1
|
Kiang JG, Cannon G, Zhai M, Olson MG, Woods AK, Cleveland KS, Ellery H, Xu F, Xiao M. A Combined Therapy of Pegylated G-CSF with Ciprofloxacin Mitigates Damage Induced by Lethal Ionizing Radiation to the Bone Marrow, Spleen, and Ileum by Increasing AKT Activation but Decreasing IL-18, C3, and miR-34a. Radiat Res 2025; 203:341-356. [PMID: 40181563 DOI: 10.1667/rade-24-00266.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Ciprofloxacin (CIP) was found to enhance pegylated G-CSF therapy (PEG, Neulasta®)-induced survival from 30% to 85% after ionizing radiation exposure. This combined therapy significantly mitigated radiation-induced brain hemorrhage through its capability to improve platelet recovery. This study tested whether this combined treatment also mitigated gastrointestinal damage from radiation. B6D2F1 female mice were exposed to 60Co γ radiation. CIP was fed daily to mice for up to 14 days. PEG was injected on day 1, and then weekly up to day 14. For the early time point study, blood, femurs, spleen, and ileum were collected on days 2, 4, 9, and 15 postirradiation. Bone marrow cells were counted; spleen weights and splenocyte counts were measured; and ileum histopathology was examined and analyzed. AKT, ERK, JNK, p38, claudin 2, NF-kB, Bax, Bcl-2, and gasdermin D were measured in ileum lysates using Western blotting while miR-34a was measured by reverse transcription followed by real-time-PCR, and citrulline was measured by colorimetric assay. In serum, interleukin-18 (IL-18) was measured by Luminex assay and complement protein 3 (C3) was detected by ELISA. The bacterial DNA load in livers was measured by real-time PCR. Radiation depleted bone marrow cells in femurs beginning day 2 through day 15 postirradiation, which was mitigated by PEG or CIP+PEG on day 9 through day 15 and by CIP on day 15, respectively. Radiation exposure led to decreased spleen weight on day 2 through day 15, while PEG or CIP+PEG significantly mitigated the reduction on day 9 through day 15. Radiation exposure reduced splenocyte counts on day 2 through day 15 postirradiation, but that was mitigated by PEG or CIP+PEG on day 15. Ileum histology showed that radiation decreased villus height on day 2 through day 15; CIP mitigated the reduction on day 15, whereas PEG+CIP mitigated it on day 2 through 15. Villus widths were increased on day 2 through day 15, while PEG+CIP effectively decreased them on day 4 through day 15. Crypt depth was reduced by radiation on day 2, but returned to the baseline on day 4 through 15. CIP or CIP+PEG transiently increased the depth only on day 4. Crypt counts were reduced by radiation on days 2 and 4, but returned to the baseline on days 9 and 15, regardless of individual drugs or combinations. Citrulline data confirmed the villus height recovery. Radiation significantly increased pro-inflammatory cytokine IL-18 on days 4 and 9, which was mitigated by PEG alone or PEG+CIP, but not by CIP alone. Radiation increased C3 on day 9 in ileum and serum. The serum C3 was positively associated with the serum IL-18 levels and negatively correlated with the crypt depth. Radiation-induced decreases in claudin 2 (a tight junction marker) in ileum and increases in bacterial DNA in livers were mitigated by PEG+CIP. Radiation did not reduce NF-kB and its activation but reduced Bcl-2 expression, which was not significantly recovered by any individual drug or combination. However, the PEG and CIP combination significantly decreased NF- kB and BAX. In contrast, radiation increased miR-34a and cleaved gasdermin D, which CIP+PEG effectively mitigated. This was confirmed by immunohistochemistry. The results taken together suggest that PEG+CIP combined treatment was effective in mitigating the radiation-induced bone marrow, spleen, and ileum injury. The mitigative effect of this combined treatment was mediated by increases in G-CSF levels that suppress miR-34a, thereby probably leading to decreased gasdermin D-mediated pyroptosis.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Georgetta Cannon
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| | - Min Zhai
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| | - Matthew G Olson
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| | - Akeylah K Woods
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| | - Katherine S Cleveland
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| | - Hengying Ellery
- Department of Large Animal Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Feng Xu
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| | - Mang Xiao
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland 20889
| |
Collapse
|
2
|
Zhao Z, Hu B, Zhang D, Cui X, Ding W, Wang T, Wang J, Guo Z, Zhou Y, Wang S, Guo J. Engineering cuttlefish melanin nanoparticles: A dual-action therapy for acute radiation syndrome and combined radiation-wound injuries via regulating Bcl-2 family proteins and caspases in the apoptotic process. CHEMICAL ENGINEERING JOURNAL 2025; 511:162108. [DOI: 10.1016/j.cej.2025.162108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
3
|
Fang D, Zhao H, Pei L, Jiang K, Gan Y, Zhai X, Zhang L, Cheng Y, Liu C, Du J, Gao F. Diprovocim protects against the radiation-induced damage via the TLR2 signaling pathway. Mol Med 2025; 31:139. [PMID: 40247162 PMCID: PMC12004591 DOI: 10.1186/s10020-025-01198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
Severe ionizing radiation (IR) causes the acute lethal damage of hematopoietic system and gastrointestinal tract. By establishing a radiation injury model, we found that Diprovocim, a TLR2 agonist, protected mice against the lethal damage of hematopoietic system and gastrointestinal tract. Diprovocim inhibited the IR-induced damage, promoted erythrocyte differentiation and elevated the proportion of hematopoietic stem cells (HSCs) in irradiated mice, and promoted the proliferation and differentiation of intestinal stem cells (ISCs). In addition, the RNA seq results suggested that Diprovocim significantly upregulated the TLR2 signaling pathway, and Diprovocim had no radioprotective effect on TLR2 KO mice, suggesting that Diprovocim activated TLR2 signaling pathway to exert its radioprotective function. The RNA sequencing results also suggested that Diprovocim significantly up-regulated the expression of SOX9. Diprovocim had no radioprotective effect after SOX9 knockdown. In conclusion, we demonstrated that Diprovocim protected the radiation-induced damage and upregulated targeting TLR2-SOX9 axis and that Diprovocim might be a potential high-efficiency selective agent.
Collapse
Affiliation(s)
- Duo Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Hainan Zhao
- Department of Radiology Intervention, Changhai Hospital Affiliated to the Naval Medical University, Shanghai, China
| | - Lu Pei
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
- Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, 014040, China
| | - Kai Jiang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Yuhan Gan
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Xuanlu Zhai
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Liao Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Fu Gao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
4
|
Zhao N, Wang G, Long S, Lv X, Ran X, Wang J, Su Y, Wang T. The antiprotease Spink7 promotes inflammation resolution by modulating multiple proteases activities during wound healing. Clin Transl Med 2025; 15:e70291. [PMID: 40147022 PMCID: PMC11949503 DOI: 10.1002/ctm2.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/25/2024] [Accepted: 12/20/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Effective control of inflammation is crucial for the healing of cutaneous wounds, but the molecular mechanisms governing inflammation resolution during wound closure are still not yet clear. Here, we describe a homeostatic mechanism that facilitates the inflammation resolution by timely regulating the targeted proteases activities through antiprotease Spink7 (serine peptidase inhibitor, kazal type 7). METHODS The expression pattern of Spink7 was investigated by quantitative RT-PCR, immunohistochemistry (IHC) and in situ hybridization. In both Spink7 knockdown and knockout models, quantitative comparisons were made between the healing rate of wounds and histopathological morphometric analysis. Microarrays, multiple chemokine assays, IHC, immunofluorescence, protease activity measurement were performed to explore the underlying mechanisms of Spink7 knockout in impaired wound healing. Radiation-wound combined injury (R-W-CI) model was employed to evaluate the therapeutic effects of Spink7 manipulation. RESULTS Our study demonstrates that Spink7 is significantly upregulated in the differentiated epidermal granular keratinocytes of proliferative phase during murine wound closure. Both local knockdown of Spink7 levels in wounds using siRNA gel and systemic knockout of Spink7 using KO mice resulted in delayed wound closure with sustained neutrophil infiltration. Loss of Spink7 leads to augmented inflammatory responses, increased production of multiple chemokines/cytokines, and impaired M2 polarization of macrophages in wound healing. Furthermore, loss of Spink7 results in elevated proteolytic activities of uPA, MMP2/9 and KLK5/7 in proliferative phase. However, inhibiting KLK5/7 downstream PAR2 activation exacerbates the phenotype of KO mice. In R-W-CI model, further significant induction of Spink7 is observed in wounds with insufficient inflammatory response. Local suppression of Spink7 promotes wound healing in the R-W-CI model by augmenting inflammation. CONCLUSIONS Maintaining an endogenous balance between Spink7 and its target proteases is a crucial checkpoint for regulating inflammation resolution during healing. Therefore, manipulating levels of Spink7 might be an effective treatment for impaired wounds caused by inflammatory dysregulation.
Collapse
Affiliation(s)
- Na Zhao
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- Institute of Materia Medica and Department of PharmaceuticsCollege of PharmacyArmy Medical University (Third Military Medical University)ChongqingChina
| | - Guojian Wang
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Shuang Long
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiaofan Lv
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xinze Ran
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Junping Wang
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
- State Key Laboratory of Trauma and Chemical PoisoningChongqingChina
| | - Yongping Su
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Tao Wang
- Institute of Combined InjuryChongqing Engineering Research Center for NanomedicineSchool of Preventive Military MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
5
|
Kirti, Sharma AK, Yashavarddhan MH, Kumar R, Shaw P, Kalonia A, Shukla SK. Exosomes: A new perspective for radiation combined injury as biomarker and therapeutics. Tissue Cell 2024; 91:102563. [PMID: 39270512 DOI: 10.1016/j.tice.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Radiation Combined Injuries (RCI) pose formidable public health risks, particularly in the context of nuclear incidents, necessitating specialized treatments and development of biomarkers. RCI encompasses instances where ionizing radiation exposure coincides with burns, wounds, or trauma. However, the limited understanding of cellular responses hinders progress in developing effective therapies. This article underscores the pivotal role of exosomes, nano-sized particles (30-120 nm) actively secreted by cells, in addressing the intricate challenges posed by RCI. Exosomes serve as vehicles for the transportation of bioactive molecules, including proteins, lipids, and miRNA, thereby facilitating processes critical to radiotherapy, burn injury, and wound healing. Exosomes hold significant promise for the transformation of RCI management by reducing inflammation, promoting wound healing, managing sepsis, altering immunological responses, and modulating signal transduction pathways. Moreover, exosomes are also being explored as biomarker for various diseases and stress conditions including radiation exposure and associated injuries. This comprehensive review highlights the burgeoning potential of exosomes in advancing the management of RCI, thereby enhancing public health preparedness and response.
Collapse
Affiliation(s)
- Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| | - M H Yashavarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi 110054, India.
| |
Collapse
|
6
|
Wang L, Lin B, Zhai M, Hull L, Cui W, Xiao M. Endothelial Dysfunction and Impaired Wound Healing Following Radiation Combined Skin Wound Injury. Int J Mol Sci 2024; 25:12498. [PMID: 39684207 DOI: 10.3390/ijms252312498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Currently, there are no U.S. Food and Drug Administration (FDA)-approved medical countermeasures (MCMs) for radiation combined injury (RCI), partially due to limited understanding of its mechanisms. Our previous research suggests that endothelial dysfunction may contribute to a poor prognosis of RCI. In this study, we demonstrated an increased risk of mortality, body weight loss, and delayed skin wound healing in RCI mice compared to mice with skin wounds alone or radiation injury (RI) 30 days post-insult. Furthermore, we evaluated biomarkers of endothelial dysfunction, inflammation, and impaired wound healing in mice at early time points after RCI. Mice were exposed to 9.0 Gy total-body irradiation (TBI) followed by skin wound. Samples were collected on days 3, 7, and 14 post-TBI. Endothelial dysfunction markers were measured by ELISA, and skin wound healing was assessed histologically. Our results show that endothelial damage and inflammation are more severe and persistent in the RCI compared to the wound-alone group. Additionally, RCI impairs granulation tissue formation, reduces myofibroblast presence, and delays collagen deposition, correlating with more severe endothelial damage. TGF signaling may play a key role in this impaired healing. These findings suggest that targeting the endothelial dysfunction and TGF-β pathways may provide potential therapeutic strategies for improving delayed wound healing in RCI, which could subsequently influence outcomes such as survival after RCI.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Kumar R, Sharma AK, Kirti, Kalonia A, Shaw P, Yashvarddhan MH, Vibhuti A, Shukla SK. Understanding innate and adaptive responses during radiation combined burn injuries. Int Rev Immunol 2024; 44:31-43. [PMID: 39262163 DOI: 10.1080/08830185.2024.2402023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.
Collapse
Affiliation(s)
- Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
- Department of Biotechnology, SRM University, Sonepat, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - M H Yashvarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Sonepat, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| |
Collapse
|
8
|
Blakely WF, Port M, Ostheim P, Abend M. Radiation Research Society Journal-based Historical Review of the Use of Biomarkers for Radiation Dose and Injury Assessment: Acute Health Effects Predictions. Radiat Res 2024; 202:185-204. [PMID: 38936821 DOI: 10.1667/rade-24-00121.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
A multiple-parameter based approach using radiation-induced clinical signs and symptoms, hematology changes, cytogenetic chromosomal aberrations, and molecular biomarkers changes after radiation exposure is used for biodosimetry-based dose assessment. In the current article, relevant milestones from Radiation Research are documented that forms the basis of the current consensus approach for diagnostics after radiation exposure. For example, in 1962 the use of cytogenetic chromosomal aberration using the lymphocyte metaphase spread dicentric assay for biodosimetry applications was first published in Radiation Research. This assay is now complimented using other cytogenetic chromosomal aberration assays (i.e., chromosomal translocations, cytokinesis-blocked micronuclei, premature chromosome condensation, γ-H2AX foci, etc.). Changes in blood cell counts represent an early-phase biomarker for radiation exposures. Molecular biomarker changes have evolved to include panels of organ-specific plasma proteomic and blood-based gene expression biomarkers for radiation dose assessment. Maturation of these assays are shown by efforts for automated processing and scoring, development of point-of-care diagnostics devices, service laboratories inter-comparison exercises, and applications for dose and injury assessments in radiation accidents. An alternative and complementary approach has been advocated with the focus to de-emphasize "dose" and instead focus on predicting acute or delayed health effects. The same biomarkers used for dose estimation (e.g., lymphocyte counts) can be used to directly predict the later developing severity degree of acute health effects without performing dose estimation as an additional or intermediate step. This review illustrates contributing steps toward these developments published in Radiation Research.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
9
|
Kiang JG, Cannon G, Singh VK. An Overview of Radiation Countermeasure Development in Radiation Research from 1954 to 2024. Radiat Res 2024; 202:420-431. [PMID: 38964743 PMCID: PMC11385179 DOI: 10.1667/rade-24-00036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.
Collapse
Affiliation(s)
- Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
- Department of Medicine, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Vijay K Singh
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
| |
Collapse
|
10
|
Horseman TS, Frank AM, Cannon G, Zhai M, Olson MG, Lin B, Li X, Hull L, Xiao M, Kiang JG, Burmeister DM. Effects of combined ciprofloxacin and Neulasta therapy on intestinal pathology and gut microbiota after high-dose irradiation in mice. Front Public Health 2024; 12:1365161. [PMID: 38807988 PMCID: PMC11130442 DOI: 10.3389/fpubh.2024.1365161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction Treatments that currently exist in the strategic national stockpile for acute radiation syndrome (ARS) focus on the hematopoietic subsyndrome, with no treatments on gastrointestinal (GI)-ARS. While the gut microbiota helps maintain host homeostasis by mediating GI epithelial and mucosal integrity, radiation exposure can alter gut commensal microbiota which may leave the host susceptible to opportunistic pathogens and serious sequelae such as sepsis. To mitigate the effects of hematopoietic ARS irradiation, currently approved treatments exist in the form of colony stimulating factors and antibiotics: however, there are few studies examining how these therapeutics affect GI-ARS and the gut microbiota. The aim of our study was to examine the longitudinal effects of Neulasta and/or ciprofloxacin treatment on the gut microbiota after exposure to 9.5 Gy 60Co gamma-radiation in mice. Methods The gut microbiota of vehicle and drug-treated mice exposed to sham or gamma-radiation was characterized by shotgun sequencing with alpha diversity, beta diversity, and taxonomy analyzed on days 2, 4, 9, and 15 post-irradiation. Results No significant alpha diversity differences were observed following radiation, while beta diversity shifts and taxonomic profiles revealed significant alterations in Akkermansia, Bacteroides, and Lactobacillus. Ciprofloxacin generally led to lower Shannon diversity and Bacteroides prevalence with increases in Akkermansia and Lactobacillus compared to vehicle treated and irradiated mice. While Neulasta increased Shannon diversity and by day 9 had more similar taxonomic profiles to sham than ciprofloxacin-or vehicle-treated irradiated animals. Combined therapy of Neulasta and ciprofloxacin induced a decrease in Shannon diversity and resulted in unique taxonomic profiles early post-irradiation, returning closer to vehicle-treated levels over time, but persistent increases in Akkermansia and Bacteroides compared to Neulasta alone. Discussion This study provides a framework for the identification of microbial elements that may influence radiosensitivity, biodosimetry and the efficacy of potential therapeutics. Moreover, increased survival from H-ARS using these therapeutics may affect the symptoms and appearance of what may have been subclinical GI-ARS.
Collapse
Affiliation(s)
- Timothy S. Horseman
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Andrew M. Frank
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Matthew G. Olson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Xianghong Li
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Juliann G. Kiang
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David M. Burmeister
- School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
11
|
Bolduc DL, Cary LH, Kiang JG, Kurada L, Kumar VP, Edma SA, Olson MG, Vergara VB, Bistline DD, Reese M, Kenchegowda D, Hood M, Korotcov A, Jaiswal S, Blakely WF. Natural-history Characterization of a Murine Partial-body Irradiation Model System: Establishment of a Multiple-Parameter Based GI-ARS Severity-Scoring System. Radiat Res 2024; 201:406-417. [PMID: 38319684 DOI: 10.1667/rade-23-00132.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/15/2023] [Indexed: 02/07/2024]
Abstract
The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.
Collapse
Affiliation(s)
- David L Bolduc
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Lynnette H Cary
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
| | - Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Pharmacology and Molecular Therapeutics
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Lalitha Kurada
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vidya P Kumar
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Sunshine A Edma
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Matthew G Olson
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Vernieda B Vergara
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Dalton D Bistline
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Mario Reese
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
| | - Maureen Hood
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Alexandru Korotcov
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shalini Jaiswal
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Rockville, Maryland
- Biomedical Research Imaging Core at Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Preventive Medicine and Statistics, Uniformed Services of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
12
|
Lv X, Zhao N, Long S, Wang G, Ran X, Gao J, Wang J, Wang T. 3D skin bioprinting as promising therapeutic strategy for radiation-associated skin injuries. Wound Repair Regen 2024; 32:217-228. [PMID: 38602068 DOI: 10.1111/wrr.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/16/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.
Collapse
Affiliation(s)
- Xiaofan Lv
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuang Long
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guojian Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinze Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
13
|
Kiang JG, Woods AK, Cannon G. Effects of Hemorrhage on Hematopoietic Cell Depletion after a Combined Injury with Radiation: Role of White Blood Cells and Red Blood Cells as Biomarkers. Int J Mol Sci 2024; 25:2988. [PMID: 38474235 DOI: 10.3390/ijms25052988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Combined radiation with hemorrhage (combined injury, CI) exacerbates hematopoietic acute radiation syndrome and mortality compared to radiation alone (RI). We evaluated the effects of RI or CI on blood cell depletion as a biomarker to differentiate the two. Male CD2F1 mice were exposed to 8.75 Gy γ-radiation (60Co). Within 2 h of RI, animals were bled under anesthesia 0% (RI) or 20% (CI) of total blood volume. Blood samples were collected at 4-5 h and days 1, 2, 3, 7, and 15 after RI. CI decreased WBC at 4-5 h and continued to decrease it until day 3; counts then stayed at the nadir up to day 15. CI decreased neutrophils, lymphocytes, monocytes, eosinophils, and basophils more than RI on day 1 or day 2. CI decreased RBCs, hemoglobin, and hematocrit on days 7 and 15 more than RI, whereas hemorrhage alone returned to the baseline on days 7 and 15. RBCs depleted after CI faster than post-RI. Hemorrhage alone increased platelet counts on days 2, 3, and 7, which returned to the baseline on day 15. Our data suggest that WBC depletion may be a potential biomarker within 2 days post-RI and post-CI and RBC depletion after 3 days post-RI and post-CI. For hemorrhage alone, neutrophil counts at 4-5 h and platelets for day 2 through day 7 can be used as a tool for confirmation.
Collapse
Affiliation(s)
- Juliann G Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Building 42, Bethesda, MD 20889-5648, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Akeylah K Woods
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Building 42, Bethesda, MD 20889-5648, USA
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 4555 South Palmer Road, Building 42, Bethesda, MD 20889-5648, USA
| |
Collapse
|
14
|
Sharma AK, Kalonia A, Kumar R, Kirti, Shaw P, Yashvarddhan MH, Vibhuti A, Shukla SK. Alleviation of radiation combined skin injury in rat model by topical application of ascorbate formulation. Int J Radiat Biol 2024; 100:689-708. [PMID: 38306495 DOI: 10.1080/09553002.2024.2310016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
PURPOSE This research endeavor was undertaken to elucidate the impact of an innovative ascorbate formulation on the regeneration process of full-thickness excision wounds in a rat model exposed to whole-body gamma irradiation, replicating conditions akin to combat or radiation emergency scenarios. MATERIALS AND METHODS We established a comprehensive rat model by optimizing whole body γ-radiation doses (5-9 Gy) and full-thickness excision wound sizes (1-3 cm2) to mimic radiation combined injury (RCI). The developed RCI model was used to explore the healing potential of ascorbate formulation. The study includes various treatment groups (i.e., sham control, radiation alone, wound alone, radiation + wound, and radiation + wound + formulation). The ascorbate formulation was applied twice daily, with a 12-hour gap between each application, starting 1 hour after the initiation of the wound. The healing potential of the formulation in the RCI context was evaluated over 14 days through hematological, molecular, and histological parameters. RESULTS The combination of a 5 Gy radiation dose and a 1 cm2 wound was identified as the optimal setting to develop the RCI model for subsequent studies. The formulation was used topically immediately following RCI, and then twice daily until complete healing. Treatment with the ascorbate formulation yielded noteworthy outcomes and led to a substantial reduction (p < .05) in the wound area, accelerated epithelialization periods, and an increased wound contraction rate. The formulation's localized healing response improved organ weights, normalized blood parameters, and enhanced hematopoietic and immune systems. A gene expression study revealed the treatment up-regulated TGF-β and FGF, and down-regulated PDGF-α, TNF-α, IL-1β, IL-6, MIP-1α, and MCP-1 (p < .05). Histopathological assessments supported the formulation's effectiveness in restoring cellular architecture and promoting tissue regeneration. CONCLUSION Topical application of the ascorbate formulation in RCI resulted in a significant improvement in delayed wound healing, leading to accelerated wound closure by mitigating the expression of inflammatory responses.
Collapse
Affiliation(s)
- Ajay Kumar Sharma
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Aman Kalonia
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Rishav Kumar
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Kirti
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Priyanka Shaw
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - M H Yashvarddhan
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Sonipat, Haryana, India
| | - Sandeep Kumar Shukla
- Defence Research and Development Organization, Institute of Nuclear Medicine and Allied Sciences, Timarpur, New Delhi, India
| |
Collapse
|
15
|
Kiang JG, Cannon G, Olson MG, Zhai M, Woods AK, Xu F, Lin B, Li X, Hull L, Jiang S, Xiao M. Ciprofloxacin and pegylated G-CSF combined therapy mitigates brain hemorrhage and mortality induced by ionizing irradiation. Front Public Health 2023; 11:1268325. [PMID: 38162617 PMCID: PMC10756649 DOI: 10.3389/fpubh.2023.1268325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Brain hemorrhage was found between 13 and 16 days after acute whole-body 9.5 Gy 60Co-γ irradiation (IR). This study tested countermeasures mitigating brain hemorrhage and increasing survival from IR. Previously, we found that pegylated G-CSF therapy (PEG) (i.e., Neulasta®, an FDA-approved drug) improved survival post-IR by 20-40%. This study investigated whether Ciprofloxacin (CIP) could enhance PEG-induced survival and whether IR-induced brain hemorrhage could be mitigated by PEG alone or combined with CIP. Methods B6D2F1 female mice were exposed to 60Co-γ-radiation. CIP was fed to mice for 21 days. PEG was injected on days 1, 8, and 15. 30-day survival and weight loss were studied in mice treated with vehicles, CIP, PEG, or PEG + CIP. For the early time point study, blood and sternums on days 2, 4, 9, and 15 and brains on day 15 post-IR were collected. Platelet numbers, brain hemorrhage, and histopathology were analyzed. The cerebellum/pons/medulla oblongata were detected with glial fibrillary acidic protein (GFAP), p53, p16, interleukin-18 (IL-18), ICAM1, Claudin 2, ZO-1, and complement protein 3 (C3). Results CIP + PEG enhanced survival after IR by 85% vs. the 30% improvement by PEG alone. IR depleted platelets, which was mitigated by PEG or CIP + PEG. Brain hemorrhage, both surface and intracranial, was observed, whereas the sham mice displayed no hemorrhage. CIP or CIP + PEG significantly mitigated brain hemorrhage. IR reduced GFAP levels that were recovered by CIP or CIP + PEG, but not by PEG alone. IR increased IL-18 levels on day 4 only, which was inhibited by CIP alone, PEG alone, or PEG + CIP. IR increased C3 on day 4 and day 15 and that coincided with the occurrence of brain hemorrhage on day 15. IR increased phosphorylated p53 and p53 levels, which was mitigated by CIP, PEG or PEG + CIP. P16, Claudin 2, and ZO-1 were not altered; ICAM1 was increased. Discussion CIP + PEG enhanced survival post-IR more than PEG alone. The Concurrence of brain hemorrhage, C3 increases and p53 activation post-IR suggests their involvement in the IR-induced brain impairment. CIP + PEG effectively mitigated the brain lesions, suggesting effectiveness of CIP + PEG therapy for treating the IR-induced brain hemorrhage by recovering GFAP and platelets and reducing C3 and p53.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Georgetta Cannon
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Matthew G. Olson
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Min Zhai
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Akeylah K. Woods
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Feng Xu
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Bin Lin
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Xianghong Li
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Lisa Hull
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Suping Jiang
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Mang Xiao
- Radiation Combined Injury Program, Department of Scientific Research, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| |
Collapse
|
16
|
Liu Z, Lim SH, Min JJ, Jung S. Synergistic Antitumor Effect of Combined Radiotherapy and Engineered Salmonella typhimurium in an Intracranial Sarcoma Mouse Model. Vaccines (Basel) 2023; 11:1275. [PMID: 37515090 PMCID: PMC10385126 DOI: 10.3390/vaccines11071275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Intracranial sarcoma is an uncommon aggressive cancer with a poor prognosis and a high recurrence rate. Although postoperative adjuvant radiotherapy (RT) is the most recommended treatment strategy, it does not significantly improve survival rates. In this study, we used an attenuated Salmonella typhimurium strain engineered to secrete Vibrio vulnificus flagellin B (SLpFlaB) as an immunotherapy to assist with the antitumor effects of RT on intracranial sarcoma. In vitro, the expression of γH2AX and cleaved caspase-3 was analyzed by Western blot. In vivo detection of SLpFlaB colonization time in tumors was measured using an in vivo imaging system (IVIS). Tumor growth delay and elimination were demonstrated in an intracranial mouse model, and the distribution of macrophages, M1 macrophages, and CD8+ cells after treatment was measured using FACS analysis. Our findings in vitro suggest that combination therapy increases S-180 radiosensitivity, the expression of DNA double-strand breaks, and programmed cell death. In vivo, combination treatment causes intracranial sarcoma to be eliminated without tumor recurrence and redistribution of immune cells in the brain, with data showing the enhanced migration and infiltration of CD8+ T cells and macrophages, and an increased proportion of M1 macrophage polarization. Compared to RT alone, the combination therapy enhanced the radiosensitivity of S-180 cells, promoted the recruitment of immune cells at the tumor site, and prevented tumor recurrence. This combination therapy may provide a new strategy for treating intracranial sarcomas.
Collapse
Affiliation(s)
- Zhipeng Liu
- Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea
| | - Sa-Hoe Lim
- Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea
- Department of Neurosurgery, Chonnam National University Medical School, Hwasun Hospital, 322 Seoyang-ro, Gwangju 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Hwasun Hospital, 322 Seoyang-ro, Gwangju 58128, Republic of Korea
| | - Shin Jung
- Brain Tumor Research Laboratory, Biomedical Research Institute, Chonnam National University Hwasun Hospital, Gwangju 58128, Republic of Korea
- Department of Neurosurgery, Chonnam National University Medical School, Hwasun Hospital, 322 Seoyang-ro, Gwangju 58128, Republic of Korea
| |
Collapse
|
17
|
Xiao M, Li X, Wang L, Lin B, Zhai M, Hull L, Zizzo A, Cui W, Kiang JG. Skin Wound following Irradiation Aggravates Radiation-Induced Brain Injury in a Mouse Model. Int J Mol Sci 2023; 24:10701. [PMID: 37445879 DOI: 10.3390/ijms241310701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Radiation injury- and radiation combined with skin injury-induced inflammatory responses in the mouse brain were evaluated in this study. Female B6D2F1/J mice were subjected to a sham, a skin wound (SW), 9.5 Gy 60Co total-body gamma irradiation (RI), or 9.5 Gy RI combined with a skin puncture wound (RCI). Survival, body weight, and wound healing were tracked for 30 days, and mouse brain samples were collected on day 30 after SW, RI, RCI, and the sham control. Our results showed that RCI caused more severe animal death and body weight loss compared with RI, and skin wound healing was significantly delayed by RCI compared to SW. RCI and RI increased the chemokines Eotaxin, IP-10, MIG, 6Ckine/Exodus2, MCP-5, and TIMP-1 in the brain compared to SW and the sham control mice, and the Western blot results showed that IP-10 and p21 were significantly upregulated in brain cells post-RI or -RCI. RI and RCI activated both astrocytes and endothelial cells in the mouse brain, subsequently inducing blood-brain barrier (BBB) leakage, as shown by the increased ICAM1 and GFAP proteins in the brain and GFAP in the serum. The Doublecortin (DCX) protein, the "gold standard" for measuring neurogenesis, was significantly downregulated by RI and RCI compared with the sham group. Furthermore, RI and RCI decreased the expression of the neural stem cell marker E-cadherin, the intermediate progenitor marker MASH1, the immature neuron cell marker NeuroD1, and the mature neuron cell marker NeuN, indicating neural cell damage in all development stages after RI and RCI. Immunohistochemistry (IHC) staining further confirmed the significant loss of neural cells in RCI. Our data demonstrated that RI and RCI induced brain injury through inflammatory pathways, and RCI exacerbated neural cell damage more than RI.
Collapse
Affiliation(s)
- Mang Xiao
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Xianghong Li
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bin Lin
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Min Zhai
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lisa Hull
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Alex Zizzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Wanchang Cui
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
18
|
Kiang JG, Blakely WF. Combined radiation injury and its impacts on radiation countermeasures and biodosimetry. Int J Radiat Biol 2023; 99:1055-1065. [PMID: 36947602 PMCID: PMC10947598 DOI: 10.1080/09553002.2023.2188933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Preparedness for medical responses to major radiation accidents and the increasing threat of nuclear warfare worldwide necessitates an understanding of the complexity of combined radiation injury (CI) and identifying drugs to treat CI is inevitably critical. The vital sign and survival after CI were presented. The molecular mechanisms, such as microRNA pathways, NF-κB-iNOS-IL-18 pathway, C3 production, the AKT-MAPK cross-talk, and TLR/MMP increases, underlying CI in relation to organ injury and mortality were analyzed. At present, no FDA-approved drug to protect, mitigate, or treat CI is available. The development of CI-specific medical countermeasures was reviewed. Because of the worsened acute radiation syndrome resulting from CI, diagnostic triage can be problematic. Therefore, biodosimetry and CI are bundled together with the need to establish effective triage methods with CI. CONCLUSIONS CI mouse model studies at AFRRI are reviewed addressing molecular responses, findings from medical countermeasures, and a proposed plasma proteomic biodosimetry approach based on a panel of radiation-responsive biomarkers (i.e., CD27, Flt-3L, GM-CSF, CD45, IL-12, TPO) negligibly influenced by wounding in an algorithm used for dose predictions is described.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - William F. Blakely
- Biodosimetry Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
19
|
MacVittie TJ. Where are the medical countermeasures against the ARS and DEARE? A current topic relative to an animal model research platform, radiation exposure context, the acute and delayed effects of acute exposure, and the FDA animal rule. Int J Radiat Biol 2023:1-15. [PMID: 36811500 DOI: 10.1080/09553002.2023.2181999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE A question echoed by the National Biodefense Science Board (NBSB) in 2010, remains a reasonable question in 2023; 'Where are the Countermeasures?'. A critical path for development of medical countermeasures (MCM) against acute, radiation-induced organ-specific injury within the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE) requires the recognition of problems and solutions inherent in the path to FDA approval under the Animal Rule. Keep Rule number one in mind, It's not easy. CONSIDERATIONS The current topic herein is focused on defining the nonhuman primate model(s) for efficient MCM development relative to consideration of prompt and delayed exposure in the context of the nuclear scenario. The rhesus macaque is a predictive model for human exposure of partial-body irradiation with marginal bone marrow sparing that allows definition of the multiple organ injury in the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). The continued definition of natural history is required to delineate an associative or causal interaction within the concurrent multi-organ injury characteristic of the ARS and DEARE. A more efficient development of organ specific MCM for both pre-exposure and post-exposure prophylaxis to include acute radiation-induced combined injury requires closing critical gaps in knowledge and urgent support to rectify the national shortage of nonhuman primates. The rhesus macaque is a validated, predictive model of the human response to prompt and delayed radiation exposure, medical management and MCM treatment. A rational approach to further development of the cynomolgus macaque as a comparable model is urgently required for continued development of MCM for FDA approval. CONCLUSION It is imperative to examine the key variables relative to animal model development and validation, The pharmacokinetics, pharmacodynamics and exposure profiles, of candidate MCM relative to route, administration schedule and optimal efficacy define the fully effective dose. The conduct of adequate and well-controlled pivotal efficacy studies as well as safety and toxicity studies support approval under the FDA Animal Rule and label definition for human use.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Wang L, Lin B, Zhai M, Cui W, Hull L, Zizzo A, Li X, Kiang JG, Xiao M. Deteriorative Effects of Radiation Injury Combined with Skin Wounding in a Mouse Model. TOXICS 2022; 10:toxics10120785. [PMID: 36548618 PMCID: PMC9783596 DOI: 10.3390/toxics10120785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Radiation-combined injury (RCI) augments the risk of morbidity and mortality when compared to radiation injury (RI) alone. No FDA-approved medical countermeasures (MCMs) are available for treating RCI. Previous studies implied that RI and RCI elicit differential mechanisms leading to their detrimental effects. We hypothesize that accelerating wound healing improves the survival of RCI mice. In the current study, we examined the effects of RCI at different doses on lethality, weight loss, wound closure delay, and proinflammatory status, and assessed the relative contribution of systemic and local elements to their delayed wound closure. Our data demonstrated that RCI increased the lethality and weight loss, delayed skin wound closure, and induced a systemic proinflammatory status in a radiation dose-dependent manner. We also demonstrated that delayed wound closure did not specifically depend on the extent of hematopoietic suppression, but was significantly influenced by the toxicity of the radiation-induced systemic inflammation and local elements, including the altered levels of proinflammatory chemokines and factors, and the dysregulated collagen homeostasis in the wounded area. In conclusion, the results from our study indicate a close association between delayed wound healing and the significantly altered pathways in RCI mice. This insightful information may contribute to the evaluation of the prognosis of RCI and development of MCMs for RCI.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xianghong Li
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2597
| |
Collapse
|
21
|
Li Z, Zhou Z, Tian S, Zhang K, An G, Zhang Y, Ma R, Sheng B, Wang T, Yang H, Yang L. RPRM deletion preserves hematopoietic regeneration by promoting EGFR-dependent DNA repair and hematopoietic stem cell proliferation post ionizing radiation. Cell Biol Int 2022; 46:2158-2172. [PMID: 36041213 PMCID: PMC9804513 DOI: 10.1002/cbin.11900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/05/2023]
Abstract
Reprimo (RPRM), a target gene of p53, is a known tumor suppressor. DNA damage induces RPRM, which triggers p53-dependent G2 arrest by inhibiting cyclin B1/Cdc2 complex activation and promotes DNA damage-induced apoptosis. RPRM negatively regulates ataxia-telangiectasia mutated by promoting its nuclear-cytoplasmic translocation and degradation, thus inhibiting DNA damage. Therefore, RPRM plays a crucial role in DNA damage response. Moreover, the loss of RPRM confers radioresistance in mice, which enables longer survival and less severe intestinal injury after radiation exposure. However, the role of RPRM in radiation-induced hematopoietic system injury remains unknown. Herein, utilizing a RPRM-knockout mouse model, we found that RPRM deletion did not affect steady-state hematopoiesis in mice. However, RPRM knockout significantly alleviated radiation-induced hematopoietic system injury and preserved mouse hematopoietic regeneration in hematopoietic stem cells (HSCs) against radiation-induced DNA damage. Further mechanistic studies showed that RPRM loss significantly increased EGFR expression and phosphorylation in HSCs to activate STAT3 and DNA-PKcs, thus promoting HSC DNA repair and proliferation. These findings reveal the critical role of RPRM in radiation-induced hematopoietic system injury, confirming our hypothesis that RPRM may serve as a novel target for radiation protection.
Collapse
Affiliation(s)
- Zixuan Li
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Zhou Zhou
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Shuaiyu Tian
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Kailu Zhang
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Gangli An
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Yarui Zhang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Renyuxue Ma
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Binjie Sheng
- Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Tian Wang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| | - Hongying Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina
| | - Lin Yang
- State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhouJiangsuChina,School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University/Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSoochow UniversitySuzhouJiangsuChina,Cyrus Tang Medical Institute, Collaborative Innovation Center of HematologySoochow UniversitySuzhouJiangsuChina
| |
Collapse
|
22
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
23
|
Kiang JG, Cannon G, Olson MG, Smith JT, Anderson MN, Zhai M, Umali MV, Ho K, Ho C, Cui W, Xiao M. Female Mice are More Resistant to the Mixed-Field (67% Neutron + 33% Gamma) Radiation-Induced Injury in Bone Marrow and Small Intestine than Male Mice due to Sustained Increases in G-CSF and the Bcl-2/Bax Ratio and Lower miR-34a and MAPK Activation. Radiat Res 2022; 198:120-133. [PMID: 35452510 DOI: 10.1667/rade-21-00201.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/04/2022] [Indexed: 11/03/2022]
Abstract
In nuclear and radiological incidents, overexposure to ionizing radiation is life-threatening. It is evident that radiation depletes blood cells and increases circulating cytokine/chemokine concentrations as well as mortality. While microglia cells of female mice have been observed to be less damaged by radiation than in male mice, it is unclear whether sex affects physio-pathological responses in the bone marrow (BM) and gastrointestinal system (GI). We exposed B6D2F1 male and female mice to 0, 1.5, 3, or 6 Gy with mixed-field radiation containing 67% neutron and 33% gamma at a dose rate of 0.6 Gy/min. Blood and tissues were collected on days 1, 4, and 7 postirradiation. Radiation increased cytokines/chemokines in the femurs and ilea of female and male mice in a dose-dependent manner. Cytokines and chemokines reached a peak on day 4 and declined on day 7 with the exception of G-CSF which continued to increase on day 7 in female mice but not in male mice. MiR-34a (a Bcl-2 inhibitor), G-CSF (a miR-34a inhibitor), MAPK activation (pro-cell death), and citrulline (a biomarker of entro-epithelial proliferation), active caspase-3 (a biomarker of apoptosis) and caspase-1activated gasdermin D (a pyroptosis biomarker) were measured in the sternum, femur BM and ileum. Sternum histopathology analysis with H&E staining and femur BM cell counts as well as Flt-3L showed that BM cellularity was not as diminished in females, with males showing a 50% greater decline on day 7 postirradiation, mainly mediated by pyroptosis as indicated by increased gasdermin D in femur BM samples. Ileum injury, such as villus height and crypt depth, was also 43% and 30%, respectively, less damaged in females than in males. The severity of injury in both sexes was consistent with the citrulline and active caspase-3 measurements as well as active caspase-1 and gasdermin D measurements, suggesting apoptosis and pyroptosis occurred. On day 7, G-CSF in the ileum of female mice continued to be elevated by sevenfold, whereas G-CSF in the ileum of male mice returned to baseline. Furthermore, G-CSF is known to inhibit miR-34a expression, which in ileum on day 1 displayed a 3- to 4-fold increase in female mice after mixed-field (67% neutron + 33% gamma) irradiation, as compared to a 5- to 9-fold increase in male mice. Moreover, miR-34a blocked Bcl-2 expression. Mixed-field (60% neutron + 33% gamma) radiation induced more Bcl-2 in females than in males. On day 7, AKT activation was found in the ileums of females and males. However, MAPK activation including ERK, JNK, and p38 showed no changes in the ileum of females (by 0-fold; P > 0.05), whereas the MAPK activation was increased in the ileum of males (by 100-fold; P < 0.05). Taken together, the results suggest that organ injury from mixed-field (67% neutron + 33% gamma) radiation is less severe in females than in males, likely due to increased G-CSF, less MAPK activation, low miR-34a and increased Bcl-2/Bax ratio.
Collapse
Affiliation(s)
- Juliann G Kiang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Georgetta Cannon
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Matthew G Olson
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan T Smith
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - M Victoria Umali
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Kevin Ho
- Department of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Connie Ho
- School of Medicine, University of California, Los Angeles, California
| | - Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
24
|
Taliaferro LP, Cassatt DR, Horta ZP, Satyamitra MM. Meeting Report: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome. Radiat Res 2021; 196:436-446. [PMID: 34237144 PMCID: PMC8532024 DOI: 10.1667/rade-21-00048.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/03/2022]
Abstract
The National Institute of Allergy and Infectious Diseases, Radiation and Nuclear Countermeasures Program, was tasked by the United States Congress and the U.S. Department of Health and Human Services to identify and fund early-to-mid-stage development of medical countermeasures (MCMs) to treat radiation-induced injuries. In developing MCMs to treat various sub-syndromes (e.g., hematopoietic, gastrointestinal, lung), it is important to investigate whether a poly-pharmacy approach (i.e., drug cocktails) can provide additive benefits to mitigate injuries arising from the acute radiation syndrome (ARS). In addition, potential drug-drug interactions must be examined. For this reason, a workshop was held, which centered on understanding the current state of research investigating poly-pharmacy approaches to treat radiation injuries. The first session set the stage with an introduction to the concept of operations or support available for the response to a nuclear incident, as this is the key to any emergency response, including MCM availability and distribution. The second session followed the natural history of ARS in both humans and animal models to underscore the complexity of ARS and why a poly-pharmacy approach may be necessary. The third session featured talks from investigators conducting current MCM poly-pharmacy research. The meeting closed with a focus on regulatory considerations for the development of poly-pharmacy approaches or combination treatments for ARS.
Collapse
Affiliation(s)
- Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | | | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
25
|
Satyamitra MM, Cassatt DR, Taliaferro LP. Meeting Commentary: A Poly-Pharmacy Approach to Mitigate Acute Radiation Syndrome (ARS). Radiat Res 2021; 196:423-428. [PMID: 34270773 PMCID: PMC8522554 DOI: 10.1667/rade-21-00053.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/23/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of
Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy
and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville,
Maryland
| |
Collapse
|
26
|
DiCarlo AL. Scientific research and product development in the United States to address injuries from a radiation public health emergency. JOURNAL OF RADIATION RESEARCH 2021; 62:752-763. [PMID: 34308479 PMCID: PMC8438480 DOI: 10.1093/jrr/rrab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Indexed: 06/13/2023]
Abstract
The USA has experienced one large-scale nuclear incident in its history. Lessons learned during the Three-Mile Island nuclear accident provided government planners with insight into property damage resulting from a low-level release of radiation, and an awareness concerning how to prepare for future occurrences. However, if there is an incident resulting from detonation of an improvised nuclear device or state-sponsored device/weapon, resulting casualties and the need for medical treatment could overwhelm the nation's public health system. After the Cold War ended, government investments in radiation preparedness declined; however, the attacks on 9/11 led to re-establishment of research programs to plan for the possibility of a nuclear incident. Funding began in earnest in 2004, to address unmet research needs for radiation biomarkers, devices and products to triage and treat potentially large numbers of injured civilians. There are many biodosimetry approaches and medical countermeasures (MCMs) under study and in advanced development, including those to address radiation-induced injuries to organ systems including bone marrow, the gastrointestinal (GI) tract, lungs, skin, vasculature and kidneys. Biomarkers of interest in determining level of radiation exposure and susceptibility of injury include cytogenetic changes, 'omics' technologies and other approaches. Four drugs have been approved by the US Food and Drug Administration (FDA) for the treatment of acute radiation syndrome (ARS), with other licensures being sought; however, there are still no cleared devices to identify radiation-exposed individuals in need of treatment. Although many breakthroughs have been made in the efforts to expand availability of medical products, there is still work to be done.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Corresponding author. Radiation and Nuclear Countermeasures Program, Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Room 7B13, Rockville, MD, USA. Office Phone: 1-240-627-3492; Office Fax: 1-240-627-3113;
| |
Collapse
|
27
|
Wang L, Zhai M, Lin B, Cui W, Hull L, Li X, Anderson MN, Smith JT, Umali MV, Jiang S, Kiang JG, Xiao M. PEG-G-CSF and L-Citrulline Combination Therapy for Mitigating Skin Wound Combined Radiation Injury in a Mouse Model. Radiat Res 2021; 196:113-127. [PMID: 33914884 PMCID: PMC8344563 DOI: 10.1667/rade-20-00151.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/26/2021] [Indexed: 11/03/2022]
Abstract
Radiation combined injury (RCI, radiation exposure coupled with other forms of injury, such as burn, wound, hemorrhage, blast, trauma and/or sepsis) comprises approximately 65% of injuries from a nuclear explosion, and greatly increases the risk of morbidity and mortality when compared to that of radiation injury alone. To date, no U.S. Food and Drug Administration (FDA)-approved countermeasures are available for RCI. Currently, three leukocyte growth factors (Neupogen®, Neulasta® and Leukine®) have been approved by the FDA for mitigating the hematopoietic acute radiation syndrome. However these granulocyte-colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) products have failed to increase 30-day survival of mice after RCI, suggesting a more complicated biological mechanism is in play for RCI than for radiation injury. In the current study, the mitigative efficacy of combination therapy using pegylated (PEG)-G-CSF (Neulasta) and -citrulline was evaluated in an RCI mouse model. L-citrulline is a neutral alpha-amino acid shown to improve vascular endothelial function in cardiovascular diseases. Three doses of PEG-G-CSF at 1 mg/kg, subcutaneously administered on days 1, 8 and 15 postirradiation, were supplemented with oral -citrulline (1 g/kg), once daily from day 1 to day 21 postirradiation. The combination treatment significantly improved the 30-day survival of mice after RCI from 15% (vehicle-treated) to 42%, and extended the median survival time by 4 days, as compared to vehicle controls. In addition, the combination therapy significantly increased body weight and bone marrow stem and progenitor cell clonogenicity in RCI mice, and accelerated recovery from RCI-induced intestinal injury, compared to animals treated with vehicle. Treatment with -citrulline alone also accelerated skin wound healing after RCI. In conclusion, these data indicate that the PEG-G-CSF and -citrulline combination therapy is a potentially effective countermeasure for mitigating RCI, likely by enhancing survival of the hematopoietic stem/progenitor cells and accelerating recovery from the RCI-induced intestinal injury and skin wounds.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Xianghong Li
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Maria Victoria Umali
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
- Department of Pharmacology and Molecular Therapy, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
28
|
Singh VK, Seed TM, Cheema AK. Metabolomics-based predictive biomarkers of radiation injury and countermeasure efficacy: current status and future perspectives. Expert Rev Mol Diagn 2021; 21:641-654. [PMID: 34024238 DOI: 10.1080/14737159.2021.1933448] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION There is an urgent need for specific and sensitive bioassays to augment biodosimetric assessments of unwanted and excessive radiation exposures that originate from unexpected nuclear/radiological events, including nuclear accidents, acts of terrorism, or the use of a radiological dispersal device. If sufficiently intense, such ionizing radiation exposures are likely to impact normal metabolic processes within the cells and organs of the body, thus inducing multifaceted biological responses. AREAS COVERED This review covers the application of metabolomics, an emerging and promising technology based on quantitative and qualitative determinations of small molecules in biological samples for the rapid assessment of an individual's exposure to ionizing radiation. Recent advancements in the analytics of high-resolution chromatography, mass spectrometry, and bioinformatics have led to untargeted (global) and targeted (quantitative phase) approaches to identify biomarkers of radiation injury and countermeasure efficacy. Biomarkers are deemed essential for both assessing the radiation exposure levels and for extrapolative processes involved in determining scaling factors of a given radiation countering medicinal between experimental animals and humans. EXPERT OPINION The discipline of metabolomics appears to be highly informative in assessing radiation exposure levels and for identifying biomarkers of radiation injury and countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants,Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Serices University of the Health Sciences, Bethesda, MD, USA.,Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Amrita K Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA.,Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
29
|
Hollingsworth BA, Cassatt DR, DiCarlo AL, Rios CI, Satyamitra MM, Winters TA, Taliaferro LP. Acute Radiation Syndrome and the Microbiome: Impact and Review. Front Pharmacol 2021; 12:643283. [PMID: 34084131 PMCID: PMC8167050 DOI: 10.3389/fphar.2021.643283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Study of the human microbiota has been a centuries-long endeavor, but since the inception of the National Institutes of Health (NIH) Human Microbiome Project in 2007, research has greatly expanded, including the space involving radiation injury. As acute radiation syndrome (ARS) is multisystemic, the microbiome niches across all areas of the body may be affected. This review highlights advances in radiation research examining the effect of irradiation on the microbiome and its potential use as a target for medical countermeasures or biodosimetry approaches, or as a medical countermeasure itself. The authors also address animal model considerations for designing studies, and the potential to use the microbiome as a biomarker to assess radiation exposure and predict outcome. Recent research has shown that the microbiome holds enormous potential for mitigation of radiation injury, in the context of both radiotherapy and radiological/nuclear public health emergencies. Gaps still exist, but the field is moving forward with much promise.
Collapse
Affiliation(s)
- Brynn A Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - David R Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| | - Lanyn P Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, United States
| |
Collapse
|
30
|
Bene BJ, Blakely WF, Burmeister DM, Cary L, Chhetri SJ, Davis CM, Ghosh SP, Holmes-Hampton GP, Iordanskiy S, Kalinich JF, Kiang JG, Kumar VP, Lowy RJ, Miller A, Naeem M, Schauer DA, Senchak L, Singh VK, Stewart AJ, Velazquez EM, Xiao M. Celebrating 60 Years of Accomplishments of the Armed Forces Radiobiology Research Institute1. Radiat Res 2021; 196:129-146. [PMID: 33979439 DOI: 10.1667/21-00064.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 11/03/2022]
Abstract
Chartered by the U.S. Congress in 1961, the Armed Forces Radiobiology Research Institute (AFRRI) is a Joint Department of Defense (DoD) entity with the mission of carrying out the Medical Radiological Defense Research Program in support of our military forces around the globe. In the last 60 years, the investigators at AFRRI have conducted exploratory and developmental research with broad application to the field of radiation sciences. As the only DoD facility dedicated to radiation research, AFRRI's Medical Radiobiology Advisory Team provides deployable medical and radiobiological subject matter expertise, advising commanders in the response to a U.S. nuclear weapon incident and other nuclear or radiological material incidents. AFRRI received the DoD Joint Meritorious Unit Award on February 17, 2004, for its exceptionally meritorious achievements from September 11, 2001 to June 20, 2003, in response to acts of terrorism and nuclear/radiological threats at home and abroad. In August 2009, the American Nuclear Society designated the institute a nuclear historic landmark as the U.S.'s primary source of medical nuclear and radiological research, preparedness and training. Since then, research has continued, and core areas of study include prevention, assessment and treatment of radiological injuries that may occur from exposure to a wide range of doses (low to high). AFRRI collaborates with other government entities, academic institutions, civilian laboratories and other countries to research the biological effects of ionizing radiation. Notable early research contributions were the establishment of dose limits for major acute radiation syndromes in primates, applicable to human exposures, followed by the subsequent evolution of radiobiology concepts, particularly the importance of immune collapse and combined injury. In this century, the program has been essential in the development and validation of prophylactic and therapeutic drugs, such as Amifostine, Neupogen®, Neulasta®, Nplate® and Leukine®, all of which are used to prevent and treat radiation injuries. Moreover, AFRRI has helped develop rapid, high-precision, biodosimetry tools ranging from novel assays to software decision support. New drug candidates and biological dose assessment technologies are currently being developed. Such efforts are supported by unique and unmatched radiation sources and generators that allow for comprehensive analyses across the various types and qualities of radiation. These include but are not limited to both 60Co facilities, a TRIGA® reactor providing variable mixed neutron and γ-ray fields, a clinical linear accelerator, and a small animal radiation research platform with low-energy photons. There are five major research areas at AFRRI that encompass the prevention, assessment and treatment of injuries resulting from the effects of ionizing radiation: 1. biodosimetry; 2. low-level and low-dose-rate radiation; 3. internal contamination and metal toxicity; 4. radiation combined injury; and 5. radiation medical countermeasures. These research areas are bolstered by an educational component to broadcast and increase awareness of the medical effects of ionizing radiation, in the mass-casualty scenario after a nuclear detonation or radiological accidents. This work provides a description of the military medical operations as well as the radiation facilities and capabilities present at AFRRI, followed by a review and discussion of each of the research areas.
Collapse
Affiliation(s)
| | | | | | - Lynnette Cary
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Catherine M Davis
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sanchita P Ghosh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Gregory P Holmes-Hampton
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Sergey Iordanskiy
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Juliann G Kiang
- Scientific Research Department.,Medicine.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | | | | - David A Schauer
- Radiation Sciences Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Vijay K Singh
- Scientific Research Department.,Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | | | | |
Collapse
|
31
|
Kiang JG, Zhai M, Lin B, Smith JT, Anderson MN, Jiang S. Co-Therapy of Pegylated G-CSF and Ghrelin for Enhancing Survival After Exposure to Lethal Radiation. Front Pharmacol 2021; 12:628018. [PMID: 33603673 PMCID: PMC7884820 DOI: 10.3389/fphar.2021.628018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Exposure to ionizing radiation (radiation injury, RI) in nuclear-related episode is evident to be life-threatening. RI occurs at levels of organs, tissues, cytosols, or nucleus. Their mechanisms are still not fully understood. FDA approves pegylated granulocyte colony-stimulating factor (Neulasta™, Peg-G-CSF) for acute hematopoietic syndrome and has been shown to save lives after lethal RI. We aimed to test whether Ghrelin enhanced Peg-G-CSF's efficacy to save more lives after lethal RI. B6D2F1/J female mice were used for the study. They received 9.5 Gy (LD50/30 at 0.4 Gy/min) emitted from the 60Co-γ-photon radiation facility. Peg-G-CSF was injected subcutaneously at 1 mg/kg once on days 1, 8, and 15 after irradiation. Ghrelin contains 28 amino acid and is a hunger peptide that has been shown to stimulate food intake, promote intestinal epithelial cell proliferation, elevates immunity, inhibits brain hemorrhage, and increases stress-coping. Ghrelin was injected subcutaneously at 113 μg/kg once on days 1, 2, and 3 after irradiation. Survival, body weight, water consumption, hematology, spleen weight, splenocytes, bone marrow cells, and histology of bone marrow and ileum were performed. We observed that radiation resulted in 30-days survival by 30%. RI decreased their body weights and water consumption volumes. On the 30th day post-RI, platelets and WBCs such as basophils, eosinophils, monocytes, lymphocytes, neutrophils and leukocytes were still significantly decreased in surviving mice. Likewise, their RBC, hemoglobin, hematocrit, and splenocytes remained low; splenomegaly was found in these mice. Bone marrow in surviving RI animals maintained low cellularity with high counts of fat cells and low counts of megakaryocytes. Meanwhile, ileum histology displayed injury. However, mice co-treated with both drugs 24 h after RI resulted in 30-days survival by 45% above the vehicle group. Additionally, the body-weight loss was mitigated, the acute radiation syndrome was reduced. This co-therapy significantly increased neutrophils, eosinophils, leukocytes, and platelets in circulation, inhibited splenomegaly, and increased bone marrow cells. Histopathological analysis showed significant improvement on bone marrow cellularity and ileum morphology. In conclusion, the results provide a proof of concept and suggest that the co-therapy of Peg-G-CSF and Ghrelin is efficacious to ameliorate RI.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| |
Collapse
|
32
|
DiCarlo AL, Bandremer AC, Hollingsworth BA, Kasim S, Laniyonu A, Todd NF, Wang SJ, Wertheimer ER, Rios CI. Cutaneous Radiation Injuries: Models, Assessment and Treatments. Radiat Res 2020; 194:315-344. [PMID: 32857831 PMCID: PMC7525796 DOI: 10.1667/rade-20-00120.1] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
Many cases of human exposures to high-dose radiation have been documented, including individuals exposed during the detonation of atomic bombs in Hiroshima and Nagasaki, nuclear power plant disasters (e.g., Chernobyl), as well as industrial and medical accidents. For many of these exposures, injuries to the skin have been present and have played a significant role in the progression of the injuries and survivability from the radiation exposure. There are also instances of radiation-induced skin complications in routine clinical radiotherapy and radiation diagnostic imaging procedures. In response to the threat of a radiological or nuclear mass casualty incident, the U.S. Department of Health and Human Services tasked the National Institute of Allergy and Infectious Diseases (NIAID) with identifying and funding early- to mid-stage medical countermeasure (MCM) development to treat radiation-induced injuries, including those to the skin. To appropriately assess the severity of radiation-induced skin injuries and determine efficacy of different approaches to mitigate/treat them, it is necessary to develop animal models that appropriately simulate what is seen in humans who have been exposed. In addition, it is important to understand the techniques that are used in other clinical indications (e.g., thermal burns, diabetic ulcers, etc.) to accurately assess the extent of skin injury and progression of healing. For these reasons, the NIAID partnered with two other U.S. Government funding and regulatory agencies, the Biomedical Advanced Research and Development Authority (BARDA) and the Food and Drug Administration (FDA), to identify state-of-the-art methods in assessment of skin injuries, explore animal models to better understand radiation-induced cutaneous damage and investigate treatment approaches. A two-day workshop was convened in May 2019 highlighting talks from 28 subject matter experts across five scientific sessions. This report provides an overview of information that was presented and the subsequent guided discussions.
Collapse
Affiliation(s)
- Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Aaron C. Bandremer
- Biomedical Advanced Research and Development Authority (BARDA), Department of Health and Human Services (HHS), Washington, DC
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Suhail Kasim
- U.S. Food and Drug Administration (FDA), White Oak, Maryland
| | | | - Nushin F. Todd
- U.S. Food and Drug Administration (FDA), White Oak, Maryland
| | - Sue-Jane Wang
- U.S. Food and Drug Administration (FDA), White Oak, Maryland
| | | | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
33
|
Cannon G, Kiang JG. A review of the impact on the ecosystem after ionizing irradiation: wildlife population. Int J Radiat Biol 2020; 98:1054-1062. [PMID: 32663058 PMCID: PMC10139769 DOI: 10.1080/09553002.2020.1793021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE On 26 April 1986, reactor 4 at the Chernobyl power plant underwent a catastrophic failure leading to core explosions and open-air fires. On 11 March 2011, a combination of earthquake and tsunami led to a similar disaster at the Fukushima Daiichi power plant. In both cases, radioactive isotopes were released and contaminated the air, soil and water in a substantial area around the power plants. Humans were evacuated from the immediate regions but the wildlife stayed and continued to be affected by the ongoing high radiation exposure initially and later decayed amounts of fallout dusts with time. In this review, we will examine the significant effects of the increased radiation on vegetation, insects, fish, birds and mammals. CONCLUSIONS The initial intense radiation in these areas has gradually begun to decrease but still remains high. Adaptation to radiation is evident and the ecosystems have dynamically changed from the periods immediately after the accidents to the present day. Understanding the molecular mechanisms that allow the adaptation and recovery of wildlife to chronic radiation challenges would aid in future attempts at ecosystem remediation in the wake of such incidents.
Collapse
Affiliation(s)
- Georgetta Cannon
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Juliann G Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
34
|
Koch AL, Rusnak M, Peachee K, Isaac A, McCart EA, Rittase WB, Olsen CH, Day RM, Symes AJ. Comparison of the effects of osmotic pump implantation with subcutaneous injection for administration of drugs after total body irradiation in mice. Lab Anim 2020; 55:142-149. [PMID: 32703063 DOI: 10.1177/0023677220939991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasing potential for radiation exposure from nuclear accidents or terrorist activities has intensified the need to develop pharmacologic countermeasures against injury from total body irradiation (TBI). Many initial experiments to develop and test these countermeasures utilize murine irradiation models. Yet, the route of drug administration can alter the response to irradiation injury. Studies have demonstrated that cutaneous injuries can exacerbate damage from radiation, and thus surgical implantation of osmotic pumps for drug delivery could adversely affect the survival of mice following TBI. However, daily handling and injections to administer drugs could also have negative consequences. This study compared the effects of subcutaneous needlesticks with surgical implantation of osmotic pumps on morbidity and mortality in a murine model of hematopoietic acute radiation syndrome (H-ARS). C57BL/6 mice were sham irradiated or exposed to a single dose of 7.7 Gy 60Co TBI. Mice were implanted with osmotic pumps containing sterile saline seven days prior to irradiation or received needlesticks for 14 days following irradiation or received no treatment. All irradiated groups exhibited weight loss. Fewer mice with osmotic pumps survived to 30 days post irradiation (37.5%) than mice receiving needlesticks or no treatment (70% and 80%, respectively), although this difference was not statistically significant. However, mice implanted with the pump lost significantly more weight than mice that received needlesticks or no treatment. These data suggest that surgical implantation of a drug-delivery device can adversely affect the outcome in a murine model of H-ARS.
Collapse
Affiliation(s)
- Amory L Koch
- Department of Laboratory Animal Resources, Uniformed Services University of the Health Sciences, USA
| | - Milan Rusnak
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Katherine Peachee
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Akira Isaac
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Elizabeth A McCart
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - W Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Cara H Olsen
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, USA
| | - Regina M Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| |
Collapse
|
35
|
Glycyrrhizin Ameliorates Radiation Enteritis in Mice Accompanied by the Regulation of the HMGB1/TLR4 Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8653783. [PMID: 32595744 PMCID: PMC7281845 DOI: 10.1155/2020/8653783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/12/2020] [Accepted: 05/02/2020] [Indexed: 12/22/2022]
Abstract
Radiation enteritis is a common side effect of radiotherapy for abdominal and pelvic malignancies, which can lead to a decrease in patients' tolerance to radiotherapy and the quality of life. It has been demonstrated that glycyrrhizin (GL) possesses significant anti-inflammatory activity. However, little is known about its anti-inflammatory effect in radiation enteritis. In the present study, we aimed to investigate the potential anti-inflammatory effects of GL on radiation enteritis and elucidate the possible underlying molecular mechanisms involved. The C57BL/6 mice were subjected to 6.5 Gy abdominal X-ray irradiation to establish a model of radiation enteritis. Hematoxylin and eosin staining was performed to analyze the pathological changes in the jejunum. The expression of TNF-α in the jejunum was analyzed by immunochemistry. The levels of inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and HMGB1 in the serum were determined by enzyme-linked immunosorbent assay. The intestinal absorption capacity was tested using the D-xylose absorption assay. The levels of HMGB1 and TLR4 were analyzed by western blotting and immunofluorescence staining. We found that GL significantly alleviated the intestinal damage and reduced the levels of inflammatory cytokines, such as TNF-α, IL-6, IL-1β, and HMGB1 levels. Furthermore, the HMGB1/TLR4 signaling pathway was significantly downregulated by GL treatment. In conclusion, these findings indicate that GL has a protective effect against radiation enteritis through the inhibition of the intestinal damage and the inflammatory responses, as well as the HMGB1/TLR4 signaling pathway. Thereby, GL might be a potential therapeutic agent for the treatment of radiation enteritis.
Collapse
|
36
|
Medhora M, Gasperetti T, Schamerhorn A, Gao F, Narayanan J, Lazarova Z, Jacobs ER, Tarima S, Fish BL. Wound Trauma Exacerbates Acute, but not Delayed, Effects of Radiation in Rats: Mitigation by Lisinopril. Int J Mol Sci 2020; 21:ijms21113908. [PMID: 32486174 PMCID: PMC7312718 DOI: 10.3390/ijms21113908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/31/2022] Open
Abstract
The goal of this study is to understand and mitigate the effects of wounds on acute radiation syndrome (ARS) and delayed effects of acute radiation exposure (DEARE), for preparedness against a radiological attack or accident. Combined injuries from concomitant trauma and radiation are likely in these scenarios. Either exacerbation or mitigation of radiation damage by wound trauma has been previously reported in preclinical studies. Female WAG/RijCmcr rats received 13 Gy X-rays, with partial-body shielding of one leg. Within 2 h, irradiated rats and non-irradiated controls were given full-thickness skin wounds with or without lisinopril, started orally 7 days after irradiation. Morbidity, skin wound area, breathing interval and blood urea nitrogen were measured up to 160 days post-irradiation to independently evaluate wound trauma and DEARE. Wounding exacerbated morbidity in irradiated rats between 5 and 14 days post-irradiation (during the ARS phase), and irradiation delayed wound healing. Wounding did not alter delayed morbidities from radiation pneumonitis or nephropathy after 30 days post-irradiation. Lisinopril did not mitigate wound healing, but markedly decreased morbidity during DEARE from 31 through 160 days. The results derived from this unique model of combined injuries suggest different molecular mechanisms of injury and healing of ARS and DEARE after radiation exposure.
Collapse
Affiliation(s)
- Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI 53295, USA
- Correspondence: ; Tel.: +1-414-955-5612; Fax: +1-414-955-6459
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Ashley Schamerhorn
- Department of Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Feng Gao
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Elizabeth R. Jacobs
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Pulmonary Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Department of Veterans Affairs, Zablocki VAMC, Milwaukee, WI 53295, USA
| | - Sergey Tarima
- Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (T.G.); (F.G.); (J.N.); (B.L.F.)
| |
Collapse
|
37
|
Kiang JG, Smith JT, Cannon G, Anderson MN, Ho C, Zhai M, Cui W, Xiao M. Ghrelin, a novel therapy, corrects cytokine and NF-κB-AKT-MAPK network and mitigates intestinal injury induced by combined radiation and skin-wound trauma. Cell Biosci 2020; 10:63. [PMID: 32426105 PMCID: PMC7216502 DOI: 10.1186/s13578-020-00425-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/04/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Compared to radiation injury alone (RI), radiation injury combined wound (CI) further enhances acute radiation syndrome and subsequently mortality. We previously reported that therapy with Ghrelin, the 28-amino-acid-peptide secreted from the stomach, significantly increased 30-day survival and mitigated hematopoietic death by enhancing and sustaining granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in the blood and bone marrow; increasing circulating white blood cell depletion; inhibiting splenocytopenia; and accelerating skin-wound healing on day 30 after CI. Herein, we aimed to study the efficacy of Ghrelin on intestinal injury at early time points after CI. METHODS B6D2F1/J female mice were exposed to 60Co-γ-photon radiation (9.5 Gy, 0.4 Gy/min, bilateral), followed by 15% total-body-surface-area skin wounds. Several endpoints were measured: at 4-5 h and on days 1, 3, 7, and 15. RESULTS Ghrelin therapy mitigated CI-induced increases in IL-1β, IL-6, IL-17A, IL-18, KC, and TNF-α in serum but sustained G-CSF, KC and MIP-1α increases in ileum. Histological analysis of ileum on day 15 showed that Ghrelin treatment mitigated ileum injury by increasing villus height, crypt depth and counts, as well as decreasing villus width and mucosal injury score. Ghrelin therapy increased AKT activation and ERK activation; suppressed JNK activation and caspase-3 activation in ileum; and reduced NF-κB, iNOS, BAX and Bcl-2 in ileum. This therapy recovered the tight junction protein and mitigated bacterial translocation and lipopolysaccharides levels. The results suggest that the capacity of Ghrelin therapy to reduce CI-induced ileum injury is mediated by a balanced NF-κB-AKT-MAPK network that leads to homeostasis of pro-inflammatory and anti-inflammatory cytokines. CONCLUSIONS Our novel results are the first to suggest that Ghrelin therapy effectively decreases intestinal injury after CI.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, MD 20814 USA
| | - Joan T. Smith
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Marsha N. Anderson
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Connie Ho
- Department of Biochemistry, University of California, Berkeley, CA 94720 USA
| | - Min Zhai
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Wanchang Cui
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| | - Mang Xiao
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814 USA
| |
Collapse
|
38
|
Pfaff AR, Beltz J, King E, Ercal N. Medicinal Thiols: Current Status and New Perspectives. Mini Rev Med Chem 2020; 20:513-529. [PMID: 31746294 PMCID: PMC7286615 DOI: 10.2174/1389557519666191119144100] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The thiol (-SH) functional group is found in a number of drug compounds and confers a unique combination of useful properties. Thiol-containing drugs can reduce radicals and other toxic electrophiles, restore cellular thiol pools, and form stable complexes with heavy metals such as lead, arsenic, and copper. Thus, thiols can treat a variety of conditions by serving as radical scavengers, GSH prodrugs, or metal chelators. Many of the compounds discussed here have been in use for decades, yet continued exploration of their properties has yielded new understanding in recent years, which can be used to optimize their clinical application and provide insights into the development of new treatments. The purpose of this narrative review is to highlight the biochemistry of currently used thiol drugs within the context of developments reported in the last five years. More specifically, this review focuses on thiol drugs that represent the standard of care for their associated conditions, including N-acetylcysteine, 2,3-meso-dimercaptosuccinic acid, British anti-Lewisite, D-penicillamine, amifostine, and others. Reports of novel dosing regimens, delivery strategies, and clinical applications for these compounds were examined with an eye toward emerging approaches to address a wide range of medical conditions in the future.
Collapse
Affiliation(s)
- Annalise R. Pfaff
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Justin Beltz
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Emily King
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| | - Nuran Ercal
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri, U.S.A
| |
Collapse
|
39
|
Chen ZZ, Wang LC, Manoharan D, Lee CL, Wu LC, Huang WT, Huang EY, Su CH, Sheu HS, Yeh CS. Low Dose of X-Ray-Excited Long-Lasting Luminescent Concave Nanocubes in Highly Passive Targeting Deep-Seated Hepatic Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905087. [PMID: 31625638 DOI: 10.1002/adma.201905087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/01/2019] [Indexed: 05/22/2023]
Abstract
Chromium-doped zinc gallate, ZnGa2 O4 :Cr3+ (ZGC), is viewed as a long-lasting luminescence (LLL) phosphor that can avoid tissue autofluorescence interference for in vivo imaging detection. ZGC is a cubic spinel structure, a typical agglomerative or clustered morphology lacking a defined cubic shape, but a sphere-like feature is commonly obtained for the nanometric ZGC. The substantial challenge remains achieving a well-defined cubic feature in nanoscale. The process by which dispersed and well-defined concave cubic ZGC is obtained is described, exhibiting much stronger LLL in UV and X-ray excitation for the dispersed cubic ZGC compared with the agglomerative form that cannot be excited using X-rays with a low dose of 0.5 Gy. The cubic ZGC reveals a specific accumulation in liver and 0.5 Gy used at the end of X-ray excitation is sufficient for imaging of deep-seated hepatic tumors. The ZGC nanocubes show highly passive targeting of orthotopic hepatic tumors.
Collapse
Affiliation(s)
- Zheng-Zhe Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Lai-Chin Wu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Wan-Ting Huang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, 112, Taiwan
| | - Hwo-Shuenn Sheu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
40
|
Kiang JG, Smith JT, Anderson MN, Umali MV, Ho C, Zhai M, Lin B, Jiang S. A novel therapy, using Ghrelin with pegylated G-CSF, inhibits brain hemorrhage from ionizing radiation or combined radiation injury. PHARMACY & PHARMACOLOGY INTERNATIONAL JOURNAL 2019; 7:133-145. [PMID: 34368440 PMCID: PMC8341084 DOI: 10.15406/ppij.2019.07.00243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Medical treatment becomes challenging when complicated injuries arise from secondary reactive metabolic and inflammatory products induced by initial acute ionizing radiation injury (RI) or when combined with subsequent trauma insult(s) (CI). With such detrimental effects on many organs, CI exacerbates the severity of primary injuries and decreases survival. Previously, in a novel study, we reported that ghrelin therapy significantly improved survival after CI. This study aimed to investigate whether brain hemorrhage induced by RI and CI could be inhibited by ghrelin therapy with pegylated G-CSF (i.e., Neulasta®, an FDA-approved drug). B6D2F1 female mice were exposed to 9.5 Gy 60Co-γ-radiation followed by 15% total-skin surface wound. Several endpoints were measured at several days. Brain hemorrhage and platelet depletion were observed in RI and CI mice. Brain hemorrhage severity was significantly higher in CI mice than in RI mice. Ghrelin therapy with pegylated G-CSF reduced the severity in brains of both RI and CI mice. RI and CI did not alter PARP and NF-κB but did significantly reduce PGC-1α and ghrelin receptors; the therapy, however, was able to partially recover ghrelin receptors. RI and CI significantly increased IL-6, KC, Eotaxin, G-CSF, MIP-2, MCP-1, MIP-1α, but significantly decreased IL-2, IL-9, IL-10, MIG, IFN-γ, and PDGF-bb; the therapy inhibited these changes. RI and CI significantly reduced platelet numbers, cellular ATP levels, NRF1/2, and AKT phosphorylation. The therapy significantly mitigated these CI-induced changes and reduced p53-mdm2 mediated caspase-3 activation. Our data are the first to support the view that Ghrelin therapy with pegylated G-CSF is potentially a novel therapy for treating brain hemorrhage after RI and CI.
Collapse
Affiliation(s)
- J G Kiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, USA
| | - J T Smith
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - M N Anderson
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - M V Umali
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - C Ho
- Department of Biochemistry, University of California, USA
| | - M Zhai
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - B Lin
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| | - S Jiang
- Radiation Combined Injury Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, USA
| |
Collapse
|
41
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
42
|
Long S, Wang G, Shen M, Zhao N, Wan H, Xu Y, Wang S, Wang C, Gao J, Hao Y, Wang A, Li R, Ran X, Su Y, Wang J, Wang T. dTMP-GH Fusion Protein Therapy Improves Survival after Radiation Injury Combined with Skin-Burn Trauma in Mice. Radiat Res 2019; 191:360-368. [PMID: 30759046 DOI: 10.1667/rr5218.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to ionizing radiation combined with traumatic tissue injury is an important life-threatening condition found in the civilian populations after nuclear and radiological events. The significance feature of radiation combined injury (RCI) is the severe combined effect, which makes the injury more complicated. At present, there are limited measures available to treat RCI. Here we show that a chimeric protein dTMP-GH, fusing human growth hormone (hGH) with a tandem dimer of thrombopoietin mimetic peptide (dTMP), could be an effective therapy agent for RCI in a mice model. In this study, using a RCI mouse model exposed to 60Co γ-ray photons (6.0 Gy, 0.3 Gy/min) followed by a 20% total-body-surface-area burns (henceforth called: RB-CI) was established. Administration of dTMP-GH (200 ug/kg) for 10 consecutive days beginning at 24 h after injury improved survival rate during a 30-day observation period compared with the control vehicle group. dTMP-GH treatment also showed enhanced bone marrow hematopoiesis recovery determined by peripheral blood analysis and bone marrow histopathology. Meanwhile, dTMP-GH treatment accelerated skin wound closure and mitigated ileum injury in the RCI model. These results suggest that dTMP-GH may prove to be an effective therapeutic drug for RCI.
Collapse
Affiliation(s)
- Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Guojian Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Melatonin Alleviates Radiation-Induced Lung Injury via Regulation of miR-30e/NLRP3 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4087298. [PMID: 30755784 PMCID: PMC6348879 DOI: 10.1155/2019/4087298] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/27/2022]
Abstract
Melatonin is a well-known anti-inflammatory and antioxidant molecule, which plays a crucial role in various physiological functions. In this study, mice received a single dose of 15 Gy radiation delivered to the lungs and daily intraperitoneal administration of melatonin. After 7 days, mice were processed to harvest either bronchoalveolar lavage fluid for cytokine assays or lungs for flow cytometry and histopathological studies. Herein, we showed that melatonin markedly alleviated the oxidative stress and injury, especially suppressing the infiltration of macrophages (CD11b+CD11c−) and neutrophils (CD11b+Ly6G+) to the irradiated lungs. Moreover, in the irradiated RAW 264.7 cells, melatonin blocked the NLRP3 inflammasome activation accompanied with the inhibition of the IL-1β release and caspase-1 activity. However, melatonin restored the downregulated miR-30e levels. Quantitative PCR analysis of miR-30e and NLRP3 indicated the negative correlation between them. Notably, immunofluorescence staining showed that overexpression of miR-30e dramatically diminished the increased NLRP3 expression. Luciferase reporter assay confirmed that NLRP3 was a target gene of miR-30e. Western blotting revealed that transfection with miR-30e mimics markedly reduced the expressions of NLRP3 and cleaved caspase-1, whereas this phenomenon was reversed by the miR-30e inhibitor. Consistent with this, the beneficial effect of melatonin under irradiated exposure was blunted in cells transfected with anti-miR-30e. Collectively, our results demonstrate that the NLRP3 inflammasome contributed to the pathogenesis of radiation-induced lung injury. Meanwhile, melatonin exerted its protective effect through negatively regulating the NLRP3 inflammasome in macrophages. The melatonin-mediated miR-30e/NLRP3 signaling may provide novel therapeutic targets for radiation-induced injury.
Collapse
|
44
|
Ossetrova NI, Stanton P, Krasnopolsky K, Ismail M, Doreswamy A, Hieber KP. Biomarkers for Radiation Biodosimetry and Injury Assessment after Mixed-field (Neutron and Gamma) Radiation in the Mouse Total-body Irradiation Model. HEALTH PHYSICS 2018; 115:727-742. [PMID: 30299338 DOI: 10.1097/hp.0000000000000938] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The risk of potential radiation exposure scenarios that include detonation of nuclear weapons, terrorist attacks on nuclear reactors, and the use of conventional explosives to disperse radioactive substances has increased in recent years. The majority of radiation biodosimetry and countermeasure studies have been performed using photon radiation even though many exposure scenarios predict mixed-field (neutron and photon) radiation. Hence, there is a need to evaluate biomarkers and accurately determine exposure levels of mixed-field combinations of neutrons and photons for an individual. These biomarkers will be critical for biodosimetry triage, treatment, and follow-up visits with such individuals. We evaluated the utility of multiple blood biomarkers for early response assessment of radiation exposure using a mouse (B6D2F1, males and females) total-body irradiation model exposed to a mixed-field (neutrons and gamma rays) using the Armed Forces Radiobiology Research Institute's Mark F nuclear research reactor. Total-body irradiation was given as a single exposure over a dose range from 1.5 to 6 Gy, dose rates of 0.6 and 1.9 Gy min, and different proportions of neutrons and gammas: either (67% neutrons + 33% gammas) or (30% neutrons + 70% gammas). Blood was collected 1, 2, 4, and 7 d after total-body irradiation. Radiation-responsive protein biomarkers were measured using the Meso Scale Diagnostics' high-throughput MULTI-ARRAY plate-format platform (QuickPlex 120 Imager) and enzyme-linked immunosorbent assay kits. Results demonstrate (1) dose- and time-dependent changes in fms-related tyrosine kinase 3 ligand, interleukins IL-5, IL-10, IL-12, and IL-18, granulocyte and granulocyte-macrophage colony-stimulating factors, thrombopoietin, erythropoietin, acute-phase proteins (serum amyloid A and lipopolysaccharide binding protein), surface plasma neutrophil (CD45) and lymphocyte (CD27) markers, ratio of CD45 to CD27, and procalcitonin; (2) dose- and time-dependent changes in blood cell counts (lymphocytes, neutrophils, platelets, red blood cells, and ratio of neutrophils to lymphocytes); (3) levels of IL-18, granulocyte and granulocyte-macrophage colony-stimulating factors, serum amyloid A, and procalcitonin were significantly higher in animals irradiated with 67% neutrons + 33% gammas compared to those irradiated with 30% neutrons + 70% gammas (p < 0.015), while no significant differences (p > 0.114) were observed in hematological biomarker counts; (4) exposure with 3-fold difference in dose rate (0.6 or 1.9 Gy min) revealed no significant differences in hematological and protein biomarker levels (p > 0.154); and (5) no significant differences in hematological and protein biomarker levels were observed in the sex-comparison study for any radiation dose at any time after exposure (p > 0.088). Results show that the dynamic changes in the levels of selected hematopoietic cytokines, organ-specific biomarkers, and acute-phase protein biomarkers reflect the time course and severity of acute radiation syndrome and may function as prognostic indicators of acute radiation syndrome outcome. These studies supplement an ongoing effort to deliver U.S. Federal Drug Administration-approved biodosimetry capabilities, which assess mixed-field radiation exposure.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- 1Uniformed Services University, Armed Forces Radiobiology Research Institute, Scientific Research Department, 4555 South Palmer Road, Bethesda, MD 20889-5648
| | | | | | | | | | | |
Collapse
|
45
|
Li X, Cui W, Hull L, Smith JT, Kiang JG, Xiao M. Effects of Low-to-Moderate Doses of Gamma Radiation on Mouse Hematopoietic System. Radiat Res 2018; 190:612-622. [PMID: 30311842 DOI: 10.1667/rr15087.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, we investigated the effects of low-to-moderate doses of radiation in mice, given our limited understanding of the health risks associated with these exposures. Here, we demonstrate the different responses of the CD2F1 mouse hematopoietic system to low-to-moderate (0.5, 1, 3 or 5 Gy) doses of gamma radiation. After 3 and 5 Gy of 60Co total-body irradiation (TBI), mouse blood cell counts were decreased and maintained below baseline up to 28-42 days. In contrast, after 0.5 Gy TBI, lymphocyte and monocyte counts increased, and peaked from day 3 to day 14. Radiation doses at 0.5 and 1 Gy did not cause cell death or T-cell subpopulation changes in spleen and thymus, whereas the clonogenicity of mouse bone marrow (BM) progenitor cells was significantly suppressed on the first day after 0.5-5 Gy TBI, and these low levels were maintained up to 42 days. Although a transient recovery in total colony forming units (CFUs) was shown in mouse BM at days 14 and 21 after 0.5 Gy TBI, the early-stage multipotential progenitor colonies (CFU-GEMM) remained at a significantly low level compared to those of the sham-irradiated (0 Gy) controls. Consistently, the level of stem cell factor (SCF) in BM cells was decreased after low-to-moderate TBI. Serum from individual mice was collected after irradiation and 23 cytokines/chemokines were measured; massive releases of cytokines and chemokines were observed at day 3 postirradiation in a dose-dependent manner. When human hematopoietic CD34+ cells were cultured with the serum collected from mice irradiated at different doses, a significant decrease of CFU-GEMM colonies in the CD34+ cells was observed. Our data suggest that low-to-moderate doses of radiation induced cellular responses that are cell type-dependent. The early stage multipotential progenitor cells in mouse BM were the most sensitive cells even to low-dose irradiation compared to spleen and thymic cells, and 0.5 Gy TBI induced hematopoietic cell injury from day 1 to the end of our experiment, day 42 postirradiation. Radiation-induced decrease of SCF in mouse BM and increase in circulating pro-inflammatory factors may be responsible for the enhanced sensitivity of hematopoietic progenitor cells to radiation.
Collapse
Affiliation(s)
- XiangHong Li
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Wanchang Cui
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Lisa Hull
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan T Smith
- b Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Juliann G Kiang
- b Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Mang Xiao
- a Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
46
|
Janec KJ, Yuan H, Norton JE, Kelner RH, Hirt CK, Betensky RA, Guinan EC. rBPI 21 (Opebacan) Promotes Rapid Trilineage Hematopoietic Recovery in a Murine Model of High-Dose Total Body Irradiation. Am J Hematol 2018; 93:10.1002/ajh.25136. [PMID: 29752735 PMCID: PMC6230507 DOI: 10.1002/ajh.25136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/07/2018] [Indexed: 11/11/2022]
Abstract
The complexity of providing adequate care after radiation exposure has drawn increasing attention. While most therapeutic development has focused on improving survival at lethal radiation doses, acute hematopoietic syndrome (AHS) occurs at substantially lower exposures. Thus, it is likely that a large proportion of such a radiation-exposed population will manifest AHS of variable degree and that the medical and socioeconomic costs of AHS will accrue. Here, we examined the potential of rBPI21 (opebacan), used without supportive care, to accelerate hematopoietic recovery after radiation where expected survival was substantial (42-75%) at 30 days). rBPI21 administration was associated with accelerated recovery of hematopoietic precursors and normal marrow cellularity, with increases in megakaryocyte numbers particularly marked. This translated into attaining normal trilineage peripheral blood counts 2-3 weeks earlier than controls. Elevations of hematopoietic growth factors observed in plasma and the marrow microenvironment suggest the mechanism is likely multifactorial and not confined to known endotoxin-neutralizing and cytokine down-modulating activities of rBPI21 . These observations deserve further exploration in radiation models and other settings where inadequate hematopoiesis is a prominent feature. These experiments also model the potential of therapeutics to limit the allocation of scarce resources after catastrophic exposures as an endpoint independent of lethality mitigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kenneth J. Janec
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Huaiping Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - James E. Norton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rowan H. Kelner
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Christian K. Hirt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA
| | - Rebecca A. Betensky
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston MA
| | - Eva C. Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston MA
- Department of Radiation Oncology, Harvard Medical School, Boston MA
| |
Collapse
|
47
|
Lee YS, Heo W, Nam J, Jeung YH, Bae J. The combination of ionizing radiation and proteasomal inhibition by bortezomib enhances the expression of NKG2D ligands in multiple myeloma cells. JOURNAL OF RADIATION RESEARCH 2018; 59:245-252. [PMID: 29518205 PMCID: PMC5967576 DOI: 10.1093/jrr/rry005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/27/2017] [Indexed: 06/10/2023]
Abstract
Bortezomib, which is a potent proteasome inhibitor, has been used as a first-line drugs to treat multiple myeloma for a few decades, and radiotherapy has frequently been applied to manage acute bone lesions in the patients. Therefore, it was necessary to investigate what the benefits might be if the two therapies were applied simultaneously in the treatment of multiple myeloma. Since it was known that radiotherapy and proteasome inhibitors could increase the expression of NKG2D ligands through induction of protein synthesis and suppression of protein degradation of NKG2D ligands, respectively, we supposed that the combined treatment might further enhance the expression of NKG2D ligands. In this study, we analyzed the expression level of NKG2D ligands using multiplex PCR and flow cytometry after treatment of IM-9 and RPMI-8226 myeloma cells with bortezomib and ionizing radiation; we then assayed the susceptibility to NK-92 cells. Although the expression of only some kinds of NKG2D ligands were increased by treatment with bortezomib alone, five kinds of NKG2D ligands that we assayed were further induced at the surface protein level after combined treatment with ionizing radiation and bortezomib. Furthermore, combined treatment made myeloma cells more susceptible to NK-92 cells, compared with treatment with bortezomib alone. In conclusion, the combination therapy of ionizing radiation plus the proteasome inhibitor bortezomib is a promising therapeutical strategy for enhancing NK cell-mediated anticancer immune responses.
Collapse
Affiliation(s)
- Young Shin Lee
- Department of Biochemistry, Pusan National University School of Medicine, Busandaehakro-49, Mulgeum-eup Yangsan-si Gyeongsangnam-do, 50612, South Korea
- PNU BK21 Plus Biomedical Science Education Center, Pusan National University School of Medicine, Busandaehakro-49, Mulgeum-eup Yangsan-si Gyeongsangnam-do 50612, South Korea
| | - Woong Heo
- Department of Biochemistry, Pusan National University School of Medicine, Busandaehakro-49, Mulgeum-eup Yangsan-si Gyeongsangnam-do, 50612, South Korea
- PNU BK21 Plus Biomedical Science Education Center, Pusan National University School of Medicine, Busandaehakro-49, Mulgeum-eup Yangsan-si Gyeongsangnam-do 50612, South Korea
| | - Jiho Nam
- Department of Radiation Oncology, Pusan National University Yangsan Hospital, Geumo-ro 20, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, South Korea
| | - Young Hwa Jeung
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Busandaehakro-49, Mulgeum-eup Yangsan-si Gyeongsangnam-do, 50612, South Korea
- PNU BK21 Plus Biomedical Science Education Center, Pusan National University School of Medicine, Busandaehakro-49, Mulgeum-eup Yangsan-si Gyeongsangnam-do 50612, South Korea
| |
Collapse
|
48
|
Li C, Luo Y, Shao L, Meng A, Zhou D. NOS2 deficiency has no influence on the radiosensitivity of the hematopoietic system. Cell Biosci 2018; 8:33. [PMID: 29736233 PMCID: PMC5922011 DOI: 10.1186/s13578-018-0228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/12/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Previous studies have shown that inhibition of inducible NO synthase (NOS2 or iNOS) with an inhibitor can selectively protect several normal tissues against radiation during radiotherapy. However, the role of NOS2 in ionizing radiation (IR)-induced bone marrow (BM) suppression is unknown and thus was investigated in the present study using NOS2-/- and wild-type mice 14 days after they were exposed to a sublethal dose of total body irradiation (TBI). METHODS The effects of different doses of IR (1, 2 and 4 Gy) on the apoptosis and colony-forming ability of bone marrow cells from wild-type (WT) and NOS2-/- mice were investigated in vitro. In addition, we exposed NOS2-/- mice and WT mice to 6-Gy TBI or sham irradiation. They were euthanized 14 days after TBI for analysis of peripheral blood cell counts and bone marrow cellularity. Colony-forming unit-granulocyte and macrophage, burst-forming unit-erythroid and CFU-granulocyte, erythroid, macrophage in bone marrow cells from the mice were determined to evaluate the function of hematopoietic progenitor cells (HPCs), and the ability of hematopoietic stem cells (HSCs) to self-renew was analysed by the cobblestone area forming cell assay. The cell cycling of HPCs and HSCs were measured by flow cytometry. RESULTS Exposure to 2 and 4 Gy IR induced bone marrow cell apoptosis and inhibited the proliferation of HPCs in vitro. However, there was no difference between the cells from WT mice and NOS2-/- mice in response to IR exposure in vitro. Exposure of WT mice and NOS2-/- mice to 6 Gy TBI decreased the white blood cell, red blood cell, and platelet counts in the peripheral blood and bone marrow mononuclear cells, and reduced the colony-forming ability of HPCs (P < 0.05), damaged the clonogenic function of HSCs. However, these changes were not significantly different in WT and NOS2-/- mice. CONCLUSION These data suggest that IR induces BM suppression in a NOS2-independent manner.
Collapse
Affiliation(s)
- Chengcheng Li
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021 China
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Yi Luo
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Lijian Shao
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham, #607, Little Rock, AR 72205 USA
| | - Aimin Meng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Beijing, 100021 China
| | - Daohong Zhou
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham, #607, Little Rock, AR 72205 USA
| |
Collapse
|
49
|
Kiang JG, Smith JT, Hegge SR, Ossetrova NI. Circulating Cytokine/Chemokine Concentrations Respond to Ionizing Radiation Doses but not Radiation Dose Rates: Granulocyte-Colony Stimulating Factor and Interleukin-18. Radiat Res 2018; 189:634-643. [PMID: 29652619 PMCID: PMC10166094 DOI: 10.1667/rr14966.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Exposure to ionizing radiation is a crucial life-threatening factor in nuclear and radiological incidents. It is known that ionizing radiation affects cytokine/chemokine concentrations in the blood of B6D2F1 mice. It is not clear whether radiation dose rates would vary the physiological response. Therefore, in this study we utilized data from two experiments using B6D2F1 female mice exposed to six different dose rates ranging from low to high rates. In one experiment, mice received a total dose of 8 Gy (LD0/30) of 60Co gamma radiation at four dose rates: 0.04, 0.15, 0.30 and 0.47 Gy/min. Blood samples from mice were collected at 24 and 48 h postirradiation for cytokine/chemokine measurements, including interleukin (IL)-1β, IL-6, IL-10, keratinocyte cytokine (KC), IL-12p70, IL-15, IL-17A, IL-18, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage (GM)-CSF, macrophage (M)-CSF, monokine induced by gamma interferon (MIG), tumor necrosis factor (TNF)-α, fibroblast growth factor (FGF)-basic, vascular endothelial growth factor (VEGF) and platelet-derived growth factor basic (PDGF-bb). At 24 h after ionizing irradiation at dose rate of 0.04 Gy/min, significant increases were observed only in G-CSF and M-CSF ( P < 0.05). At 0.15 Gy/min, IL-10, IL-17A, G-CSF and GM-CSF concentrations were increased. At 0.3 Gy/min, IL-15, IL-18, G-CSF, GM-CSF, M-CSF, MCP-1, MIP-2, MIG, FGF-basic, VEGF and PDGF-bb were significantly elevated ( P < 0.05). At 0.47 Gy/min, IL-6, KC, IL-10, MCP-1, G-CSF, GM-CSF and M-CSF were significantly increased. At 48 h postirradiation, all cytokines/chemokines except MCP-1 returned to or were below their baselines, suggesting these increases are transient at LD0/30 irradiation. Of note, there is a limitation on day 2 because cytokines/chemokines are either at or below their baselines. Other parameters such as fms-like tyrosine kinase receptor-3 ligand (Flt-3 ligand) concentrations and lymphocyte counts, which have proven to be unaffected by radiation dose rates, can be used instead for assessing the radiation dose. However, in a separate radiation dose and time-course experiment, increases in IL-18 and G-CSF depended on the radiation doses but showed no significant differences between 0.58 and 1.94 Gy/min ( P > 0.05) at 3 and 6 Gy but not 12 Gy. G-CSF continued to increase up to day 7, whereas IL-18 increased on day 4 and remained above baseline level on day 7. Therefore, time after irradiation at different doses should be taken into consideration. To our knowledge, these results are the first to suggest that ionizing radiation, even at a very low-dose-rate (0.04 Gy/min), induces circulating G-CSF increases but not others for selected time points; radiation-induced increases in IL-18 at radiation dose rates between 0.15 and 1.94 Gy/min are also not in a radiation dose-rate-dependent manner. C-CSF, lymphocyte counts and circulating Flt-3 ligand should be explored further as possible biomarkers of radiation exposure at early time points. IL-18 is also worthy of further study as a potential biomarker at later time points.
Collapse
Affiliation(s)
- Juliann G Kiang
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland.,d Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,e Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Joan T Smith
- a Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Sara R Hegge
- b Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Natalia I Ossetrova
- c Biodosimetry Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
50
|
Kiang JG, Anderson MN, Smith JT. Ghrelin therapy mitigates bone marrow injury and splenocytopenia by sustaining circulating G-CSF and KC increases after irradiation combined with wound. Cell Biosci 2018; 8:27. [PMID: 29632660 PMCID: PMC5887249 DOI: 10.1186/s13578-018-0225-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/30/2018] [Indexed: 01/02/2023] Open
Abstract
Background Radiation injury combined wound (CI) enhances acute radiation syndrome and subsequently mortality as compared to radiation injury alone (RI). We previously reported that ghrelin (a 28-amino-acid-peptide secreted from the stomach) treatment significantly increased a 30-day survival, mitigated hematopoietic death, circulating white blood cell (WBC) depletion and splenocytopenia and accelerated skin-wound healing on day 30 after CI. Herein, we aimed to study the ghrelin efficacy at early time points after CI. Methods B6D2F1/J female mice were exposed to 60Co-γ-photon radiation at 9.5 Gy (LD50/30) followed by a 15% total-body-surface-area skin wound. Several endpoints were measured at 4-5 h, days 1, 3, 7 and 15. Results Histological analysis of sternums on day 15 showed that CI induced more adipocytes and less megakaryocytes than RI. Bone marrow cell counts from femurs also indicated CI resulted in lower bone marrow cell counts on days 1, 7 and 15 than RI. Ghrelin treatment mitigated these CI-induced adverse effects. RI and CI decreased WBCs within 4-5 h and continued to decrease to day 15. Ghrelin treatment mitigated decreases in CI mice, mainly from all types of WBCs, but not RBCs, hemoglobin levels and hematocrit values. Ghrelin mitigated the CI-induced thrombocytopenia and splenocytopenia. CI increased granulocyte-colony stimulating factor (G-CSF) and keratinocyte chemoattractant (KC) in blood and bone marrow. Ghrelin therapy was able to enhance and sustain the increases in serum on day 15, probably contributed by spleen and ileum, suggesting the correlation between G-CSF and KC increases and the neutropenia mitigation. Activated caspase-3 levels in bone marrow cells were significantly mitigated by ghrelin therapy on days 3 and 15. Conclusions Our novel results are the first to suggest that ghrelin therapy effectively decreases hematopoietic death and splenocytopenia by sustaining circulating G-CSF and KC increases after CI. These results demonstrate efficacy of ghrelin as a radio-mitigator/therapy agent for CI.
Collapse
Affiliation(s)
- Juliann G Kiang
- 1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA.,2Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA.,3Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Marsha N Anderson
- 1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| | - Joan T Smith
- 1Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|