1
|
Zhang J, Stram DO, Cohen SS, Mumma MT, Pawel DJ, Sesso HD, Leggett RW, Einstein AJ, Boice JD. Approaches to harmonize mortality data sets in three diverse radiation worker cohorts. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2025; 45:021502. [PMID: 40169011 DOI: 10.1088/1361-6498/adc7bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 04/01/2025] [Indexed: 04/03/2025]
Abstract
While there is a well-established link between ionizing radiation and cancer, there are uncertainties with effects following low doses delivered at low dose rates. To address these gaps, the ongoing Million Person Study of Radiation Workers and Veterans (MPS) is investigating the likelihood of a variety of cancer and non-cancer effects following chronic exposure to low dose-rate ionizing radiation. One challenge is and will be combining and harmonizing diverse cohorts with widely different measures of socio-economic status, birth cohorts, dose distributions and sex ratios. Herein, we have evaluated non-cancer mortality in three cohorts for which dose reconstructions have been completed: Rocketdyne (Atomics International, California, 1948-2008), Mound (Dayton, Ohio, 1944-2009) and nuclear weapons test participants (Atomic Veterans, 1945-2012). These three cohorts represent a small fraction of the overall MPS but provide valuable insight into methods of combining and harmonizing data from multiple diverse cohorts that can later be considered for all MPS cohorts. Heart disease mortality, including both underlying and contributing causes of death, was chosen for illustrating the statistical approaches. In all three cohorts, radiation dose estimates were distributed very differently by different measures of socio-economic status. Further, the effect of birth cohort was significantly different for heart disease mortality in all three cohorts, with all studies showing that later birth cohorts have lower rates of heart disease mortality than the earlier. The goal of this paper is not to quantify radiation effects based on these combined cohorts and it would be inappropriate to do so. Rather these cohorts are used to illustrate approaches for combining multiple data sets that incorporate the full set of individual confounder and cofactor information available from each cohort, though widely different. We identified five different methods to combine the results of these three datasets: the simple pooled analysis (PA), PA including study interactions, traditional stratified analysis, and both fixed and random effects meta-analysis. We describe the similarities and differences between the combined results using these approaches.
Collapse
Affiliation(s)
- Jianqi Zhang
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Daniel O Stram
- Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Sarah S Cohen
- DLH Corporation, Durham, NC, United States of America
| | - Michael T Mumma
- Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - David J Pawel
- Radiation Protection Division, U.S. Environmental Protection Agency (retired), Washington, DC, United States of America
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Richard W Leggett
- Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - Andrew J Einstein
- Department of Medicine, Seymour, Paul and Gloria Milstein Division of Cardiology, and Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, United States of America
| | - John D Boice
- Vanderbilt University School of Medicine, Nashville, TN, United States of America
- National Council on Radiation Protection and Measurements, Bethesda, MD, United States of America
| |
Collapse
|
2
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
3
|
Bailey SM, Cross EM, Kinner-Bibeau L, Sebesta HC, Bedford JS, Tompkins CJ. Monitoring Genomic Structural Rearrangements Resulting from Gene Editing. J Pers Med 2024; 14:110. [PMID: 38276232 PMCID: PMC10817574 DOI: 10.3390/jpm14010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
The cytogenomics-based methodology of directional genomic hybridization (dGH) enables the detection and quantification of a more comprehensive spectrum of genomic structural variants than any other approach currently available, and importantly, does so on a single-cell basis. Thus, dGH is well-suited for testing and/or validating new advancements in CRISPR-Cas9 gene editing systems. In addition to aberrations detected by traditional cytogenetic approaches, the strand specificity of dGH facilitates detection of otherwise cryptic intra-chromosomal rearrangements, specifically small inversions. As such, dGH represents a powerful, high-resolution approach for the quantitative monitoring of potentially detrimental genomic structural rearrangements resulting from exposure to agents that induce DNA double-strand breaks (DSBs), including restriction endonucleases and ionizing radiations. For intentional genome editing strategies, it is critical that any undesired effects of DSBs induced either by the editing system itself or by mis-repair with other endogenous DSBs are recognized and minimized. In this paper, we discuss the application of dGH for assessing gene editing-associated structural variants and the potential heterogeneity of such rearrangements among cells within an edited population, highlighting its relevance to personalized medicine strategies.
Collapse
Affiliation(s)
- Susan M. Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Erin M. Cross
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | | - Henry C. Sebesta
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | - Joel S. Bedford
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- KromaTiD, Inc., Longmont, CO 80501, USA; (E.M.C.); (L.K.-B.); (H.C.S.)
| | | |
Collapse
|
4
|
Steen TY. William Jackson Schull and mutation studies on human cohorts. Front Public Health 2023; 11:1151861. [PMID: 37006580 PMCID: PMC10064002 DOI: 10.3389/fpubh.2023.1151861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/06/2023] [Indexed: 03/19/2023] Open
|
5
|
M’Kacher R, Colicchio B, Junker S, El Maalouf E, Heidingsfelder L, Plesch A, Dieterlen A, Jeandidier E, Carde P, Voisin P. High Resolution and Automatable Cytogenetic Biodosimetry Using In Situ Telomere and Centromere Hybridization for the Accurate Detection of DNA Damage: An Overview. Int J Mol Sci 2023; 24:ijms24065699. [PMID: 36982772 PMCID: PMC10054499 DOI: 10.3390/ijms24065699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
In the event of a radiological or nuclear accident, or when physical dosimetry is not available, the scoring of radiation-induced chromosomal aberrations in lymphocytes constitutes an essential tool for the estimation of the absorbed dose of the exposed individual and for effective triage. Cytogenetic biodosimetry employs different cytogenetic assays including the scoring of dicentrics, micronuclei, and translocations as well as analyses of induced premature chromosome condensation to define the frequency of chromosome aberrations. However, inherent challenges using these techniques include the considerable time span from sampling to result, the sensitivity and specificity of the various techniques, and the requirement of highly skilled personnel. Thus, techniques that obviate these challenges are needed. The introduction of telomere and centromere (TC) staining have successfully met these challenges and, in addition, greatly improved the efficiency of cytogenetic biodosimetry through the development of automated approaches, thus reducing the need for specialized personnel. Here, we review the role of the various cytogenetic dosimeters and their recent improvements in the management of populations exposed to genotoxic agents such as ionizing radiation. Finally, we discuss the emerging potentials to exploit these techniques in a wider spectrum of medical and biological applications, e.g., in cancer biology to identify prognostic biomarkers for the optimal triage and treatment of patients.
Collapse
Affiliation(s)
- Radhia M’Kacher
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
- Correspondence: ; Tel.: +33-160878918
| | - Bruno Colicchio
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Steffen Junker
- Institute of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Elie El Maalouf
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| | | | - Andreas Plesch
- MetaSystems GmbH, Robert-Bosch-Str. 6, D-68804 Altlussheim, Germany
| | - Alain Dieterlen
- IRIMAS, Institut de Recherche en Informatique, Mathématiques, Automatique et Signal, Université de Haute-Alsace, 69093 Mulhouse, France
| | - Eric Jeandidier
- Laboratoire de Génétique, Groupe Hospitalier de la Région de Mulhouse Sud-Alsace, 69093 Mulhouse, France
| | - Patrice Carde
- Department of Hematology, Institut Gustave Roussy, 94804 Villejuif, France
| | - Philippe Voisin
- Cell Environment DNA Damage R&D, Genopole, 91000 Evry-Courcouronnes, France
| |
Collapse
|
6
|
Kendall GM, Little MP. The new study of UK nuclear test veterans. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:10.1088/1361-6498/ac6a23. [PMID: 35543442 PMCID: PMC11267482 DOI: 10.1088/1361-6498/ac6a23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Gerry M Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford Old Road Campus, Oxford, OX3 7LF, United Kingdom
| | - Mark P Little
- 3821 Newark St NW, Apt B440, Washington DC 20016-3024, United States of America
| |
Collapse
|
7
|
Simon SL, Bouville A, Beck HL, Anspaugh LR, Thiessen KM, Hoffman FO, Shinkarev S. Dose Estimation for Exposure to Radioactive Fallout from Nuclear Detonations. HEALTH PHYSICS 2022; 122:1-20. [PMID: 34898514 PMCID: PMC8677604 DOI: 10.1097/hp.0000000000001501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT In recent years, the prospects that a nuclear device might be detonated due to a regional or global political conflict, by violation of present nuclear weapons test ban agreements, or due to an act of terrorism, has increased. Thus, the need exists for a well conceptualized, well described, and internally consistent methodology for dose estimation that takes full advantage of the experience gained over the last 70 y in both measurement technology and dose assessment methodology. Here, the models, rationale, and data needed for a detailed state-of-the-art dose assessment for exposure to radioactive fallout from nuclear detonations discussed in five companion papers are summarized. These five papers present methods and data for estimating radionuclide deposition of fallout radionuclides, internal and external dose from the deposited fallout, and discussion of the uncertainties in the assessed doses. In addition, this paper includes a brief discussion of secondary issues related to assessments of radiation dose from fallout. The intention of this work is to provide a usable and consistent methodology for both prospective and retrospective assessments of exposure from radioactive fallout from a nuclear detonation.
Collapse
Affiliation(s)
- Steven L. Simon
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - André Bouville
- National Cancer Institute, National Institutes of Health, Bethesda, MD (retired)
| | | | - Lynn R. Anspaugh
- Department of Radiology, University of Utah (Emeritus), Henderson, NV
| | | | | | - Sergey Shinkarev
- State Research Center-Burnasyan Federal Medical Biophysical Center, Federal Medical Biological Agency, Moscow, Russian Federation
| |
Collapse
|
8
|
Boice JD, Quinn B, Al-Nabulsi I, Ansari A, Blake PK, Blattnig SR, Caffrey EA, Cohen SS, Golden AP, Held KD, Jokisch DW, Leggett RW, Mumma MT, Samuels C, Till JE, Tolmachev SY, Yoder RC, Zhou JY, Dauer LT. A million persons, a million dreams: a vision for a national center of radiation epidemiology and biology. Int J Radiat Biol 2021; 98:795-821. [PMID: 34669549 PMCID: PMC10594603 DOI: 10.1080/09553002.2021.1988183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.
Collapse
Affiliation(s)
- John D. Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brian Quinn
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Armin Ansari
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Steve R. Blattnig
- National Aeronautics and Space Administration Langley Research Center, Hampton, VA, USA
| | - Emily A. Caffrey
- Radian Scientific, LLC, Huntsville, AL, and Risk Assessment Corporation, Neeses, SC, USA
| | - Sarah S. Cohen
- EpidStrategies, a division of ToxStrategies, Inc, Cary, NC, USA
| | | | - Kathryn D. Held
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA
- Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Derek W. Jokisch
- Francis Marion University, Florence, SC, USA
- Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Michael T. Mumma
- Vanderbilt University School of Medicine, Nashville, TN, USA
- International Epidemiology Institute, Rockville, MD, USA
| | | | | | | | | | - Joey Y. Zhou
- United States Department of Energy, Gaithersburg, MD, USA
| | | |
Collapse
|
9
|
Abstract
The dicentric chromosome (DC) assay accurately quantifies exposure to radiation; however, manual and semi-automated assignment of DCs has limited its use for a potential large-scale radiation incident. The Automated Dicentric Chromosome Identifier and Dose Estimator (ADCI) software automates unattended DC detection and determines radiation exposures, fulfilling IAEA criteria for triage biodosimetry. This study evaluates the throughput of high-performance ADCI (ADCI-HT) to stratify exposures of populations in 15 simulated population scale radiation exposures. ADCI-HT streamlines dose estimation using a supercomputer by optimal hierarchical scheduling of DC detection for varying numbers of samples and metaphase cell images in parallel on multiple processors. We evaluated processing times and accuracy of estimated exposures across census-defined populations. Image processing of 1744 samples on 16,384 CPUs required 1 h 11 min 23 s and radiation dose estimation based on DC frequencies required 32 sec. Processing of 40,000 samples at 10 exposures from five laboratories required 25 h and met IAEA criteria (dose estimates were within 0.5 Gy; median = 0.07). Geostatistically interpolated radiation exposure contours of simulated nuclear incidents were defined by samples exposed to clinically relevant exposure levels (1 and 2 Gy). Analysis of all exposed individuals with ADCI-HT required 0.6–7.4 days, depending on the population density of the simulation.
Collapse
|
10
|
Boice JD, Cohen SS, Mumma MT, Chen H, Golden AP, Beck HL, Till JE. Mortality among U.S. military participants at eight aboveground nuclear weapons test series. Int J Radiat Biol 2020; 98:679-700. [PMID: 32602389 DOI: 10.1080/09553002.2020.1787543] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Approximately 235,000 military personnel participated at one of 230 U.S. atmospheric nuclear weapons tests from 1945 through 1962. At the Nevada Test Site (NTS), the atomic veterans participated in military maneuvers, observed nuclear weapons tests, or provided technical support. At the Pacific Proving Ground (PPG), they served aboard ships or were stationed on islands during or after nuclear weapons tests. MATERIAL AND METHODS Participants at seven test series, previously studied with high-quality dosimetry and personnel records, and the first test at TRINITY formed the cohort of 114,270 male military participants traced for vital status from 1945 through 2010. Dose reconstructions were based on Nuclear Test Personnel Review records, Department of Defense. Standardized mortality ratios (SMR) and Cox and Poisson regression models were used in the analysis. RESULTS Most atomic veterans were enlisted men, served in the Navy at the PPG, and were born before 1930. Vital status was determined for 96.8% of the veterans; 60% had died. Enlisted men had significantly high all-causes mortality SMR (1.06); officers had significantly low all-causes mortality SMR (0.71). The pattern of risk over time showed a diminution of the 'healthy soldier effect': the all-causes mortality SMR after 50 years of follow-up was 1.00. The healthy soldier effect for all cancers also diminished over time. The all-cancer SMR was significantly high after 50 years (SMR 1.10) primarily from smoking-related cancers, attributed in part to the availability of cigarettes in military rations. The highest SMR was for mesothelioma (SMR 1.56) which was correlated with asbestos exposure in naval ships. Prostate cancer was significantly high (SMR 1.13). Ischemic heart disease was significantly low (SMR 0.84). Estimated mean doses varied by organ were low; e.g., the mean red bone marrow dose was 6 mGy (maximum 108 mGy). Internal cohort dose-response analyses provided no evidence for increasing trends with radiation dose for leukemia (excluding chronic lymphocytic leukemia (CLL)) [ERR (95% CI) per 100 mGy -0.37 (-1.08, 0.33); n = 710], CLL, myelodysplastic syndrome, multiple myeloma, ischemic heart disease, or cancers of the lung, prostate, breast, and brain. CONCLUSION No statistically significant radiation associations were observed among 114,270 nuclear weapons test participants followed for up to 65 years. The 95% confidence limits were narrow and excluded mortality risks per unit dose that are two to four times higher than those reported in other investigations. Significantly elevated SMRs were seen for mesothelioma and asbestosis, attributed to asbestos exposure aboard ships.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah S Cohen
- EpidStrategies, a Division of ToxStrategies, Cary, NC, USA
| | | | - Heidi Chen
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | | | - John E Till
- Risk Assessment Corporation, Neeses, SC, USA
| |
Collapse
|
11
|
Swartz HM, Flood AB, Singh VK, Swarts SG. Scientific and Logistical Considerations When Screening for Radiation Risks by Using Biodosimetry Based on Biological Effects of Radiation Rather than Dose: The Need for Prior Measurements of Homogeneity and Distribution of Dose. HEALTH PHYSICS 2020; 119:72-82. [PMID: 32175928 PMCID: PMC7269859 DOI: 10.1097/hp.0000000000001244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An effective medical response to a large-scale radiation event requires prompt and effective initial triage so that appropriate care can be provided to individuals with significant risk for severe acute radiation injury. Arguably, it would be advantageous to use injury rather than radiation dose for the initial assessment; i.e., use bioassays of biological damage. Such assays would be based on changes in intrinsic biological response elements; e.g., up- or down-regulation of genes, proteins, metabolites, blood cell counts, chromosomal aberrations, micronuclei, micro-RNA, cytokines, or transcriptomes. Using a framework to evaluate the feasibility of biodosimetry for triaging up to a million people in less than a week following a major radiation event, Part 1 analyzes the logistical feasibility and clinical needs for ensuring that biomarkers of organ-specific injury could be effectively used in this context. We conclude that the decision to use biomarkers of organ-specific injury would greatly benefit by first having independent knowledge of whether the person's exposure was heterogeneous and, if so, what was the dose distribution (to determine which organs were exposed to high doses). In Part 2, we describe how these two essential needs for prior information (heterogeneity and dose distribution) could be obtained by using in vivo nail dosimetry. This novel physical biodosimetry method can also meet the needs for initial triage, providing non-invasive, point-of-care measurements made by non-experts with immediate dose estimates for four separate anatomical sites. Additionally, it uniquely provides immediate information as to whether the exposure was homogeneous and, if not, it can estimate the dose distribution. We conclude that combining the capability of methods such as in vivo EPR nail dosimetry with bioassays to predict organ-specific damage would allow effective use of medical resources to save lives.
Collapse
Affiliation(s)
- Harold M. Swartz
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
- Dept of Medicine/Radiation Oncology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Ann Barry Flood
- Dept of Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH USA
| | - Vijay K. Singh
- Dept. Pharmacology & Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven G. Swarts
- Dept of Radiation Oncology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Rogan PK, Mucaki EJ, Lu R, Shirley BC, Waller E, Knoll JHM. Meeting radiation dosimetry capacity requirements of population-scale exposures by geostatistical sampling. PLoS One 2020; 15:e0232008. [PMID: 32330192 PMCID: PMC7182271 DOI: 10.1371/journal.pone.0232008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Accurate radiation dose estimates are critical for determining eligibility for therapies by timely triaging of exposed individuals after large-scale radiation events. However, the universal assessment of a large population subjected to a nuclear spill incident or detonation is not feasible. Even with high-throughput dosimetry analysis, test volumes far exceed the capacities of first responders to measure radiation exposures directly, or to acquire and process samples for follow-on biodosimetry testing. AIM To significantly reduce data acquisition and processing requirements for triaging of treatment-eligible exposures in population-scale radiation incidents. METHODS Physical radiation plumes modelled nuclear detonation scenarios of simulated exposures at 22 US locations. Models assumed only location of the epicenter and historical, prevailing wind directions/speeds. The spatial boundaries of graduated radiation exposures were determined by targeted, multistep geostatistical analysis of small population samples. Initially, locations proximate to these sites were randomly sampled (generally 0.1% of population). Empirical Bayesian kriging established radiation dose contour levels circumscribing these sites. Densification of each plume identified critical locations for additional sampling. After repeated kriging and densification, overlapping grids between each pair of contours of successive plumes were compared based on their diagonal Bray-Curtis distances and root-mean-square deviations, which provided criteria (<10% difference) to discontinue sampling. RESULTS/CONCLUSIONS We modeled 30 scenarios, including 22 urban/high-density and 2 rural/low-density scenarios under various weather conditions. Multiple (3-10) rounds of sampling and kriging were required for the dosimetry maps to converge, requiring between 58 and 347 samples for different scenarios. On average, 70±10% of locations where populations are expected to receive an exposure ≥2Gy were identified. Under sub-optimal sampling conditions, the number of iterations and samples were increased, and accuracy was reduced. Geostatistical mapping limits the number of required dose assessments, the time required, and radiation exposure to first responders. Geostatistical analysis will expedite triaging of acute radiation exposure in population-scale nuclear events.
Collapse
Affiliation(s)
- Peter K Rogan
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- CytoGnomix Inc, London, ON, Canada
| | - Eliseos J Mucaki
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Ruipeng Lu
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | | | - Edward Waller
- Faculty of Energy Systems and Nuclear Science, OntarioTech University, Canada
| | - Joan H M Knoll
- CytoGnomix Inc, London, ON, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Herate C, Sabatier L. Retrospective biodosimetry techniques: Focus on cytogenetics assays for individuals exposed to ionizing radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108287. [PMID: 32192645 DOI: 10.1016/j.mrrev.2019.108287] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 01/28/2023]
Abstract
In the absence of physical data, biodosimetry tools are required for fast dose and risk assessment in the event of radiological or nuclear mass accidents or attacks to triage exposed humans and take immediate medical countermeasures. Biodosimetry tools have mostly been developed for retrospective dose assessment and the follow-up of victims of irradiation. Among them, cytogenetics analyses, to reveal chromosome damage, are the most developed and allow the determination of doses from blood samples as low as 100 mGy. Various cytogenetic tests have already allowed retrospective dose assessment of Chernobyl liquidators and military personnel exposed to nuclear tests after decades. In this review, we discuss the properties of various biodosimetry techniques, such as their sensitivity and limitations as a function of the time from exposure, using multiple examples of nuclear catastrophes or working exposure. Among them, chromosome FISH hybridization, which reveals chromosome translocations, is the most reliable due to the persistence of translocations for decades, whereas dicentric chromosome and micronuclei assays allow rapid and accurate dose assessment a short time after exposure. Both need to be adjusted through mathematical algorithms for retrospective analyses, accounting for the time since exposure and the victims' age. The goal for the future will be to better model chromosome damage, reduce the time to result, and develop new complementary biodosimetry approaches, such as mutation signatures.
Collapse
Affiliation(s)
- C Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France
| | - L Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), University Paris-Saclay, Fontenay-aux-Roses, France.
| |
Collapse
|
14
|
McKenna MJ, Robinson E, Taylor L, Tompkins C, Cornforth MN, Simon SL, Bailey SM. Chromosome Translocations, Inversions and Telomere Length for Retrospective Biodosimetry on Exposed U.S. Atomic Veterans. Radiat Res 2019; 191:311-322. [PMID: 30714852 PMCID: PMC6492561 DOI: 10.1667/rr15240.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
It has now been over 60 years since U.S. nuclear testing was conducted in the Pacific islands and Nevada, exposing military personnel to varying levels of ionizing radiation. Actual doses are not well-established, as film badges in the 1950s had many limitations. We sought a means of independently assessing dose for comparison with historical film badge records and dose reconstruction conducted in parallel. For the purpose of quantitative retrospective biodosimetry, peripheral blood samples from 12 exposed veterans and 12 age-matched (>80 years) veteran controls were collected and evaluated for radiation-induced chromosome damage utilizing directional genomic hybridization (dGH), a cytogenomics-based methodology that facilitates simultaneous detection of translocations and inversions. Standard calibration curves were constructed from six male volunteers in their mid-20s to reflect the age range of the veterans at time of exposure. Doses were estimated for each veteran using translocation and inversion rates independently; however, combining them by a weighted-average generally improved the accuracy of dose estimations. Various confounding factors were also evaluated for potential effects on chromosome aberration frequencies. Perhaps not surprisingly, smoking and age-associated increases in background frequencies of inversions were observed. Telomere length was also measured, and inverse relationships with both age and combined weighted dose estimates were observed. Interestingly, smokers in the non-exposed control veteran cohort displayed similar telomere lengths as those in the never-smoker exposed veteran group, suggesting that chronic smoking had as much effect on telomere length as a single exposure to radioactive fallout. Taken together, we find that our approach of combined chromosome aberration-based retrospective biodosimetry provided reliable dose estimation capability, particularly on a group average basis, for exposures above statistical detection limits.
Collapse
Affiliation(s)
- Miles J. McKenna
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| | | | - Lynn Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | | | - Michael N. Cornforth
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, Texas
| | - Steven L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Susan M. Bailey
- Cell and Molecular Biology Program Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
- KromaTiD, Inc., Fort Collins, Colorado
| |
Collapse
|
15
|
Abstract
PURPOSE The study of low dose and low-dose rate exposure is of immeasurable value in understanding the possible range of health effects from prolonged exposures to radiation. The Million Person Study (MPS) of low-dose health effects was designed to evaluate radiation risks among healthy American workers and veterans who are more representative of today's populations than are the Japanese atomic bomb survivors exposed briefly to high-dose radiation in 1945. A million persons were needed for statistical reasons to evaluate low-dose and dose-rate effects, rare cancers, intakes of radioactive elements, and differences in risks between women and men. METHODS AND MATERIALS The MPS consists of five categories of workers and veterans exposed to radiation from 1939 to the present. The U.S. Department of Energy (DOE) Health and Mortality study began over 40 years ago and is the source of ∼360,000 workers. Over 25 years ago, the National Cancer Institute (NCI) collaborated with the U.S. Nuclear Regulatory Commission (NRC) to effectively create a cohort of nuclear power plant workers (∼150,000) and industrial radiographers (∼130,000). For over 30 years, the Department of Defense (DoD) collected data on aboveground nuclear weapons test participants (∼115,000). At the request of NCI in 1978, Landauer, Inc., (Glenwood, IL) saved their dosimetry databases which became the source of a cohort of ∼250,000 medical and other workers. RESULTS Overall, 29 individual cohorts comprise the MPS of which 21 have been or are under active study (∼810,000 persons). The remaining eight cohorts (∼190,000 persons) will be studied as resources become available. The MPS is a national effort with critical support from the NRC, DOE, National Aeronautics and Space Administration (NASA), DoD, NCI, the Centers for Disease Control and Prevention (CDC), the Environmental Protection Agency (EPA), Landauer, Inc., and national laboratories. CONCLUSIONS The MPS is designed to address the major unanswered question in radiation risk understanding: What is the level of health effects when exposure is gradual over time and not delivered briefly. The MPS will provide scientific understandings of prolonged exposure which will improve guidelines to protect workers and the public; improve compensation schemes for workers, veterans and the public; provide guidance for policy and decision makers; and provide evidence for or against the continued use of the linear nonthreshold dose-response model in radiation protection.
Collapse
Affiliation(s)
- John D Boice
- a National Council on Radiation Protection and Measurements , Bethesda , MD , USA.,b Department of Medicine, Division of Epidemiology , Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center , Nashville , TN , USA
| | | | - Michael T Mumma
- d International Epidemiology Institute , Rockville , MD , USA
| | | |
Collapse
|