidosis or inflammation in systemic diseases and has recently been proposed as possible treatment of Alzheimer’s disease (AD). A positive effect of LD-RT on tauopathy, the other marker of AD, has also been suggested. These effects have been shown in preclinical studies, but their mechanisms are still not well understood. Objective: This study aimed to evaluate if anti-amyloid and anti-inflammatory effects of LD-RT can be observed at an early stage of the disease. Its impact on tauopathy and behavioral alterations was also investigated. Methods: The whole brain of 12-month-old 3xTg-AD mice was irradiated with 10 Gy in 5 daily fractions of 2 Gy. Mice underwent behavioral tests before and 8 weeks post treatment. Amyloid load, tauopathy, and neuroinflammation were measured using histology and/or ELISA. Results: Compared with wild-type animals, 3xTg-AD mice showed a moderate amyloid and tau pathology restricted to the hippocampus, a glial reactivity restricted to the proximity of amyloid plaques. LD-RT significantly reduced Aβ 42 aggregated forms (–71%) in the hippocampus and tended to reduce other forms in the hippocampus and frontal cortex but did not affect tauopathy or cognitive performance. A trend for neuroinflammation markers reduction was also observed. Conclusion: When applied at an early stage, LD-RT reduced amyloid load and possibly neuroinflammation markers, with no impact on tauopathy. The long-term persistence of these beneficial effects of LD-RT should be evaluated in future studies.
Collapse
Affiliation(s)
- Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Benjamin B. Tournier
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Giovanna Dipasquale
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Nikolaos Koutsouvelis
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Memory Center, Geneva University Hospitals, and LANVIE, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospitals, and NimtLab, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
7
|
Chung M, Rhee HY, Chung WK. Clinical Approach of Low-Dose Whole-Brain Ionizing Radiation Treatment in Alzheimer's Disease Dementia Patients. J Alzheimers Dis 2021; 80:941-947. [PMID: 33612549 PMCID: PMC8150666 DOI: 10.3233/jad-210042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Our research team recently published two relevant papers. In one study, we have seen the acute effect of low-dose ionizing irradiation (LDIR) did not reduce the amyloid-β (Aβ) protein concentration in brain tissue, yet significantly improved synaptic degeneration and neuronal loss in the hippocampus and cerebral cortex. Surprisingly, in another study, we could see late effect that the LDIR-treated mice showed significantly improved learning and memory skills compared with those in the sham group. In addition, Aβ concentrations were significantly decreased in brain tissue. Furthermore, the pro-inflammatory cytokine tumor necrosis factor-α was decreased and the anti-inflammatory cytokine transforming growth factor-β was increased in the brain tissue of 5xFAD mice treated with LDIR. Definitive clinical results for the safety and efficacy of LDIR have not yet been published and, despite the promising outcomes reported during preclinical studies, LDIR can only be applied to patients with Alzheimer's disease dementia when clinical results are made available. In addition, in the case of LDIR, additional large-scale clinical studies are necessary to determine the severity of Alzheimer's disease dementia, indications for LDIR, the total dose to be irradiated, fraction size, and intervals of LDIR treatment. The purpose of this review is to summarize the mechanism of LDIR based on existing preclinical results in a way that is useful for conducting subsequent clinical research.
Collapse
Affiliation(s)
- Mijoo Chung
- Department of Radiation Oncology, Kyung Hee University at Gangdong, Seoul, Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University at Gangdong, Seoul, Korea
| | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University at Gangdong, Seoul, Korea
| |
Collapse
|
8
|
Low-Dose Ionizing Radiation Modulates Microglia Phenotypes in the Models of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21124532. [PMID: 32630597 PMCID: PMC7353052 DOI: 10.3390/ijms21124532] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia. AD involves major pathologies such as amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. During the progression of AD, microglia can be polarized from anti-inflammatory M2 to pro-inflammatory M1 phenotype. The activation of triggering receptor expressed on myeloid cells 2 (TREM2) may result in microglia phenotype switching from M1 to M2, which finally attenuated Aβ deposition and memory loss in AD. Low-dose ionizing radiation (LDIR) is known to ameliorate Aβ pathology and cognitive deficits in AD; however, the therapeutic mechanisms of LDIR against AD-related pathology have been little studied. First, we reconfirm that LDIR (two Gy per fraction for five times)-treated six-month 5XFAD mice exhibited (1) the reduction of Aβ deposition, as reflected by thioflavins S staining, and (2) the improvement of cognitive deficits, as revealed by Morris water maze test, compared to sham-exposed 5XFAD mice. To elucidate the mechanisms of LDIR-induced inhibition of Aβ accumulation and memory loss in AD, we examined whether LDIR regulates the microglial phenotype through the examination of levels of M1 and M2 cytokines in 5XFAD mice. In addition, we investigated the direct effects of LDIR on lipopolysaccharide (LPS)-induced production and secretion of M1/M2 cytokines in the BV-2 microglial cells. In the LPS- and LDIR-treated BV-2 cells, the M2 phenotypic marker CD206 was significantly increased, compared with LPS- and sham-treated BV-2 cells. Finally, the effect of LDIR on M2 polarization was confirmed by detection of increased expression of TREM2 in LPS-induced BV2 cells. These results suggest that LDIR directly induced phenotype switching from M1 to M2 in the brain with AD. Taken together, our results indicated that LDIR modulates LPS- and Aβ-induced neuroinflammation by promoting M2 polarization via TREM2 expression, and has beneficial effects in the AD-related pathology such as Aβ deposition and memory loss.
Collapse
|
9
|
Kim S, Nam Y, Kim C, Lee H, Hong S, Kim HS, Shin SJ, Park YH, Mai HN, Oh SM, Kim KS, Yoo DH, Chung WK, Chung H, Moon M. Neuroprotective and Anti-Inflammatory Effects of Low-Moderate Dose Ionizing Radiation in Models of Alzheimer's Disease. Int J Mol Sci 2020; 21:E3678. [PMID: 32456197 PMCID: PMC7279400 DOI: 10.3390/ijms21103678] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-β (Aβ) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aβ accumulation and Aβ-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aβ accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aβ1-42 (2 μM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aβ and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Chanyang Kim
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Hyewon Lee
- Department of Occupational Therapy, Konyang University, Daejeon 35365, Korea; (H.L.); (D.-H.Y.)
| | - Seojin Hong
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Han Ngoc Mai
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea;
| | - Doo-Han Yoo
- Department of Occupational Therapy, Konyang University, Daejeon 35365, Korea; (H.L.); (D.-H.Y.)
| | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul 05278, Korea;
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Korea; (S.K.); (Y.N.); (S.H.); (H.S.K.); (S.J.S.); (Y.H.P.); (S.-M.O.)
| |
Collapse
|
10
|
Inyushin M, Zayas-Santiago A, Rojas L, Kucheryavykh Y, Kucheryavykh L. Platelet-generated amyloid beta peptides in Alzheimer's disease and glaucoma. Histol Histopathol 2019; 34:843-856. [PMID: 30945258 PMCID: PMC6667289 DOI: 10.14670/hh-18-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) peptides have been implicated in both Alzheimer's disease (AD) and glaucoma and have been shown to be the key etiological factor in these dangerous health complications. On the other hand, it is well known that Aβ peptide can be generated from its precursor protein and massively released from the blood to nearby tissue upon the activation of platelets due to their involvement in innate immunity and inflammation processes. Here we review evidence about the development of AD and glaucoma neuronal damage showing their dependence on platelet count and activation. The correlation between the effect on platelet count and the effectiveness of anti-AD and anti-glaucoma therapies suggest that platelets may be an important player in these diseases.
Collapse
Affiliation(s)
- Mikhail Inyushin
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA.
| | | | - Legier Rojas
- School of Medicine, Universidad Central del Caribe (UCC), PR, USA
| | | | | |
Collapse
|
11
|
Lehrer S, Rheinstein PH, Rosenzweig KE. Association of Radon Background and Total Background Ionizing Radiation with Alzheimer's Disease Deaths in U.S. States. J Alzheimers Dis 2018; 59:737-741. [PMID: 28671130 DOI: 10.3233/jad-170308] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Exposure of the brain to ionizing radiation might promote the development of Alzheimer's disease (AD). OBJECTIVE Analysis of AD death rates versus radon background radiation and total background radiation in U.S. states. METHODS Total background, radon background, cosmic and terrestrial background radiation measurements are from Assessment of Variations in Radiation Exposure in the United States and Report No. 160 - Ionizing Radiation Exposure of the Population of the United States. 2013 AD death rates by U.S. state are from the Alzheimer's Association. RESULTS Radon background ionizing radiation was significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.467, p = 0.001). Total background ionizing radiation was also significantly correlated with AD death rate in 50 states and the District of Columbia (r = 0.452, p = 0.001). Multivariate linear regression weighted by state population demonstrated that AD death rate was significantly correlated with radon background (β= 0.169, p < 0.001), age (β= 0.231, p < 0.001), hypertension (β= 0.155, p < 0.001), and diabetes (β= 0.353, p < 0.001). CONCLUSION Our findings, like other studies, suggest that ionizing radiation is a risk factor for AD. Intranasal inhalation of radon gas could subject the rhinencephalon and hippocampus to damaging radiation that initiates AD. The damage would accumulate over time, causing age to be a powerful risk factor.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|