1
|
Ma L, Zhang Y, Xu J, Yu Y, Zhou P, Liu X, Guan H. Effects of Ionizing Radiation on DNA Methylation Patterns and Their Potential as Biomarkers. Int J Mol Sci 2025; 26:3342. [PMID: 40244232 PMCID: PMC11989863 DOI: 10.3390/ijms26073342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
DNA methylation is a common endogenous chemical modification in eukaryotic DNA, primarily involving the covalent attachment of a methyl group to the fifth carbon of cytosine residues, leading to the formation of 5-methylcytosine (5mC). This epigenetic modification plays a crucial role in gene expression regulation and genomic stability maintenance in eukaryotic systems. Ionizing radiation (IR) has been shown to induce changes in global DNA methylation patterns, which exhibit significant temporal stability. This stability makes DNA methylation profiles promising candidates for radiation-specific biomarkers. This review systematically examines the impact of IR on genome-wide DNA methylation landscapes and evaluates their potential as molecular indicators of radiation exposure. Advancing the knowledge of radiation-induced epigenetic modifications in radiobiology contributes to a deeper understanding of IR-driven epigenetic reprogramming and facilitates the development of novel molecular tools for the early detection and quantitative risk assessment of radiation exposure.
Collapse
Affiliation(s)
- Lanfang Ma
- College of Life Sciences, Hebei University, Baoding 071002, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Yu Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
- College of Public Health, University of South China, 28 West Changsheng Road, Hengyang 421000, China
| | - Jie Xu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Yanan Yu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
- College of Public Health, University of South China, 28 West Changsheng Road, Hengyang 421000, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| | - Xiuhua Liu
- College of Life Sciences, Hebei University, Baoding 071002, China;
| | - Hua Guan
- College of Life Sciences, Hebei University, Baoding 071002, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (J.X.); (Y.Y.); (P.Z.)
| |
Collapse
|
2
|
Yin J, Ye Y, Gao Y, Xu Q, Su M, Sun S, Xu W, Fu Q, Wang A, Hu S. Low-Dose Ionizing Radiation and Male Reproductive Immunity: Elucidating Subtle Modulations and Long-Term Health Implications. Int J Mol Sci 2025; 26:2269. [PMID: 40076897 PMCID: PMC11900348 DOI: 10.3390/ijms26052269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Low-dose ionizing radiation (LDIR) is a prevalent environmental factor with profound impacts on male reproductive health, particularly on the testicular immune microenvironment. This review examines the multifaceted effects of LDIR, emphasizing its ability to induce genotoxic stress, oxidative damage, and epigenetic modifications in reproductive cells. These alterations compromise DNA repair, disrupt chromatin structure, and induce immune dysregulation. Immune cells such as macrophages, T cells, natural killer cells, and dendritic cells exhibit significant functional changes under LDIR exposure, destabilizing the immune privilege critical for normal spermatogenesis. The long-term health implications of LDIR include impaired sperm quality, reduced fertility, and transgenerational risks through heritable genomic instability. This review underscores the importance of exploring the mechanisms underlying immune dysregulation and developing effective protective strategies. While LDIR's full impact on male reproductive health remains to be elucidated, addressing the gaps in our understanding of immune microenvironmental changes is crucial for mitigating its adverse effects and improving reproductive health outcomes.
Collapse
Affiliation(s)
- Jiacheng Yin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Yifan Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Yuankai Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Qing Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Muzhe Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Shengkui Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Wenhui Xu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Qian Fu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - An Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| | - Sumin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (Y.Y.); (Y.G.); (Q.X.); (M.S.); (S.S.); (Q.F.)
| |
Collapse
|
3
|
Mills G, Shand A, Kennedy D, Lowe S, Bilsland V, Cutts B, McBride B, Brown W, Bolisetty S, Wegner EA, Kidson-Gerber G. Position statement on the diagnosis and management of acute leukaemia and aggressive lymphomas in pregnancy. Lancet Haematol 2025; 12:e151-e162. [PMID: 39761682 DOI: 10.1016/s2352-3026(24)00309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 02/07/2025]
Abstract
Haematological malignancies affect 12·5 in 100 000 pregnancies. Over the past two decades, the number of haematological malignancies in pregnancy has substantially increased. Life-threatening haematological malignancies in pregnancy, such as acute leukaemia and aggressive lymphomas, pose a unique therapeutic challenge: clinicians must consider both maternal and fetal wellbeing, aiming to deliver optimal curative therapy for the patient and a successful pregnancy outcome. A multidisciplinary approach to disease management is paramount, and there are currently no clinical practice guidelines available. An Australasian working group, including representatives from haematology, obstetric medicine, clinical teratology, radiology, nuclear medicine, maternal-fetal medicine, and a patient representative, was established to develop this position statement, which is based on a combination of current evidence and expert consensus. We provide recommendations for diagnosis and staging, imaging safety in pregnancy, therapy in pregnancy incorporating a multidisciplinary approach, supportive care, oncofertility, and pregnancy and birth management. This Viewpoint was reviewed and endorsed by the councils of the Society of Obstetric Medicine of Australia and New Zealand, the Haematology Society of Australia and New Zealand, and the Haematology in Obstetric and Women's Health Collaborative.
Collapse
Affiliation(s)
- Georgia Mills
- Department of Haematology, Northern Beaches Hospital, Sydney, NSW, Australia; School of Medicine, Macquarie University, Sydney, NSW, Australia.
| | - Antonia Shand
- Department of Maternal Fetal Medicine, Royal Hospital for Women, Sydney, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Debra Kennedy
- MotherSafe, Royal Hospital for Women, Sydney, NSW, Australia
| | - Sandra Lowe
- Department of Obstetric Medicine, Royal Hospital for Women, Sydney, NSW, Australia; School of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Briony Cutts
- Department of Obstetric Medicine, Joan Kirner Women's and Children's at Sunshine Hospital, Western Health, Melbourne, VIC, Australia; Department of Haematology, Royal Women's Hospital, Melbourne, VIC, Australia
| | - Bruce McBride
- Department of Nuclear Medicine and PET, Prince of Wales Hospital and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Wendy Brown
- Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Srinivas Bolisetty
- Department of Neonatology, Royal Hospital for Women, Sydney, NSW, Australia
| | - Eva A Wegner
- School of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Giselle Kidson-Gerber
- Department of Obstetric Medicine, Royal Hospital for Women, Sydney, NSW, Australia; School of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Haematology, Prince of Wales Hospital and Sydney Children's Hospital, Sydney, NSW, Australia
| |
Collapse
|
4
|
Tanaka IB, Tanaka S, Nakahira R, Komura JI. Transgenerational Effects on Lifespan and Pathology of Paternal Pre-conceptional Exposure to Continuous Low-dose-rate Gamma Rays in C57BL/6J Mice. Radiat Res 2024; 202:870-887. [PMID: 39471831 DOI: 10.1667/rade-24-00093.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
The present work investigates the multigenerational effects of paternal pre-conceptional exposure to continuous low-dose-rate gamma rays in C56BL/6J mice. Male C57BL/6J (F0 sires) mice were exposed to low dose rates of 20, 1, and 0.05 mGy/day for 400 days, to total accumulated doses of 8,000, 400, and 20 mGy, respectively. Upon completion of the radiation exposure, the F0 male mice were immediately bred to non-irradiated 8-week-old C57BL/6J females (F0 dams) to produce the first-generation (F1) mice. Randomly selected F1 males and females were then bred to produce the second-generation (F2) mice. All the mice, except the F0 dams, were subjected to pathological examination upon natural death. Reproductive parameters, lifespan, causes of death, neoplasm incidences and non-neoplastic disease incidences were used as parameters to evaluate the biological effects of continuous pre-conceptional exposure of the sires (F0) to continuous low-dose-rate radiation. There were no significant differences in the pregnancy and weaning rates among the parent (F0) generation. Average litter size and average number of weaned pups (F1) from dams bred to males (F0) exposed to 20 mGy/day were significantly decreased compared to the non-irradiated controls. Significant lifespan shortening in the sires (F0) was observed only in the 20 mGy/day group due to early death from malignant lymphomas. Life shortening was also observed in the F1 progeny of sires (F0) exposed to 20 and 1 mGy/day, but could not be attributed to a specific cause. No significant differences in the causes of death were found between dose groups in any generation. The number of primary tumors per mouse was significantly increased only in the F0 males exposed to 20 mGy/day. Except for the increased incidence rate for Harderian gland neoplasms in sires (F0) exposed to 20 mGy/day, there was no significant difference in neoplasm incidences and tumor spectra in all 3 generations in each sex regardless of radiation exposure. No multi- or transgenerational effects in the parameters examined were observed in the F1 and F2 progeny of sires exposed to 0.05 mGy/day for 400 days.
Collapse
Affiliation(s)
- Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Rei Nakahira
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Jun-Ichiro Komura
- Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| |
Collapse
|
5
|
Kollayan BY, Cansiz D, Beler M, Unal I, Emekli-Alturfan E, Yalcinkaya SE. Effects of low-dose ionizing radiation on the molecular pathways linking neurogenesis and autism spectrum disorders in zebrafish embryos. Drug Chem Toxicol 2024; 47:960-973. [PMID: 38384198 DOI: 10.1080/01480545.2024.2318444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Prenatal exposure to environmental factors may play an important role in the aetiopathogenesis of autism spectrum disorder (ASD). We aim to investigate the potential effects of low-dose x-rays from dental diagnostic x-rays on neurodevelopment and molecular mechanisms associated with ASD in developing zebrafish embryos. Zebrafish embryos were divided into four groups and exposed using a dental x-ray unit: control, 0.08, 0.15 and 0.30 seconds, which are exemplary exposure settings for periapical imaging. These exposure times were measured as 7.17, 23.17 and 63.83 mSv using optical stimulated luminescence dosimeters. At the end of 72 hours post-fertilization, locomotor activity, oxidant-antioxidant status, and acetylcholine esterase (AChE) activity were analyzed. Expression of genes related to apoptosis (bax, bcl2a, p53), neurogenesis (α1-tubulin, syn2a, neurog1, elavl3) and ASD (eif4eb, adsl2a, shank3) was determined by RT-PCR. Even at reduced doses, developmental toxicity was observed in three groups as evidenced by pericardial edema, yolk sac edema and scoliosis. Deleterious effects of dental x-rays on neurogenesis through impaired locomotor activity, oxidative stress, apoptosis and alterations in genes associated with neurogenesis and ASD progression were more pronounced in the 0.30s exposure group. Based on these results we suggest that the associations between ASD and low-dose ionizing radiation need a closer look.
Collapse
Affiliation(s)
- Burcu Yeliz Kollayan
- Institute of Health Sciences, Department of Oral and Maxillofacial Radiology, Marmara University, Istanbul, Turkey
| | - Derya Cansiz
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Merih Beler
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ismail Unal
- Institute of Health Sciences, Department Biochemistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Sebnem Ercalik Yalcinkaya
- Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
6
|
Hourtovenko C, Sreetharan S, Tharmalingam S, Tai TC. Impact of Ionizing Radiation Exposure on Placental Function and Implications for Fetal Programming. Int J Mol Sci 2024; 25:9862. [PMID: 39337351 PMCID: PMC11432287 DOI: 10.3390/ijms25189862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Accidental exposure to high-dose radiation while pregnant has shown significant negative effects on the developing fetus. One fetal organ which has been studied is the placenta. The placenta performs all essential functions for fetal development, including nutrition, respiration, waste excretion, endocrine communication, and immunological functions. Improper placental development can lead to complications during pregnancy, as well as the occurrence of intrauterine growth-restricted (IUGR) offspring. IUGR is one of the leading indicators of fetal programming, classified as an improper uterine environment leading to the predisposition of diseases within the offspring. With numerous studies examining fetal programming, there remains a significant gap in understanding the placenta's role in irradiation-induced fetal programming. This review aims to synthesize current knowledge on how irradiation affects placental function to guide future research directions. This review provides a comprehensive overview of placental biology, including its development, structure, and function, and summarizes the placenta's role in fetal programming, with a focus on the impact of radiation on placental biology. Taken together, this review demonstrates that fetal radiation exposure causes placental degradation and immune function dysregulation. Given the placenta's crucial role in fetal development, understanding its impact on irradiation-induced IUGR is essential.
Collapse
Affiliation(s)
- Cameron Hourtovenko
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - Shayen Sreetharan
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Medical Imaging, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A 5A5, Canada
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
7
|
Tao SM, Wang LL, Li MD, Wang J, Gu HM, Zhang LJ. Cancer risk associated with low-dose ionizing radiation: A systematic review of epidemiological and biological evidence. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108517. [PMID: 39522793 DOI: 10.1016/j.mrrev.2024.108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The current radiation protection reference standards on stochastic cancer risk, drafted by the International Committee on Radiation Protection, are mostly based on the Life Span Study (LSS), though sufficient epidemiological and basic research evidence is lacking. The relationship between low-dose ionizing radiation (LDIR) and cancer risk is currently modeled with linear non-threshold (LNT) models. However, with the widespread use of medical examinations, the demand for substantial evidence of cancer risk under LDIR and the establishment of a threshold has become more significant. In the first part of the review, we summarize pivotal research in epidemiology, which includes the LSS, medical radiation studies, and occupational and environmental exposure studies. We describe and discuss solid cancers and hematopoietic malignancies induced by LDIR separately, attempting to identify the consistency and differences in the research results, and offering suggestions for future research directions. In the second part, we review recent progress in the underlying biology of cancer associated with LDIR. Besides the obvious harmful effect of DNA damage, chromosome aberrations caused by LDIR, epigenetic regulation also requires attention due to their relationship with carcinogenic and genetic risk. The multistage carcinogenesis model of stem cells, along with the varying effects of radiation on different tumors, may challenge the LNT model. Related research of stem cells, mitochondria and omic biology also offers promising directions for future research in this field.
Collapse
Affiliation(s)
- Shu Min Tao
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Le Le Wang
- Department of Radiology, Xuzhou cancer hospital, Xuzhou 221000, China
| | - Min Da Li
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China; Department of Radiology, The Frist Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jing Wang
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Hong Mei Gu
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Long Jiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
8
|
Tao XG, Curriero FC, Mahesh M. Low-Dose Radiation Risks of Lymphohematopoietic Cancer Mortality in U.S. Shipyard Workers. Radiat Res 2024; 201:586-603. [PMID: 36520982 DOI: 10.1667/rade-22-00092.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/11/2022] [Indexed: 02/17/2024]
Abstract
The linear, non-threshold (LNT) hypothesis of cancer induction derived from studies of populations exposed to moderate-to-high acute radiation doses may not be indicative of cancer risks associated with lifetime radiation exposures less than 100 mSv. The objective of this study was to examine risks and dose-response patterns of lymphohematopoietic cancer (LHC) and its types associated with low radiation exposure while adjusting for possible confounding factors. A retrospective cohort of 437,937 U.S. nuclear shipyard workers (153,930 radiation and 284,007 non-radiation workers) was followed from 1957 to 2011, with 3,699 LHC deaths observed. The risk of LHC in radiation workers was initially compared to the risk in non-radiation workers. Time dependent accumulated radiation dose, lagged 2 years, was used in categorical and continuous dose analysis among radiation workers to examine the LHC risks and possible dose-response relationships based on Poisson regression models. These analyses controlled for sex, race, time dependent age, calendar time, socioeconomic status, solvent-related last job, and age at first hire. The median lifetime radiation dose for the radiation worker population was 0.82 mSv and the 95th percentile dose was 83.63 mSv. The study shows: 1. LHC mortality for radiation workers was significantly lower than non-radiation workers relative risk: 0.927; 95% confidence intervals (95% CI): 0.865, 0.992; P = 0.030]. Among LHC types, the risks for lymphoid leukemia and lymphomas in radiation workers were lower than the risk in non-radiation workers with statistical significance, while the risk for the rest of LHC types did not show any statistically significant difference. 2. In categorical dose analysis among radiation workers, sample size weighted linear trend of relative risk (RRs) for LHC and its types in five dose categories (>0-<25, 25-<50, 50-<100, 100-<200, and > = 200 mSv) vs. 0 mSv were not statistically significant, although there was an elevation of RR for chronic myeloid leukemia only in the 50-<100 mSv category (RR: 2.746; 95% CI: 1.002, 7.521; P = 0.049) vs. 0 mSv. 3. The Poisson regression analyses among radiation workers using the time dependent radiation dose as a continuous variable showed an excess relative risk (ERR) for LHC at 100 mSv of 0.094 (95% CI: -0.037, 0.225; P = 0.158) and leukemia less chronic lymphoid leukemia, of 0.178 (95% CI: -0.085, 0.440; P = 0.440) vs. 0 mSv. The ERRs and their linear trend for all other types were not statistically significant.
Collapse
Affiliation(s)
- Xuguang Grant Tao
- Division of Occupational and Environmental Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Joint Appointment: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Frank C Curriero
- Department of Epidemiology, Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Mahadevappa Mahesh
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Joint Appointment in Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21287-0856
| |
Collapse
|
9
|
Wang S, Li G, Du H, Feng J. Low-dose radiation from CT examination induces DNA double-strand breaks and detectable changes of DNA methylation in peripheral blood cells. Int J Radiat Biol 2024; 100:197-208. [PMID: 37812067 DOI: 10.1080/09553002.2023.2267667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Radiation burden from CT examinations increases rapidly with the increased clinical use frequency. Previous studies have disclosed the association between radiation exposure and increased double-strand breaks (DSBs) and changes in DNA methylation. However, whether the induced DSBs by CT examination recover within 24h and whether a CT examination induces detectable gene-specific methylation changes are still unclear. The aim of the present study was to analyze γ-H2AX in the peripheral blood lymphocyte (PBL) of healthy adults before and after CT examination and to discover the differentially methylated positions (DMPs) along with an analysis of DNA methylation changes caused by CT examination. MATERIALS AND METHODS Peripheral blood samples of 4 ml were drawn from 20 healthy volunteers at three time points: before CT examination, after CT examination 1h, and after CT examination 24h. γ-H2AX immunofluorescence and Illumina Infinium Human Methylation EPIC BeadChip (850k BeadChip) were used respectively for the test of DSBs and the epigenome-wide DNA methylation analysis. Linear mixed-effect (LME) models were used to evaluate the impacts of doses represented by different parameters and foci on genome-wide DNA methylation. RESULTS The number of γ-H2AX foci per cell at 1h showed linear dose-responses for the radiation doses represented by CT index volume (CTDIvol), dose length product (DLP), and blood absorbed dose, respectively. Residual γ-H2AX foci was observed after CT examination at 24h (p < .001). DMPs and γ-H2AX foci changes could be found within 1h. One CpG site related to PAX5 was significantly changed by using most of the parameters in LME models and did not recover till 24h. CONCLUSIONS Residual γ-H2AX foci exist after CT examination at 24h. The DNA methylation changes induced by CT examination may not recover within 24h. The DNA methylation had been changed as early as at 1h. The PAX5-related CpG site may be a potential biomarker of low-dose radiation. CLINICAL RELEVANCE The biological effects and the cancer risks of CT examination are still unclear. The present study is an effort to document the CT scan-induced events in 24h in vivo. The CT scanning area should be strictly limited, and non-essential repeated operations shouldn't be performed within 24h.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Gang Li
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Han Du
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Jiling Feng
- Department of Oral and Maxillofacial Radiology, Peking University School and Hospital of Stomatology and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
10
|
Sreetharan S, Frelon S, Horemans N, Laloi P, Salomaa S, Adam-Guillermin C. Ionizing radiation exposure effects across multiple generations: evidence and lessons from non-human biota. Int J Radiat Biol 2023; 100:1312-1329. [PMID: 38079349 DOI: 10.1080/09553002.2023.2281512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 08/30/2024]
Abstract
A Task Group (TG121) of the International Commission on Radiological Protection (ICRP) Committee 1 was launched in 2021 to study the effects of ionizing radiation in offspring and next generations. In this report, we summarize the evidence of multi- and trans-generational effects in non-human biota species that was discussed at the ICRP workshop entitled "Effects of Ionizing Radiation Exposure in Offspring and Next Generations" in June 2022. Epigenetic changes, including changes in DNA methylation, have been observed in trans- and multi-generational irradiation studies in both plants and animals. There were also reports of changes in offspring survival and reproduction. The reported evidence for altered reproduction is an area of potential concern, due to possible effects at the population or ecosystem level. Different considerations are also discussed regarding non-human biota data, such as transferability of data between different species or extending knowledge to humans, differences in species radiosensitivity, the presence of adaptive responses, and dose reconstruction for exposures that occur across multiple generations. Overall, there is a diverse range of available data of the effects in non-human biota, and it will require careful consideration when incorporating this evidence into the system of radiological protection of humans and of the environment.
Collapse
Affiliation(s)
- Shayenthiran Sreetharan
- Radiation Safety, London Health Sciences Centre (LHSC), London, Ontario, Canada
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Biosphere Impact Studies (BIS), Mol, Belgium
- Centre of Environmental Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Patrick Laloi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
11
|
Wei W, Bai H, Zhang T, Cai S, Zhou Y, Liu M, Zhang Y, Chen Y, Hua J, He J, Ding N, Miao G, Wang J. Regulation of Circulating miR-342-3p Alleviates the Radiation-Induced Immune System Injury. Radiat Res 2023; 200:556-568. [PMID: 37874034 DOI: 10.1667/rade-23-00125.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. Expanding countermeasures for dealing with accidental or occupational radiation exposure is crucial for the protection of radiation injuries. Circulating microRNAs (miRNAs) have emerged as promising radiation biomarkers in recent years. However, the origin, distribution and functions of radiosensitive circulating miRNAs remain unclear, which obstructs their clinical applications in the future. In this study, we found that mmu-miR-342-3p (miR-342) in mouse serum presents a stable and significant decrease after X-ray total-body irradiation (TBI). Focusing on this miRNA, we investigated the influences of circulating miR-342 on the radiation-induced injury. Through tail vein injection of Cy5-labeled synthetic miR-342, we found the exogenous miR-342-Cy5 was mainly enriched in metabolic and immune organs. Besides, the bioinformatic analysis predicted that miR-342 might involve in immune-related processes or pathways. Further, mice were tail vein injected with synthetic miR-342 mimetics (Ago-miR-342) after irradiation to upregulate the level of miR-342 in circulating blood. The results showed that the upregulation of circulating miR-342 alleviated the radiation-induced depletion of CD3+CD4+ T lymphocytes and influenced the levels of IL-2 and IL-6 in irradiated mice. Moreover, the injection of Ago-miR-342 improved the survival rates of mice with acute radiation injury. Our findings demonstrate that upregulation of circulating miR-342 alleviates the radiation-induced immune system injury, which provides us new insights into the functions of circulating miRNAs and the prospect as the targets for mitigation of radiation injuries.
Collapse
Affiliation(s)
- Wenjun Wei
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hao Bai
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Tianyi Zhang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shufan Cai
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yumeng Zhou
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Min Liu
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanan Zhang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yaxiong Chen
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junrui Hua
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinpeng He
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Nan Ding
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - GuoYing Miao
- Department of Radiation Oncology, Gansu Provincial Central Hospital, Lanzhou 730000, China
| | - Jufang Wang
- Biomedical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Dahl H, Ballangby J, Tengs T, Wojewodzic MW, Eide DM, Brede DA, Graupner A, Duale N, Olsen AK. Dose rate dependent reduction in chromatin accessibility at transcriptional start sites long time after exposure to gamma radiation. Epigenetics 2023; 18:2193936. [PMID: 36972203 PMCID: PMC10054331 DOI: 10.1080/15592294.2023.2193936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to essential biological mechanisms that could be relevant for understanding long-term changes after ionizing radiation exposure. However, future studies are needed to comprehend the biological consequence of these findings.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jarle Ballangby
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division for Aquaculture, Department of breeding and genetics, Nofima, Ås, Norway
| | - Marcin W. Wojewodzic
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Department of Research, Section Molecular Epidemiology and Infections, Cancer Registry of Norway, Oslo, Norway
| | - Dag M. Eide
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag Anders Brede
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anne Graupner
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
13
|
Shimizu R, Hirano I, Hasegawa A, Suzuki M, Otsuki A, Taguchi K, Katsuoka F, Uruno A, Suzuki N, Yumoto A, Okada R, Shirakawa M, Shiba D, Takahashi S, Suzuki T, Yamamoto M. Nrf2 alleviates spaceflight-induced immunosuppression and thrombotic microangiopathy in mice. Commun Biol 2023; 6:875. [PMID: 37626149 PMCID: PMC10457343 DOI: 10.1038/s42003-023-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Spaceflight-related stresses impact health via various body systems, including the haematopoietic and immune systems, with effects ranging from moderate alterations of homoeostasis to serious illness. Oxidative stress appears to be involved in these changes, and the transcription factor Nrf2, which regulates expression of a set of cytoprotective and antioxidative stress response genes, has been implicated in the response to spaceflight-induced stresses. Here, we show through analyses of mice from the MHU-3 project, in which Nrf2-knockout mice travelled in space for 31 days, that mice lacking Nrf2 suffer more seriously from spaceflight-induced immunosuppression than wild-type mice. We discovered that a one-month spaceflight-triggered the expression of tissue inflammatory marker genes in wild-type mice, an effect that was even more pronounced in the absence of Nrf2. Concomitant with induction of inflammatory conditions, the consumption of coagulation-fibrinolytic factors and platelets was elevated by spaceflight and further accelerated by Nrf2 deficiency. These results highlight that Nrf2 mitigates spaceflight-induced inflammation, subsequent immunosuppression, and thrombotic microangiopathy. These observations reveal a new strategy to relieve health problems encountered during spaceflight.
Collapse
Affiliation(s)
- Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan.
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan.
| | - Ikuo Hirano
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Hasegawa
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Mikiko Suzuki
- Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Keiko Taguchi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan
| | - Akira Uruno
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Norio Suzuki
- Division of Oxygen Biology, New Industry Creation hatchery Center (NICHe), Tohoku University, Sendai, Japan
| | - Akane Yumoto
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Risa Okada
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Masaki Shirakawa
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Dai Shiba
- Japanese Experiment Module (JEM) Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology and Laboratory Animal Resource Center in Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takafumi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.
- The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM) Tohoku University, Sendai, Japan.
| |
Collapse
|
14
|
Katsura M, Urade Y, Nansai H, Kobayashi M, Taguchi A, Ishikawa Y, Ito T, Fukunaga H, Tozawa H, Chikaoka Y, Nakaki R, Echigo A, Kohro T, Sone H, Wada Y. Low-dose radiation induces unstable gene expression in developing human iPSC-derived retinal ganglion organoids. Sci Rep 2023; 13:12888. [PMID: 37558727 PMCID: PMC10412642 DOI: 10.1038/s41598-023-40051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
The effects of low-dose radiation on undifferentiated cells carry important implications. However, the effects on developing retinal cells remain unclear. Here, we analyzed the gene expression characteristics of neuronal organoids containing immature human retinal cells under low-dose radiation and predicted their changes. Developing retinal cells generated from human induced pluripotent stem cells (iPSCs) were irradiated with either 30 or 180 mGy on days 4-5 of development for 24 h. Genome-wide gene expression was observed until day 35. A knowledge-based pathway analysis algorithm revealed fluctuations in Rho signaling and many other pathways. After a month, the levels of an essential transcription factor of eye development, the proportion of paired box 6 (PAX6)-positive cells, and the proportion of retinal ganglion cell (RGC)-specific transcription factor POU class 4 homeobox 2 (POU4F2)-positive cells increased with 30 mGy of irradiation. In contrast, they decreased after 180 mGy of irradiation. Activation of the "development of neurons" pathway after 180 mGy indicated the dedifferentiation and development of other neural cells. Fluctuating effects after low-dose radiation exposure suggest that developing retinal cells employ hormesis and dedifferentiation mechanisms in response to stress.
Collapse
Affiliation(s)
- Mari Katsura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
- Reiwa Eye Clinic, Hatsukaichi, Hiroshima, Japan
| | - Yoshihiro Urade
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroko Nansai
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mika Kobayashi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yukiko Ishikawa
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Ito
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hisako Fukunaga
- Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideto Tozawa
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoko Chikaoka
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | | | - Takahide Kohro
- Department of Clinical Informatics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hideko Sone
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy, Yokohama, Japan.
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
15
|
Csordás IB, Rutten EA, Szatmári T, Subedi P, Cruz-Garcia L, Kis D, Jezsó B, Toerne CV, Forgács M, Sáfrány G, Tapio S, Badie C, Lumniczky K. The miRNA Content of Bone Marrow-Derived Extracellular Vesicles Contributes to Protein Pathway Alterations Involved in Ionising Radiation-Induced Bystander Responses. Int J Mol Sci 2023; 24:ijms24108607. [PMID: 37239971 DOI: 10.3390/ijms24108607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs), through their cargo, are important mediators of bystander responses in the irradiated bone marrow (BM). MiRNAs carried by EVs can potentially alter cellular pathways in EV-recipient cells by regulating their protein content. Using the CBA/Ca mouse model, we characterised the miRNA content of BM-derived EVs from mice irradiated with 0.1 Gy or 3 Gy using an nCounter analysis system. We also analysed proteomic changes in BM cells either directly irradiated or treated with EVs derived from the BM of irradiated mice. Our aim was to identify key cellular processes in the EV-acceptor cells regulated by miRNAs. The irradiation of BM cells with 0.1 Gy led to protein alterations involved in oxidative stress and immune and inflammatory processes. Oxidative stress-related pathways were also present in BM cells treated with EVs isolated from 0.1 Gy-irradiated mice, indicating the propagation of oxidative stress in a bystander manner. The irradiation of BM cells with 3 Gy led to protein pathway alterations involved in the DNA damage response, metabolism, cell death and immune and inflammatory processes. The majority of these pathways were also altered in BM cells treated with EVs from mice irradiated with 3 Gy. Certain pathways (cell cycle, acute and chronic myeloid leukaemia) regulated by miRNAs differentially expressed in EVs isolated from mice irradiated with 3 Gy overlapped with protein pathway alterations in BM cells treated with 3 Gy EVs. Six miRNAs were involved in these common pathways interacting with 11 proteins, suggesting the involvement of miRNAs in the EV-mediated bystander processes. In conclusion, we characterised proteomic changes in directly irradiated and EV-treated BM cells, identified processes transmitted in a bystander manner and suggested miRNA and protein candidates potentially involved in the regulation of these bystander processes.
Collapse
Affiliation(s)
- Ilona Barbara Csordás
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Eric Andreas Rutten
- Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot OX11 0RQ, UK
| | - Tünde Szatmári
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| | - Prabal Subedi
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), 80939 München, Germany
- Federal Office for Radiation Protection (BfS), 85764 Oberschleissheim, Germany
| | - Lourdes Cruz-Garcia
- Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot OX11 0RQ, UK
| | - Dávid Kis
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bálint Jezsó
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, 1053 Budapest, Hungary
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary
| | - Christine von Toerne
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), 80939 München, Germany
| | - Martina Forgács
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| | - Géza Sáfrány
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), 80939 München, Germany
| | - Christophe Badie
- Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Chilton, Didcot OX11 0RQ, UK
| | - Katalin Lumniczky
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, 1097 Budapest, Hungary
| |
Collapse
|
16
|
Lalonde C, Sreetharan S, Murray A, Stoa L, Cybulski ME, Kennedy A, Landry N, Stillar A, Khurana S, Tharmalingam S, Wilson J, Khaper N, Lees SJ, Boreham D, Tai TC. Absence of Depressive and Anxious Behavior with Genetic Dysregulation in Adult C57Bl/6J Mice after Prenatal Exposure to Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24108466. [PMID: 37239811 DOI: 10.3390/ijms24108466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
The exposure of ionizing radiation during early gestation often leads to deleterious and even lethal effects; however, few extensive studies have been conducted on late gestational exposures. This research examined the behavior al effects of C57Bl/6J mouse offspring exposed to low dose ionizing gamma irradiation during the equivalent third trimester. Pregnant dams were randomly assigned to sham or exposed groups to either low dose or sublethal dose radiation (50, 300, or 1000 mGy) at gestational day 15. Adult offspring underwent a behavioral and genetic analysis after being raised under normal murine housing conditions. Our results indicate very little change in the behavioral tasks measuring general anxiety, social anxiety, and stress-management in animals exposed prenatally across the low dose radiation conditions. Quantitative real-time polymerase chain reactions were conducted on the cerebral cortex, hippocampus, and cerebellum of each animal; results indicate some dysregulation in markers of DNA damage, synaptic activity, reactive oxygen species (ROS) regulation, and methylation pathways in the offspring. Together, our results provide evidence in the C57Bl/6J strain, that exposure to sublethal dose radiation (<1000 mGy) during the last period of gestation leads to no observable changes in behaviour when assessed as adults, although some changes in gene expression were observed for specific brain regions. These results indicate that the level of oxidative stress occurring during late gestation for this mouse strain is not sufficient for a change in the assessed behavioral phenotype, but results in some modest dysregulation of the genetic profile of the brain.
Collapse
Affiliation(s)
- Christine Lalonde
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Shayenthiran Sreetharan
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Alyssa Murray
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Lisa Stoa
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | | | - Allison Kennedy
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Nicholas Landry
- Department of Psychology, Nipissing University, North Bay, ON P1B8L7, Canada
| | - Amy Stillar
- Department of Psychology, Nipissing University, North Bay, ON P1B8L7, Canada
| | - Sandhya Khurana
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Joanna Wilson
- Department of Biology, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Neelam Khaper
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Simon J Lees
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - Douglas Boreham
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| | - T C Tai
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- School of Natural Sciences, Laurentian University, Sudbury, ON P3E2C6, Canada
- Medical Sciences Division, NOSM University, Sudbury, ON P3E2C6, Canada
| |
Collapse
|
17
|
Wang KX, Ye C, Yang X, Ma P, Yan C, Luo L. New Insights into the Understanding of Mechanisms of Radiation-Induced Heart Disease. Curr Treat Options Oncol 2023; 24:12-29. [PMID: 36598620 DOI: 10.1007/s11864-022-01041-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
OPINION STATEMENT Cancer patients who receive high-dose thoracic radiotherapy may develop radiation-induced heart disease (RIHD). The clinical presentation of RIHD comprises coronary artery atherosclerosis, valvular disease, pericarditis, cardiomyopathy, and conduction defects. These complications have significantly reduced due to the improved radiotherapy techniques. However, such methods still could not avoid heart radiation exposure. Furthermore, people who received relatively low-dose radiation exposures have exhibited significantly elevated RIHD risks in cohort studies of atomic bomb survivors and occupational exposures. The increased potential in exposure to natural and artificial ionizing radiation sources has emphasized the necessity to understand the development of RIHD. The pathological processes of RIHD include endothelial dysfunction, inflammation, fibrosis, and hypertrophy. The underlying mechanisms may involve the changes in oxidative stress, DNA damage response, telomere erosion, mitochondrial dysfunction, epigenetic regulation, circulation factors, protein post-translational modification, and metabolites. This review will discuss the recent advances in the mechanisms of RIHD at cellular and molecular levels.
Collapse
Affiliation(s)
- Kai-Xuan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Cong Ye
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Xu Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Ping Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, People's Republic of China
| | - Chen Yan
- Department of Rheumatology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang City, Jiangxi Province, 330006, People's Republic of China.
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou City, Jiangsu Province, 221004, People's Republic of China.
| |
Collapse
|
18
|
Kocpinar EF, Baltaci NG, Akkemik E, Budak H. Depletion of Tip60/Kat5 affects the hepatic antioxidant system in mice. J Cell Biochem 2023; 124:103-117. [PMID: 36377816 DOI: 10.1002/jcb.30348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Tat-interactive protein 60 kDa (TIP60, also known as lysine acetyltransferase 5 [KAT5]) is a member of the MYST protein family with histone acetyltransferase activity. Recent studies have reported that TIP60 has multiple functions in many signal transduction mechanisms, especially p53-mediated apoptosis. Although the activation of apoptosis signaling pathways requires the presence of cellular reactive oxygen species (ROS) at a certain level, an imbalance between the production and consumption of ROS in cells results in oxidative stress (OS). In this study, we investigated for the first time how the absence of the Tip60 gene in the liver affects gene expression, enzyme activity, and protein expression of the hepatic antioxidant members localized in the cytoplasm, including superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST). First, we successfully generated liver-specific Tip60 knockout mice (mutants) using Cre/LoxP recombination. The reduced glutathione level and nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, a marker of OS, increased significantly in the Tip60 mutant liver. Gene expression, activity, and protein expression of the enzymatic antioxidant system, including SOD, CAT, GR, GPx, and GST were investigated in mutants and control groups. Despite a significant correlation between the gene, enzyme activity, and protein content for CAT and GR, this was not true for SOD and GPx. The overall results suggest that TIP60 acts on the hepatic antioxidant system both at the gene and protein levels, but the actual effect of the deletion of Tip60 is observed at the protein level, especially for SOD and GPx.
Collapse
Affiliation(s)
- Enver Fehim Kocpinar
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye.,Department of Medical Laboratory Techniques, Vocational School of Health Services, Muş Alparslan University, Mus, Türkiye
| | - Nurdan Gonul Baltaci
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye
| | - Ebru Akkemik
- Department of Engineering, Food Engineering, Siirt University, Siirt, Türkiye
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Türkiye.,Department of Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
BRIDE v2: A Validated Collection of Genes Involved in the Mammalian Brain Response to Low-Dose Ionizing Radiation. RADIATION 2022. [DOI: 10.3390/radiation2040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is significant interest in the response of the mammalian brain to low-dose ionizing radiation (LDIR), mainly examined by gene or protein expression, with applications in radiation safety on Earth, the atmosphere and outer space. Potential associations of molecular-level responses with sensory or cognitive defects and neurodegenerative diseases are currently under investigation. Previously, we have described a light-weight approach for the storage, analysis and distribution of relevant datasets, with the platform BRIDE. We have re-implemented the platform as BRIDE v2 on the cloud, using the bioinformatics infrastructure ELIXIR. We connected the annotated list of 3174 unique gene records with modern omics resources for downstream computational analysis. BRIDE v2 is a cloud-based platform with capabilities that enable researchers to extract, analyze, visualize as well as export the gene collection. The resource is freely available online at <http://bride-db.eu>.
Collapse
|
20
|
Li Y, Lv H, Liang D, Jiang T, Zhao W, Zhou F, Jiao C, Zhou Y, Yu H. Effects of Low-dose Splenic Irradiation on T lymphocyte Immune Function. HEALTH PHYSICS 2022; 123:00004032-990000000-00041. [PMID: 36223337 DOI: 10.1097/hp.0000000000001615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
ABSTRACT Relevant studies have confirmed that the stimulation of spleen function caused by low-dose splenic irradiation can have positive effects on tumors and other diseases. This study aimed to determine radiation-induced changes in spleen index, lymphocyte subsets, spleen cell apoptosis, and pathological features of the spleen in mice. The mouse model was established by irradiating the spleen at different doses. The mice were divided into the following groups: blank control, low-dose, low-dose fractionated irradiation, and challenge dose irradiation. The mice were sacrificed under humanitarian conditions, and spleen tissue and peripheral blood were collected. The spleen index was calculated, and flow cytometry was used to analyze spleen T lymphocyte subsets and spleen apoptosis. The pathological changes in the spleen were determined by hematoxylin and eosin (H&E) staining. The spleen index of mice in the low-dose fractionated irradiation group was significantly increased compared with that in the blank control group. The spleen indexes of the low-dose irradiation and low-dose fractionated irradiation groups were much higher than that of the challenge dose irradiation group. Compared with the blank control group, the percentage of CD3+ and CD4+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation and low-dose fractionated irradiation groups was significantly increased, whereas that from the challenge dose irradiation group was obviously decreased. CD8+ T lymphocytes in the peripheral blood and spleen tissues in the low-dose irradiation, low-dose fractionated irradiation, and challenge dose irradiation groups were significantly lower than those in the blank control group. The apoptosis rate of the spleen in the challenge dose irradiation group was significantly higher than that in the blank control, low-dose irradiation, and low-dose fractionated irradiation groups. H&E staining analysis of the spleen showed pathological changes in the different irradiation groups compared with the blank control group. Low-dose irradiation and low-dose fractionated irradiation can change the T lymphocyte subsets in the peripheral blood and spleen of mice, which can promote immune excitation and improve immune effects.
Collapse
Affiliation(s)
- Yanzi Li
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongying Lv
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Donghai Liang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wei Zhao
- Department of Radiation Oncology, Huangdao District Hospital of Traditional Chinese Medicine, Qingdao 266000, China
| | - Fei Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chenchen Jiao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yuyuan Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongsheng Yu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
21
|
Transposable Elements in the Revealing of Polymorphism-Based Differences in the Seeds of Flax Varieties Grown in Remediated Chernobyl Area. PLANTS 2022; 11:plants11192567. [PMID: 36235434 PMCID: PMC9571286 DOI: 10.3390/plants11192567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The nuclear reactor accident in Chernobyl, Ukraine, resulted in effects both locally and farther away. Most of the contaminated areas were the agricultural fields and forests. Experimental fields were established near Chernobyl—radioactively contaminated fields localized 5 km from Chernobyl Nuclear Power Plant as well as the remediated soil that is localized directly in the Chernobyl town. Two flax varieties growing under chronic exposition to ionizing radiation were used for this study—the local Ukrainian variety Kyivskyi and a commercial variety Bethune. The screening of the length polymorphism generated by transposable elements insertions were performed. All known types of common flax transposon, retrotransposons and iPBS approach were used. In the iPBS multiplex analyze, for the Kyivskyi variety, a unique addition was found in the seeds from the radioactive contaminated field and for the Bethune variety, a total of five amplicon additions were obtained and one deletion. For the TRIM Cassandra fingerprints, two amplicon additions were generated in the seeds from radioactive contaminated fields for the Bethune variety. In summary, the obtained data represent the genetic diversity between control and irradiated subgroups of flax seeds from Chernobyl area and the presence of activated transposable elements due to the irradiation stress.
Collapse
|
22
|
Tanabe S, O’Brien J, Tollefsen KE, Kim Y, Chauhan V, Yauk C, Huliganga E, Rudel RA, Kay JE, Helm JS, Beaton D, Filipovska J, Sovadinova I, Garcia-Reyero N, Mally A, Poulsen SS, Delrue N, Fritsche E, Luettich K, La Rocca C, Yepiskoposyan H, Klose J, Danielsen PH, Esterhuizen M, Jacobsen NR, Vogel U, Gant TW, Choi I, FitzGerald R. Reactive Oxygen Species in the Adverse Outcome Pathway Framework: Toward Creation of Harmonized Consensus Key Events. FRONTIERS IN TOXICOLOGY 2022; 4:887135. [PMID: 35875696 PMCID: PMC9298159 DOI: 10.3389/ftox.2022.887135] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/13/2022] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed as a result of natural cellular processes, intracellular signaling, or as adverse responses associated with diseases or exposure to oxidizing chemical and non-chemical stressors. The action of ROS and RNS, collectively referred to as reactive oxygen and nitrogen species (RONS), has recently become highly relevant in a number of adverse outcome pathways (AOPs) that capture, organize, evaluate and portray causal relationships pertinent to adversity or disease progression. RONS can potentially act as a key event (KE) in the cascade of responses leading to an adverse outcome (AO) within such AOPs, but are also known to modulate responses of events along the AOP continuum without being an AOP event itself. A substantial discussion has therefore been undertaken in a series of workshops named "Mystery or ROS" to elucidate the role of RONS in disease and adverse effects associated with exposure to stressors such as nanoparticles, chemical, and ionizing and non-ionizing radiation. This review introduces the background for RONS production, reflects on the direct and indirect effects of RONS, addresses the diversity of terminology used in different fields of research, and provides guidance for developing a harmonized approach for defining a common event terminology within the AOP developer community.
Collapse
Affiliation(s)
- Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Jason O’Brien
- Wildlife Toxicology Research Section, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Youngjun Kim
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | | | | | | | | | | | | | | | | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Natalia Garcia-Reyero
- U.S. Army Engineer Research and Development Center (ERDC), Vicksburg, MS, United States
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nathalie Delrue
- Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Ellen Fritsche
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Karsta Luettich
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Cinzia La Rocca
- Center for Gender-specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Hasmik Yepiskoposyan
- Philip Morris International R&D, Philip Morris Products SA, Neuchatel, Switzerland
| | - Jördis Klose
- Group of Alternative Method Development for Environmental Toxicity Testing, IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Maranda Esterhuizen
- University of Helsinki, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, Lahti, Finland, and Helsinki Institute of Sustainability Science (HELSUS), Helsinki, Finland
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Timothy W. Gant
- UK Health Security Agency, Public Health England, London, United Kingdom
| | - Ian Choi
- Korea Institute of Science and Technology (KIST) Europe, Saarbrücken, Germany
| | | |
Collapse
|
23
|
Identification of Radiation-Induced miRNA Biomarkers Using the CGL1 Cell Model System. Bioengineering (Basel) 2022; 9:bioengineering9050214. [PMID: 35621492 PMCID: PMC9137836 DOI: 10.3390/bioengineering9050214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as a potential class of biomolecules for diagnostic biomarker applications. miRNAs are small non-coding RNA molecules, produced and released by cells in response to various stimuli, that demonstrate remarkable stability in a wide range of biological fluids, in extreme pH fluctuations, and after multiple freeze–thaw cycles. Given these advantages, identification of miRNA-based biomarkers for radiation exposures can contribute to the development of reliable biological dosimetry methods, especially for low-dose radiation (LDR) exposures. In this study, an miRNAome next-generation sequencing (NGS) approach was utilized to identify novel radiation-induced miRNA gene changes within the CGL1 human cell line. Here, irradiations of 10, 100, and 1000 mGy were performed and the samples were collected 1, 6, and 24 h post-irradiation. Corroboration of the miRNAome results with RT-qPCR verification confirmed the identification of numerous radiation-induced miRNA expression changes at all doses assessed. Further evaluation of select radiation-induced miRNAs, including miR-1228-3p and miR-758-5p, as well as their downstream mRNA targets, Ube2d2, Ppp2r2d, and Id2, demonstrated significantly dysregulated reciprocal expression patterns. Further evaluation is needed to determine whether the candidate miRNA biomarkers identified in this study can serve as suitable targets for radiation biodosimetry applications.
Collapse
|
24
|
Fakhri S, Piri S, Moradi SZ, Khan H. Phytochemicals Targeting Oxidative Stress, Interconnected Neuroinflammatory, and Neuroapoptotic Pathways Following Radiation. Curr Neuropharmacol 2022; 20:836-856. [PMID: 34370636 PMCID: PMC9881105 DOI: 10.2174/1570159x19666210809103346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
The radiation for therapeutic purposes has shown positive effects in different contexts; however, it can increase the risk of many age-related and neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and Parkinson's disease (PD). These different outcomes highlight a dose-response phenomenon called hormesis. Prevailing studies indicate that high doses of radiation could play several destructive roles in triggering oxidative stress, neuroapoptosis, and neuroinflammation in neurodegeneration. However, there is a lack of effective treatments in combating radiation-induced neurodegeneration, and the present drugs suffer from some drawbacks, including side effects and drug resistance. Among natural entities, polyphenols are suggested as multi-target agents affecting the dysregulated pathogenic mechanisms in neurodegenerative disease. This review discusses the destructive effects of radiation on the induction of neurodegenerative diseases by dysregulating oxidative stress, apoptosis, and inflammation. We also describe the promising effects of polyphenols and other candidate phytochemicals in preventing and treating radiation-induced neurodegenerative disorders, aiming to find novel/potential therapeutic compounds against such disorders.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran;,These authors have contributed equally to this work.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan,Address correspondence to these author at the Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; E-mail: Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan; E-mail:
| |
Collapse
|
25
|
Kim SC. Tungsten-Based Hybrid Composite Shield for Medical Radioisotope Defense. MATERIALS 2022; 15:ma15041338. [PMID: 35207876 PMCID: PMC8880229 DOI: 10.3390/ma15041338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023]
Abstract
The shielding performance of shielding clothing is typically improved by increasing the shielding material content, but this lowers the tensile strength of the material. The weight and wearability of the shielding suit are also adversely affected. Important considerations when developing shielding fabric are thickness and flexibility to allow the wearer sufficient mobility. Insufficient thickness lowers the shielding performance, whereas excessive thickness decreases the flexibility of the garment. This study aimed to develop a composite shield that reproduces the shielding performance and meets the flexibility of the process technology. The new shield was manufactured by combining two layers: the shielding fabric fabricated from tungsten wire and a shielding sheet produced by mixing a polymer (PDMS) with tungsten powder. These two shields were bonded to develop a double hybrid composite. Compared with the existing shielding sheet (produced from lead equivalent of 0.55 mmPb), the shielding performance of the hybrid composite shield improved by approximately 17% on average and the tensile strength was 53% higher. The hybrid composite shield has a thickness of 1.35 ± 0.02 mm and delivers the same shielding performance as the lead equivalent. The new hybrid composite shield offers higher wearer mobility while shielding against radiation exposure in medical institutions.
Collapse
Affiliation(s)
- Seon-Chil Kim
- Department of Biomedical Engineering, School of Medicine, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Korea
| |
Collapse
|
26
|
Yushkova E. Radiobiological features in offspring of natural populations of Drosophila melanogaster after Chernobyl accident. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:84-97. [PMID: 35275441 DOI: 10.1002/em.22476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In their natural habitats, populations of organisms are faced with different levels of chronic low-intensity radiation, causing a wide range of radiobiological effects (from radiosensitivity to radioadaptive response and hormesis). In this study, specimens of Drosophila melanogaster were selected from territories of the Chernobyl nuclear power plant with different levels of radioactive contamination. The isogenic stocks derived from these specimens represent the genetic systems of current populations and make it possible to study radioresistance and its mechanisms in future generations under controlled laboratory conditions. Previous studies have shown that transgenerational radiation effects at the level of lethal mutations and survival rate are unstable and depend not only on the level of chronic low-intensity irradiation, but also on other factors. A single acute irradiation exposure of offspring whose parents inhabited a site with a higher level of chronic irradiation made it possible to reveal pronounced radioresistant features in the offspring. And the offspring whose parents were exposed to radiation levels close to the natural radiation background, on the contrary, acquired radiosensitive features. Their response to acute exposure includes a high-frequency of lethal mutations and a short lifespan. The differential response to different levels of chronic parental exposure is caused by differences in the activities of certain transposons that destabilize the genome. Our data contribute to the understanding of genetic and epigenetic mechanisms (via transposon activity) of the effect of parental radiation exposure on the health and adaptive potential of populations affected by the technogenically increased radiation background.
Collapse
Affiliation(s)
- Elena Yushkova
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Science, Syktyvkar, Russia
| |
Collapse
|
27
|
Kuzmina NS. Radiation-Induced DNA Methylation Disorders: In Vitro and In Vivo Studies. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
29
|
Xu S, Huang H, Tang D, Xing M, Zhao Q, Li J, Si J, Gan L, Mao A, Zhang H. Diallyl Disulfide Attenuates Ionizing Radiation-Induced Migration and Invasion by Suppressing Nrf2 Signaling in Non-small-Cell Lung Cancer. Dose Response 2021; 19:15593258211033114. [PMID: 34393685 PMCID: PMC8351038 DOI: 10.1177/15593258211033114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Non–small-cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths. Radiotherapy remains the primary treatment method for NSCLC. Despite great advances in radiotherapy techniques and modalities, recurrence and resistance still limit therapeutic success, even low-dose ionizing radiation (IR) can induce the migration and invasion. Diallyl disulfide (DADS), a bioactive component extracted from garlic, exhibits a wide spectrum of biological activities including antitumor effects. However, the effect of DADS on IR-induced migration and invasion remains unclear. The present study reported that IR significantly promoted the migration and invasion of A549 cells. Pretreatment with 40 μM DADS enhanced the radiosensitivity of A549 cells and attenuated IR-induced migration and invasion. In addition, 40 μM DADS inhibited migration-related protein matrix metalloproteinase-2 and 9 (MMP-2/9) expression and suppressed IR-aggravated EMT by the upregulation of the epithelial marker, E-cadherin, and downregulation of the mesenchymal marker, N-cadherin, in A549 cells. Furthermore, DADS was found to inhibit the activation of Nrf2 signaling. Based on our previous results that knockdown of Nrf2 by siRNA suppressed IR-induced migration and invasion in A549 cells, we speculated that DADS attenuated IR-induced migration and invasion by suppressing the activation of Nrf2 signaling in A549 cells.
Collapse
Affiliation(s)
- Shuai Xu
- Zhaoqing Medical College, Zhaoqing, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Hefa Huang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Mengjie Xing
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Qiuyue Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Human Resources Office, Sichuan University, Chengdu, China
| | | | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aihong Mao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
30
|
Yan K, Cui K, Nie J, Zhang H, Sui L, Zhang H, Yang X, Xu CL, Liang X. Mogroside V Protects Porcine Oocytes From Lipopolysaccharide-Induced Meiotic Defects. Front Cell Dev Biol 2021; 9:639691. [PMID: 33763421 PMCID: PMC7982822 DOI: 10.3389/fcell.2021.639691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has demonstrated that lipopolysaccharide (LPS) compromises female reproduction, especially oocyte maturation and competence. However, methods to protect oocyte quality from LPS-induced deterioration remain largely unexplored. We previously found that mogroside V (MV) can promote oocyte maturation and embryonic development. However, whether MV can alleviate the adverse effects of LPS exposure on oocyte maturation is unclear. Thus, in this study, we used porcine oocytes as a model to explore the effects of MV administration on LPS-induced oocyte meiotic defects. Our findings show that supplementation with MV protected oocytes from the LPS-mediated reduction in the meiotic maturation rate and the subsequent blastocyst formation rate. In addition, MV alleviated the abnormalities in spindle formation and chromosome alignment, decrease in α-tubulin acetylation levels, the disruption of actin polymerization, and the reductions in mitochondrial contents and lipid droplet contents caused by LPS exposure. Meanwhile, LPS reduced m6A levels in oocytes, but MV restored these epigenetic modifications. Furthermore, MV reduced reactive oxygen species (ROS) levels and early apoptosis in oocytes exposed to LPS. In summary, our study demonstrates that MV can protect oocytes from LPS-induced meiotic defects in part by reducing oxidative stress and maintaining m6A levels.
Collapse
Affiliation(s)
- Ke Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kexin Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hengye Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lumin Sui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Huiting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Chang-Long Xu
- Reproductive Medical Center of Nanning Second People's Hospital, Nanning, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
31
|
Esteves SC, Zini A, Coward RM, Evenson DP, Gosálvez J, Lewis SEM, Sharma R, Humaidan P. Sperm DNA fragmentation testing: Summary evidence and clinical practice recommendations. Andrologia 2021; 53:e13874. [PMID: 33108829 PMCID: PMC7988559 DOI: 10.1111/and.13874] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
We herein summarise the evidence concerning the impact of sperm DNA fragmentation in various clinical infertility scenarios and the advances on sperm DNA fragmentation tests. The collected evidence was used to formulate 41 recommendations. Of these, 13 recommendations concern technical aspects of sperm DNA fragmentation testing, including pre-analytical information, clinical thresholds and interpretation of results. The remaining 28 recommendations relate to indications for sperm DNA fragmentation testing and clinical management. Clinical scenarios like varicocele, unexplained infertility, idiopathic infertility, recurrent pregnancy loss, intrauterine insemination, in vitro fertilisation/intracytoplasmic sperm injection, fertility counselling for men with infertility risk factors and sperm cryopreservation have been contemplated. The bulk evidence supporting the recommendations has increased in recent years, but it is still of moderate to low quality. This guideline provides clinicians with advice on best practices in sperm DNA fragmentation testing. Also, recommendations are provided on possible management strategies to overcome infertility related to sperm DNA fragmentation, based on the best available evidence. Lastly, we identified gaps in knowledge and opportunities for research and elaborated a list of recommendations to stimulate further investigation.
Collapse
Affiliation(s)
- Sandro C. Esteves
- ANDROFERT, Andrology and Human Reproduction ClinicReferral Center for Male ReproductionCampinasSPBrazil
- Department of Surgery (Division of Urology)University of Campinas (UNICAMP)CampinasSPBrazil
- Faculty of HealthAarhus UniversityAarhusDenmark
| | - Armand Zini
- Division of UrologyDepartment of SurgerySt. Mary's HospitalMcGill UniversityMontrealQuébecCanada
| | - Robert Matthew Coward
- Department of UrologyUniversity of North CarolinaChapel HillNCUSA
- UNC FertilityRaleighNCUSA
| | - Donald P. Evenson
- SCSA DiagnosticsBrookingsSDUSA
- Sanford Medical SchoolUniversity of South DakotaSioux FallsSDUSA
| | - Jaime Gosálvez
- Unit of GeneticsDepartment of BiologyUniversidad Autónoma de MadridMadridSpain
| | | | - Rakesh Sharma
- American Center for Reproductive MedicineCleveland ClinicClevelandOHUSA
| | - Peter Humaidan
- Faculty of HealthAarhus UniversityAarhusDenmark
- Fertility Clinic SkiveSkive Regional HospitalSkiveDenmark
| |
Collapse
|
32
|
Gautam R, Priyadarshini E, Nirala J, Rajamani P. Impact of nonionizing electromagnetic radiation on male infertility: an assessment of the mechanism and consequences. Int J Radiat Biol 2021; 98:1063-1073. [PMID: 33264041 DOI: 10.1080/09553002.2020.1859154] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Environment and lifestyle factors are being attributed toward increased instances of male infertility. Rapid technological advancement, results in emission of electromagnetic radiations of different frequency which impacts human both biologically as well as genetically. Devices like cell phone, power line and monitors emit electromagnetic radiation and are a major source of the exposure. Numerous studies describe the detrimental consequence of radiation on physiological parameters of male reproductive system including sperm parameters (morphology, motility, and viability), metabolism and genomic instability. While the thermal and nonthermal interaction of nonionizing radiations with biological tissues can't be ruled out, most studies emphasize the generation of reactive oxygen species. Oxidative stress alters redox equilibrium and disrupts morphology and normal functioning of sperms along with declination of total anti-oxidant capacity. CONCLUSION In this paper, we describe a detailed literature review with the intent of analyzing the impact of electromagnetic radiation and understand the consequence on male reproductive system. The underlying mechanism suggesting ROS generation and pathway of action has also been discussed. Additionally, the safety measures while using electronic gadgets and mobile phones has also been presented.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - JayPrakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
33
|
Wertelecki W. Chornobyl radiation-congenital anomalies: A persisting dilemma. Congenit Anom (Kyoto) 2021; 61:9-13. [PMID: 33405251 DOI: 10.1111/cga.12388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/07/2020] [Accepted: 07/26/2020] [Indexed: 11/27/2022]
Abstract
We report population prevalence rates of neural tube defects (NDT) and microcephaly (MIC) as well as levels of incorporated Cs137 by pregnant women in two areas of the Rivne Province of Ukraine, a northern half (Polissia) polluted by Chornobyl radiation and not-Polissia areas. Monitoring of congenital malformations was conducted with adherence to methods adopted by a European surveillance network (EUROCAT). Incorporated Cs137 (Bq/kg) by pregnant women residing in the Polissia and not-Polissia areas were obtained concurrently with prenatal ultrasound examinations. In Polissia, the incorporated Cs137 levels by pregnant women as well as the prevalence rates of NDTs and MIC are significantly higher than in not-Polissia. In Polissia, the prevalence rates of NDTs and MIC are among the highest in Europe. The debate concerning the teratogenic impact of chronic exposures to low levels of ionizing radiation was re-ignited by our 2010 report. Health agencies uphold the notion that exposure to Chornobyl radiation levels are too low to be teratogenic, which is inconsistent with our observations. Further investigations in Rivne by international teams can, we believe, contribute facts to the ongoing debate. Our monitoring system, experience and data can facilitate concurrent investigations of teratogenic risks from exposures to other sources of ionizing radiation, alcohol, folate, and zinc deficiencies, among other risk factors. Study of genomic impacts can likewise be undertaken.
Collapse
|
34
|
Belli M, Indovina L. The Response of Living Organisms to Low Radiation Environment and Its Implications in Radiation Protection. Front Public Health 2020; 8:601711. [PMID: 33384980 PMCID: PMC7770185 DOI: 10.3389/fpubh.2020.601711] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Life has evolved on Earth for about 4 billion years in the presence of the natural background of ionizing radiation. It is extremely likely that it contributed, and still contributes, to shaping present form of life. Today the natural background radiation is extremely small (few mSv/y), however it may be significant enough for living organisms to respond to it, perhaps keeping memory of this exposure. A better understanding of this response is relevant not only for improving our knowledge on life evolution, but also for assessing the robustness of the present radiation protection system at low doses, such as those typically encountered in everyday life. Given the large uncertainties in epidemiological data below 100 mSv, quantitative evaluation of these health risk is currently obtained with the aid of radiobiological models. These predict a health detriment, caused by radiation-induced genetic mutations, linearly related to the dose. However a number of studies challenged this paradigm by demonstrating the occurrence of non-linear responses at low doses, and of radioinduced epigenetic effects, i.e., heritable changes in genes expression not related to changes in DNA sequence. This review is focused on the role that epigenetic mechanisms, besides the genetic ones, can have in the responses to low dose and protracted exposures, particularly to natural background radiation. Many lines of evidence show that epigenetic modifications are involved in non-linear responses relevant to low doses, such as non-targeted effects and adaptive response, and that genetic and epigenetic effects share, in part, a common origin: the reactive oxygen species generated by ionizing radiation. Cell response to low doses of ionizing radiation appears more complex than that assumed for radiation protection purposes and that it is not always detrimental. Experiments conducted in underground laboratories with very low background radiation have even suggested positive effects of this background. Studying the changes occurring in various living organisms at reduced radiation background, besides giving information on the life evolution, have opened a new avenue to answer whether low doses are detrimental or beneficial, and to understand the relevance of radiobiological results to radiation protection.
Collapse
Affiliation(s)
| | - Luca Indovina
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
35
|
Tharmalingam S, Khurana S, Murray A, Lamothe J, Tai TC. Whole transcriptome analysis of adrenal glands from prenatal glucocorticoid programmed hypertensive rodents. Sci Rep 2020; 10:18755. [PMID: 33127986 PMCID: PMC7603342 DOI: 10.1038/s41598-020-75652-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Prenatal glucocorticoid exposure is associated with the development of hypertension in adults. We have previously demonstrated that antenatal dexamethosone (DEX) administration in Wistar-Kyoto dams results in offspring with increased blood pressure coupled with elevated plasma epinephrine levels. In order to elucidate the molecular mechanisms responsible for prenatal DEX-mediated programming of hypertension, a whole-transcriptome analysis was performed on DEX programmed WKY male adrenal glands using the Rat Gene 2.0 microarray. Differential gene expression (DEG) analysis of DEX-exposed offspring compared with saline-treated controls revealed 142 significant DEGs (109 upregulated and 33 downregulated genes). DEG pathway enrichment analysis demonstrated that genes involved in circadian rhythm signaling were most robustly dysregulated. RT-qPCR analysis confirmed the increased expression of circadian genes Bmal1 and Npas2, while Per2, Per3, Cry2 and Bhlhe41 were significantly downregulated. In contrast, gene expression profiling of Spontaneously Hypertensive (SHR) rats, a genetic model of hypertension, demonstrated decreased expression of Bmal1 and Npas2, while Per1, Per2, Per3, Cry1, Cry2, Bhlhe41 and Csnk1D were all upregulated compared to naïve WKY controls. Taken together, this study establishes that glucocorticoid programmed adrenals have impaired circadian signaling and that changes in adrenal circadian rhythm may be an underlying molecular mechanism responsible for the development of hypertension.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.,Health Sciences North Research Institute, Sudbury, ON, P3E 2H2, Canada
| | - Sandhya Khurana
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada
| | - Alyssa Murray
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - Jeremy Lamothe
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | - T C Tai
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada. .,Department of Biology, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada. .,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, P3E 2C6, Canada.
| |
Collapse
|
36
|
Van Voorhies WA, Castillo HA, Thawng CN, Smith GB. The Phenotypic and Transcriptomic Response of the Caenorhabditis elegans Nematode to Background and Below-Background Radiation Levels. Front Public Health 2020; 8:581796. [PMID: 33178665 PMCID: PMC7596186 DOI: 10.3389/fpubh.2020.581796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of the biological effects of low-level and below-background radiation are important in understanding the potential effects of radiation exposure in humans. To study this issue we exposed the nematode Caenorhabditis elegans to average background and below-background radiation levels. Two experiments were carried-out in the underground radiation biology laboratory at the Waste Isolation Pilot Plant (WIPP) in New Mexico USA. The first experiment used naïve nematodes with data collected within 1 week of being placed underground. The second experiment used worms that were incubated for 8 months underground at below background radiation levels. Nematode eggs were placed in two incubators, one at low radiation (ca.15.6 nGy/hr) and one supplemented with 2 kg of natural KCl (ca. 67.4 nGy/hr). Phenotypic variables measured were: (1) egg hatching success (2) body size from larval development to adulthood, (3) developmental time from egg to egg laying adult, and (4) egg laying rate of young adult worms. Transcriptome analysis was performed on the first experiment on 72 h old adult worms. Within 72 h of being underground, there was a trend of increased egg-laying rate in the below-background radiation treatment. This trend became statistically significant in the group of worms exposed to below-background radiation for 8 months. Worms raised for 8 months in these shielded conditions also had significantly faster growth rates during larval development. Transcriptome analyses of 72-h old naïve nematode RNA showed significant differential expression of genes coding for sperm-related proteins and collagen production. In the below-background radiation group, the genes for major sperm protein (msp, 42% of total genes) and sperm-related proteins (7.5%) represented 49.5% of the total genes significantly up-regulated, while the majority of down-regulated genes were collagen (col, 37%) or cuticle-related (28%) genes. RT-qPCR analysis of target genes confirmed transcriptomic data. These results demonstrate that exposure to below-background radiation rapidly induces phenotypic and transcriptomic changes in C. elegans within 72 h of being brought underground.
Collapse
Affiliation(s)
- Wayne A. Van Voorhies
- Molecular Biology Program and Biology Department, New Mexico State University, Las Cruces, NM, United States
| | - Hugo A. Castillo
- Human Factors and Behavioral Neurobiology Department, Embry-Riddle Aeronautical University, Daytona Beach, FL, United States
| | - Cung N. Thawng
- Molecular Biology Program and Biology Department, New Mexico State University, Las Cruces, NM, United States
| | - Geoffrey B. Smith
- Molecular Biology Program and Biology Department, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
37
|
Cuiju W, Shibiao S, Ying T, Rongzong L, Haijuan X, Huifeng C, Tianjian W. IL-2 and IL-2R gene polymorphisms and immune function in people residing in areas with high background radiation, Yangjiang, China. Int J Radiat Biol 2020; 96:1466-1472. [PMID: 32910717 DOI: 10.1080/09553002.2020.1820607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Long-term exposure to low dose radiation may trigger immune response and stimulate hormesis. Interleukin-2 (IL-2) and interleukin-2 receptor (IL-2R) play a crucial role in immune function. We aimed to explore the possible association of IL-2 and IL-2R gene polymorphisms with low dose radiation exposure, as well as the relationship with IL-2 gene expression in people residing in areas with a high background radiation in Yangjiang, China. MATERIALS AND METHODS We recruited and assigned 54 native men residing in Yangxi County, Yangjiang city to the high natural background radiation (HNBR) group, and 53 native men residing in Hengpi County, Enping city to the control area (CA) group. All the participants wore a thermoluminescent dosimeter (TLD) for 90 days, and answered questionnaires. The serum levels of IL2, IL4, IL5, sIL2R, and tumor growth factor (TGF), and expression levels of IL2RA, IL2RB, IL2RG, and IL2 were also analyzed. Additionally, we tested 10 polymorphic loci associated with the IL-2 gene. RESULTS The annual effective radiation doses in the HNBR and CA groups were 6.24 mSv y-1 and 1.95 mSv y-1, respectively. After adjusting for potential confounding factors, the serum levels of IL-2 and IL-5 were higher in the HNBR group than the CA group (p < .05), while the serum level of TGFβ was lower in the HNBR group (p < .05). The IL-2 gene mRNA expression level was higher in the HNBR group than the CA group (p < .05). The IL-2RB rs76206423 AA allele showed significant variations in the HNBR group (p = .0381). CONCLUSIONS Long-term exposure to low dose radiation may enhance immune function, and IL-2RB rs76206423 may be related to the expression of IL-2 by other coding variants. Moreover, our data provide a better understanding of the molecular mechanism of the immune response to low dose radiation.
Collapse
Affiliation(s)
- Wen Cuiju
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| | - Su Shibiao
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| | - Tang Ying
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| | - Li Rongzong
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| | - Xu Haijuan
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| | - Chen Huifeng
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| | - Wang Tianjian
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangdong, China
| |
Collapse
|
38
|
Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. Int J Mol Sci 2020; 21:ijms21175993. [PMID: 32825382 PMCID: PMC7503247 DOI: 10.3390/ijms21175993] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The present system of radiation protection assumes that exposure at low doses and/or low dose-rates leads to health risks linearly related to the dose. They are evaluated by a combination of epidemiological data and radiobiological models. The latter imply that radiation induces deleterious effects via genetic mutation caused by DNA damage with a linear dose-dependence. This picture is challenged by the observation of radiation-induced epigenetic effects (changes in gene expression without altering the DNA sequence) and of non-linear responses, such as non-targeted and adaptive responses, that in turn can be controlled by gene expression networks. Here, we review important aspects of the biological response to ionizing radiation in which epigenetic mechanisms are, or could be, involved, focusing on the possible implications to the low dose issue in radiation protection. We examine in particular radiation-induced cancer, non-cancer diseases and transgenerational (hereditary) effects. We conclude that more realistic models of radiation-induced cancer should include epigenetic contribution, particularly in the initiation and progression phases, while the impact on hereditary risk evaluation is expected to be low. Epigenetic effects are also relevant in the dispute about possible "beneficial" effects at low dose and/or low dose-rate exposures, including those given by the natural background radiation.
Collapse
|
39
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
40
|
Doskaliuk B, Zaiats L, Yatsyshyn R, Gerych P, Cherniuk N, Zimba O. Pulmonary involvement in systemic sclerosis: exploring cellular, genetic and epigenetic mechanisms. Rheumatol Int 2020; 40:1555-1569. [PMID: 32715342 DOI: 10.1007/s00296-020-04658-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a chronic progressive autoimmune disease characterized by immune inflammation, vasculopathy, and fibrosis. There are still numerous uncertainties in the understanding of disease initiation and progression. Pulmonary involvement in SSc, and particularly pulmonary fibrosis, is critical for all organ systems affections in this disease. This review is aimed to describe and analyze new findings in the pathophysiology of SSc-associated pulmonary involvement and to explore perspective diagnostic and therapeutic strategies. A myriad of cellular interactions is explored in the dynamics of progressive interstitial lung disease (ILD) and pulmonary hypertension (PH) in SSc. The role of exosomes, microvesicles, and apoptotic bodies is examined and the impact of micro and long non-coding RNAs, DNA methylation, and histone modification in SSc is discussed.
Collapse
Affiliation(s)
- Bohdana Doskaliuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine. .,Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine.
| | - Liubomyr Zaiats
- Department of Pathophysiology, Ivano-Frankivsk National Medical University, Halytska Str. 2, Ivano-Frankivsk, 76000, Ukraine
| | - Roman Yatsyshyn
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Petro Gerych
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Nataliia Cherniuk
- Academician Ye. M. Neiko Department of Internal Medicine #1, Clinical Immunology and Allergology, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Olena Zimba
- Department of Internal Medicine #2, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
41
|
Mortazavi SMJ, Kefayat A, Cai J. Point/Counterpoint. Low-dose radiation as a treatment for COVID-19 pneumonia: A threat or real opportunity? Med Phys 2020; 47:3773-3776. [PMID: 32619276 PMCID: PMC7362107 DOI: 10.1002/mp.14367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 06/19/2020] [Indexed: 01/11/2023] Open
Affiliation(s)
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | | |
Collapse
|
42
|
Merter A, Karaeminogullari O, Shibayama M. Comparison of Radiation Exposure Among 3 Different Endoscopic Diskectomy Techniques for Lumbar Disk Herniation. World Neurosurg 2020; 139:e572-e579. [PMID: 32330613 DOI: 10.1016/j.wneu.2020.04.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lumbar disk herniation can be successfully treated by lumbar endoscopic spinal procedures. However, one of the most important disadvantages of the endoscopic methods used is radiation exposure. There are multiple endoscopic spinal procedures and this study aims to compare unilateral biportal endoscopic diskectomy (UBED), percutaneous endoscopic lumbar diskectomy (PELD), and microendoscopic diskectomy (MED) methods in terms of radiation exposure. METHODS A total of 75 people were included in this prospective and multicenter study. The demographic characteristics, operating times (minutes), levels of surgery, lumbar disk herniation types, radiation exposures (dose area product [DAP]), and fluoroscopy times (seconds) of the groups were compared. RESULTS Mean DAP values were 1.39 Gy·cm2 in the UBED group, 2.46 Gy·cm2 in the PELD group, and 1.01 Gy·cm2 in the MED group. The UBED group had no statistically significant difference with the MED and PELD groups in terms of DAP (P = 0.281 and P = 0.058, respectively), whereas the PELD group had statistically significantly higher DAP values than the MED group (P = 0.016). The maximum mean duration of fluoroscopy usage time was 34.9 seconds in the PELD group, 19.3 seconds in the UBED group, and 4.6 seconds in the MED group. The differences between the groups were significant (P ≤ 0.001). CONCLUSIONS The more the level of invasiveness is reduced in spinal surgery, the greater the exposure to radiation. In this study, the groups are listed as PELD > UBED > MED according to the duration and level of radiation exposure.
Collapse
Affiliation(s)
- Abdullah Merter
- Department of Orthopedics, Spine Section, School of Medicine, Ibn-i Sina Hospital, Ankara University, Ankara, Turkey.
| | - Oguz Karaeminogullari
- Department of Orthopedics, Spine Section, Bayindir Sogutozu Hospital, Ankara, Turkey
| | - Motohide Shibayama
- Department of Orthopedics, Spine Section, Aichi Spine Hospital, Aichi Prefecture, Japan
| |
Collapse
|
43
|
Bozhkov AI, Kovalova MK, Azeez ZA, Goltvjansky АV. The effect of pre-sowing seed treatment on seedlings growth rate and their excretory activity. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The importance of studying pre-sowing seed treatment lies in the possibility of regulating the rate of seed germination, the intensity of their growth and obtaining root exudates in biotechnology. The effect of three pre-sowing treatment methods was examined (control – washing with running water; the first method – washing with 0.05% sodium permanganate solution; the second method – 30 seconds in 70% ethyl alcohol (C2H5OH) and 30 minutes in 5% sodium hypochlorite (NaOCl); the third method – 5 minutes in 70% C2H5OH and 40 minutes in 5% NaOCl) on the growth rate, germination rate, excretion rate of seeds of wheat and peas and composition (of protein, carbohydrate, amino acid content) of root exudates from the first to the third day of growth in order to obtain root exudates. It was revealed that the same pre-sowing treatment of wheat and pea seeds has a different effect on the rate and variability of seedling growth from the first to the third day, as well as on the qualitative and quantitative composition of root exudates. It was shown that pre-sowing treatment of wheat and pea seeds for 5 minutes with 70% ethanol followed by treatment with sodium hypochlorite (a “hard” treatment method) accelerates seedling growth and seed germination. This method of treatment reduces the intensity of excretion of root exudates and composition in wheat, but it increases the intensity of excretion in peas. The discovered effects can be explained by hormesis. Additionally, the third method of pre-sowing seed treatment can be used in root technologies for obtaining root exudates.
Collapse
|
44
|
Oxidative stress: Normal pregnancy versus preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165354. [DOI: 10.1016/j.bbadis.2018.12.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/22/2018] [Accepted: 12/05/2018] [Indexed: 02/03/2023]
|
45
|
Kuzmina NS, Lapteva NS, Rusinova GG, Azizova TV, Vyazovskaya NS, Rubanovich AV. Dose Dependence of Hypermethylation of Gene Promoters in Blood Leukocytes in Humans Occupationally Exposed to External γ-Radiation. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019110062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Fang L, Li J, Li W, Mao X, Ma Y, Hou D, Zhu W, Jia X, Qiao J. Assessment of Genomic Instability in Medical Workers Exposed to Chronic Low-Dose X-Rays in Northern China. Dose Response 2019; 17:1559325819891378. [PMID: 31819742 PMCID: PMC6883363 DOI: 10.1177/1559325819891378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
The increasing use of ionizing radiation (IR) in medical diagnosis and treatment
has caused considerable concern regarding the effects of occupational exposure
on human health. Despite this concern, little information is available regarding
possible effects and the mechanism behind chronic low-dose irradiation. The
present study assessed potential genomic damage in workers occupationally
exposed to low-dose X-rays. A variety of analyses were conducted, including
assessing the level of DNA damage and chromosomal aberrations (CA) as well as
cytokinesis-block micronucleus (CBMN) assay, gene expression profiling, and
antioxidant level determination. Here, we report that the level of DNA damage,
CA, and CBMN were all significantly increased. Moreover, the gene expression and
antioxidant activities were changed in the peripheral blood of men exposed to
low-dose X-rays. Collectively, our findings indicated a strong correlation
between genomic instability and duration of low-dose IR exposure. Our data also
revealed the DNA damage repair and antioxidative mechanisms which could result
in the observed genomic instability in health-care workers exposed to chronic
low-dose IR.
Collapse
Affiliation(s)
- Lianying Fang
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jieqing Li
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Weiguo Li
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xuesong Mao
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Ya Ma
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Dianjun Hou
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Ximing Jia
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jianwei Qiao
- Institute of Radiation Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
47
|
Lowe S. Diagnostic imaging in pregnancy: Making informed decisions. Obstet Med 2019; 12:116-122. [PMID: 31523267 PMCID: PMC6734637 DOI: 10.1177/1753495x19838658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
The use of diagnostic imaging involving ionising radiation may be necessary in pregnancy and requires an assessment of the most appropriate and safest imaging modality which will provide the necessary information balanced with the potential risks to the mother and fetus. In most cases, this will involve a potential fetal radiation dose well below 50 mGy. At these doses, there is no risk of lethality, genetic damage/epigenetic change, teratogenicity, growth impairment or sterility. Older epidemiological data indicating a potential increased cancer risk have been contradicted by newer data and better understanding of the biology of low dose radiation. The linear no-threshold rule has been challenged by many and more realistic estimates of oncogenicity risk along with the potential risks of contrast agents are summarised in this review. Imaging in the pregnant population is increasing in both the number of examinations performed and the number of patients being imaged, with the greatest increase being computed tomography scans. Counselling and obtaining informed consent for imaging that involves radiation requires the clinician to communicate with the woman and her family a realistic estimate of the potential radiation dose to herself and her fetus, to describe and quantitate the risks of this estimated dose, to outline the benefits of the imaging procedure and to respond to any questions or concerns. As almost all diagnostic imaging involves doses below the 50 mGy threshold, clinically indicated investigations should not be withheld during pregnancy. All allied staff must also be well informed to ensure the patient receives a consistent message about the risks and benefits of the proposed test.
Collapse
Affiliation(s)
- Sandra Lowe
- Royal Hospital for Women and School of Women’s and Children’s Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
48
|
Gagnaire B, Bonnet M, Tchamitchian S, Cavalié I, Della-Vedova C, Dubourg N, Adam-Guillermin C, Brunet JL, Belzunces LP. Physiological effects of gamma irradiation in the honeybee, Apis mellifera. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:153-163. [PMID: 30825738 DOI: 10.1016/j.ecoenv.2019.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Terrestrial ecosystems are exposed to various kinds of pollutants, including radionuclides. The honeybee, Apis mellifera, is commonly used in ecotoxicology as a model species for evaluating the effects of pollutants. In the present study, honeybees were irradiated right after birth for 14 days with gamma rays at dose rates ranging between 4.38 × 10-3 and 588 mGy/d. Biological tissues (head, intestine and abdomen) were sampled at D3, D10 and D14. Ten different physiological markers involved in nervous (acetylcholinesterase (AChE)), antioxidative (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione-S-transferase (GST)), immune system (phenoloxidase (PO)) and metabolism (carboxylesterases (CaEs) and alkaline phosphatase (ALP)) were measured. Univariate analyses were conducted to determine whether each individual biomarker response was positively or negatively correlated with the dose rate. Then, multivariate analyses were applied to investigate the relationships between all the biomarker responses. Although no mortality occurred during the experiment, several biomarkers varied significantly in relation to the dose rate. Globally, the biomarkers of antioxidant and immune systems decreased as the dose rate increased. Reversible effects on the indicator of the neural system were found. Concerning indicators of metabolism (carboxylesterases), variations occurred but no clear pattern was found. Taken altogether, these results help better understand the effects of ionizing radiation on bees by identifying relevant physiological markers of effects. These results could improve the assessment of the environmental risk due to ionizing radiation in terrestrial ecosystems.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - M Bonnet
- INRA, Institut National de la Recherche Agronomique, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - S Tchamitchian
- INRA, Institut National de la Recherche Agronomique, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Della-Vedova
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LRTA, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - N Dubourg
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - J-L Brunet
- INRA, Institut National de la Recherche Agronomique, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - L P Belzunces
- INRA, Institut National de la Recherche Agronomique, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France.
| |
Collapse
|
49
|
de Vocht F, Suderman M, Ruano-Ravina A, Thomas R, Wakeford R, Relton C, Tilling K, Boyd A. Residential exposure to radon and DNA methylation across the lifecourse: an exploratory study in the ALSPAC birth cohort. Wellcome Open Res 2019; 4:3. [PMID: 30906879 PMCID: PMC6426102 DOI: 10.12688/wellcomeopenres.14991.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Radon (and its decay products) is a known human carcinogen and the leading cause of lung cancer in never-smokers and the second in ever-smokers. The carcinogenic mechanism from radiation is a combination of genetic and epigenetic processes, but compared to the genetic mechanisms, epigenetic processes remain understudied in humans. This study aimed to explore associations between residential radon exposure and DNA methylation in the general population. Methods: Potential residential radon exposure for 75-metre area buffers was linked to genome-wide DNA methylation measured in peripheral blood from children and mothers of the Accessible Resource for Integrated Epigenomic Studies subsample of the ALSPAC birth cohort. Associations with DNA methylation were tested at over 450,000 CpG sites at ages 0, 7 and 17 years (children) and antenatally and during middle-age (mothers). Analyses were adjusted for potential residential and lifestyle confounding factors and were determined for participants with complete data (n = 786 to 980). Results: Average potential exposure to radon was associated in an exposure-dependent manner with methylation at cg25422346 in mothers during pregnancy, with no associations at middle age. For children, radon potential exposure was associated in an exposure-dependent manner with methylation of cg16451995 at birth, cg01864468 at age 7, and cg04912984, cg16105117, cg23988964, cg04945076, cg08601898, cg16260355 and cg26056703 in adolescence. Conclusions: Residential radon exposure was associated with DNA methylation in an exposure-dependent manner. Although chance and residual confounding cannot be excluded, the identified associations may show biological mechanisms involved in early biological effects from radon exposure.
Collapse
Affiliation(s)
- Frank de Vocht
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | | | - Richard Thomas
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, UK
| | - Caroline Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Kate Tilling
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Andy Boyd
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Avon Longitudinal Study of Parents and Children, University of Bristol, Bristol, UK
| |
Collapse
|
50
|
The LNT model for cancer induction is not supported by radiobiological data. Chem Biol Interact 2019; 301:34-53. [PMID: 30763552 DOI: 10.1016/j.cbi.2019.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The hallmarks of cancer have been the focus of much research and have influenced the development of risk models for radiation-induced cancer. However, natural defenses against cancer, which constitute the hallmarks of cancer prevention, have largely been neglected in developing cancer risk models. These natural defenses are enhanced by low doses and dose rates of ionizing radiation, which has aided in the continuation of human life over many generations. Our natural defenses operate at the molecular, cellular, tissue, and whole-body levels and include epigenetically regulated (epiregulated) DNA damage repair and antioxidant production, selective p53-independent apoptosis of aberrant cells (e.g. neoplastically transformed and tumor cells), suppression of cancer-promoting inflammation, and anticancer immunity (both innate and adaptive components). This publication reviews the scientific bases for the indicated cancer-preventing natural defenses and evaluates their implication for assessing cancer risk after exposure to low radiation doses and dose rates. Based on the extensive radiobiological evidence reviewed, it is concluded that the linear-no-threshold (LNT) model (which ignores natural defenses against cancer), as it relates to cancer risk from ionizing radiation, is highly implausible. Plausible models include dose-threshold and hormetic models. More research is needed to establish when a given model (threshold, hormetic, or other) applies to a given low-dose-radiation exposure scenario.
Collapse
|