1
|
Tomita M, Maeda M, Usami N, Yokoya A, Watanabe R, Kobayashi K. Enhancement of DNA double-strand break induction and cell killing by K-shell absorption of phosphorus in human cell lines. Int J Radiat Biol 2016; 92:724-732. [PMID: 27185241 DOI: 10.1080/09553002.2016.1179811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate an enhancement of DNA double-strand break (DSB) induction and cell killing effect by K-shell ionization of phosphorus atoms and Auger electrons on human cell lines. MATERIALS AND METHODS Induction of DSB, DNA damage responses, cell cycle distributions, and cell killing effects were investigated after exposures of the cells with monochromatic synchrotron radiation soft X-rays of 2153 and 2147 eV, which were the resonance peak and off peak, respectively, of the K-shell photoabsorption of phosphorus. RESULTS Higher biological effects in the cells irradiated with soft X-rays at 2153 eV than at 2147 eV were observed in (i) the efficiency of 53BP1/γ-H2AX co-localized foci formation per dose and residual number of foci, (ii) prolonged phosphorylation levels of DSB repair and/or cell cycle checkpoint related proteins and G2 arrest, (iii) the cell killing effects at the 10% survival level of normal human fibroblasts, HeLa cells, and human glioblastoma M059K cells (1.2-1.5 times higher) and that of human ataxia telangiectasia mutated (ATM)-defective cells and glioblastoma DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-defective cells (1.2 times). CONCLUSION The yield of DSB and partly less-reparable complex DNA damage induction in human cells was enhanced by K-shell photoabsorption of phosphorus and low-energy Auger electrons.
Collapse
Affiliation(s)
- Masanori Tomita
- a Radiation Safety Research Center , Central Research Institute of Electric Power Industry , Komae , Tokyo
| | - Munetoshi Maeda
- a Radiation Safety Research Center , Central Research Institute of Electric Power Industry , Komae , Tokyo.,b Proton Medical Research Group, Research and Development Department , The Wakasa Wan Energy Research Center , Tsuruga-shi , Fukui
| | - Noriko Usami
- c Photon Factory , Institute of Material Structure Sciences, High Energy Accelerator Research Organization (KEK) , Tsukuba , Ibaraki
| | - Akinari Yokoya
- d Research Group for Radiation and Biomolecular Science, Quantum Beam Science Center , Japan Atomic Energy Agency , Tokai , Ibaraki , Japan
| | - Ritsuko Watanabe
- d Research Group for Radiation and Biomolecular Science, Quantum Beam Science Center , Japan Atomic Energy Agency , Tokai , Ibaraki , Japan
| | - Katsumi Kobayashi
- c Photon Factory , Institute of Material Structure Sciences, High Energy Accelerator Research Organization (KEK) , Tsukuba , Ibaraki
| |
Collapse
|
2
|
Tomita M, Matsumoto H, Funayama T, Yokota Y, Otsuka K, Maeda M, Kobayashi Y. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:36-43. [PMID: 26256626 DOI: 10.1016/j.lssr.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time after irradiation.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan.
| | - Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuichiro Yokota
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Kensuke Otsuka
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | - Munetoshi Maeda
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan; Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
3
|
Tomita M. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death. JOURNAL OF RADIATION RESEARCH 2010; 51:493-501. [PMID: 20814172 DOI: 10.1269/jrr.10039] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death.
Collapse
Affiliation(s)
- Masanori Tomita
- Department of Radiation Oncology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Edaravone, a known free radical scavenger, enhances X-ray-induced apoptosis at low concentrations. Cancer Lett 2010; 293:52-7. [DOI: 10.1016/j.canlet.2009.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/19/2009] [Accepted: 12/23/2009] [Indexed: 11/22/2022]
|
5
|
Dubner D, del Rosario Pérez M, Michelin S, Bourguignon M, Moreau P, Carosella ED, Gisone P. Pharmacological inhibition of DNA repair enzymes differentially modulates telomerase activity and apoptosis in two human leukaemia cell lines. Int J Radiat Biol 2009; 80:593-605. [PMID: 15370971 DOI: 10.1080/09553000412331283506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To investigate the effect of wortmannin and 3-aminobenzamide (3-AB) on telomerase activity and apoptosis in two human leukaemia cells. MATERIALS AND METHODS MOLT-4 (p53-wild type) and KG1a (p53-null) cells were irradiated with gamma-rays (3 Gy at 1.57 Gy min(-1)) and the effects of wortmannin and 3-AB were evaluated. Telomerase activity was measured by polymerase chain reaction and the expression of human telomerase reverse transcriptase, human telomerase RNA and telomerase-associated protein 1 was assessed by reverse transcriptase-polymerase chain reaction. Apoptosis was evaluated by fluorescence microscopy and flow cytometry. RESULTS A radiation-induced up-regulation of telomerase activity was observed from 4 h post-irradiation in both cell lines. This up-regulation was abrogated by wortmannin and 3-AB. Telomerase activity was maximal 24 h post-irradiation, coinciding with an accumulation of human telomerase reverse transcriptase mRNA. Apoptosis and G2/M arrest were evident from 4 h post-irradiation in MOLT-4 cells. KG1a cells exhibited a G2/M block at 24 h post-irradiation and apoptosis increased between 24 and 48 h post-irradiation. 3-AB abolished G2/M blockage and enhanced radiation-induced apoptosis in both cell lines, while wortmannin increased apoptosis only in MOLT-4 cells. CONCLUSIONS 3-AB inhibits the radiation-associated telomerase activity increase and enhances apoptosis in MOLT-4 and KG1a cells. Wortmannin, which also inhibits the radiation-associated telomerase activity increase in both cell lines, does not modify radiation-induced apoptosis in KG1a cells. DNA repair enzymes might be selective targets for enhancing radiosensitivity in certain tumour cells.
Collapse
Affiliation(s)
- D Dubner
- Autoridad Regulatoria Nuclear, Gerencia de Apoyo Científico Laboratorio de Radiopatología, Avenida del Libertador 8250 (C1429BNP) Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
6
|
Lee EK, Chung SW, Kim JY, Kim JM, Heo HS, Lim HA, Kim MK, Anton S, Yokozawa T, Chung HY. Allylmethylsulfide Down-Regulates X-Ray Irradiation-Induced Nuclear Factor-kappaB Signaling in C57/BL6 Mouse Kidney. J Med Food 2009; 12:542-51. [PMID: 19627202 PMCID: PMC6469522 DOI: 10.1089/jmf.2008.1073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 02/10/2009] [Indexed: 01/18/2023] Open
Abstract
Allylmethylsulfide (AMS), a volatile organosulfur derivative from garlic, has been shown to have radioprotective effects in radiation-challenged cell and animal models, but the mechanism of radioprotection is not well understood. To determine the mechanism of radioprotection in an in vivo model, we first verified the antioxidant capacity of AMS using 2,2'-azobis(2-amidinopropane) dihydrochloride-induced human embryonic kidney 293T cells by measuring reactive oxygen species generation, reduced glutathione, protein tyrosine kinase/protein tyrosine phosphatase balance, and nuclear factor-kappaB (NF-kappaB) protein levels. We then investigated the protective effects of AMS (55 and 275 micromol/kg, intraperitoneal treatment) on 15 Gy X-ray-irradiated mouse kidney. The results showed that AMS decreased the free radical-induced lipid peroxidation in mice exposed to X-rays. Moreover, the antioxidative AMS suppressed the activation of NF-kappaB and its dependent genes such as vascular cell adhesion molecule-1, inducible nitric oxide synthase, and cyclooxygenase-2 through inhibition of IkappaBalpha phosphorylation and activation of IkappaB kinase alpha/beta and mitogen-activated protein kinases (MAPKs). Based on these results, AMS may be a useful radioprotective agent by down-regulating the MAPKs and NF-kappaB signaling pathway that can be induced via X-ray irradiation.
Collapse
Affiliation(s)
- Eun Kyeong Lee
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Sang Woon Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Young Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Ji Min Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyoung-Sam Heo
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Hyun Ae Lim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Mi Kyung Kim
- Longevity Life Science and Technology Institutes, Pusan National University, Busan, Republic of Korea
| | - Stephen Anton
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, Florida
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan, Republic of Korea
- Longevity Life Science and Technology Institutes, Pusan National University, Busan, Republic of Korea
- Department of Aging and Geriatrics, Division of Biology of Aging, Genomics and Biomarkers Core of the Institute on Aging, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Ortiz T, Burguillos MA, López-Lluch G, Navas P, Herrador M, González I, Piñero J. Enhanced induction of apoptosis in a radio-resistant bladder tumor cell line by combined treatments with X-rays and wortmannin. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:445-452. [PMID: 18787832 DOI: 10.1007/s00411-008-0188-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 07/24/2008] [Indexed: 05/26/2023]
Abstract
The radiosensitizing effect of wortmannin (WM) treatment during and after irradiation was studied in radioresistant bladder tumor cell lines with normal (MGH-U1 cells) or defective p53 activity (RT112 cells). WM modulated G(2)/M cell cycle arrest induced by higher X-ray doses (10 Gy) in both cell lines, although the alteration was significant only in RT112 cells. The observation suggests that WM activity is independent of p53. Constitutive expression of DNA-PKcs was found to be higher in RT112 cells than in MGH-U1. Treatment with WM enhanced radiation-induced apoptosis significantly in RT112 cells while it had no effect on MGH-U1 cells. Although a variety of PI3-kinases and PI3-K like kinases (including ATM) could be inhibited by WM, our observation of increased early lethality by WM treatment in RT112 is in agreement with previous results. They suggest that the WM-dependent radiosensitization of RT112 is a direct consequence of the inhibition of DNA-PK, resulting in the inhibition of DSB repair in the fast component. This early effect in the p53 deficient cell line could also indicate that processes other than apoptosis may contribute to the increased radiosensitization. In our opinion, the expression level of DNA-PKcs in human tumor cells may be a good predictor for the success of DNA-PKcs inhibitors when used as radiosensitizers.
Collapse
Affiliation(s)
- Trinidad Ortiz
- Departamento de Biología Celular, Facultad de Biologia, Universidad de Sevilla Avda. Reina Mercedes s/n, 41012 Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
8
|
Neuhof D, Zwicker F, Kuepper JH, Debus J, Weber KJ. Activation of telomerase by ionizing radiation: differential response to the inhibition of DNA double-strand break repair by abrogation of poly (ADP-ribosyl)ation, by LY294002, or by Wortmannin. Int J Radiat Oncol Biol Phys 2007; 69:887-94. [PMID: 17889269 DOI: 10.1016/j.ijrobp.2007.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Revised: 06/14/2007] [Accepted: 06/14/2007] [Indexed: 02/07/2023]
Abstract
PURPOSE Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. METHODS AND MATERIALS COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10 Gy. Phosphorylation status of PKB/Akt and of PKCalpha/beta(II) was assessed by western blotting. RESULTS No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. CONCLUSIONS Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than alpha/beta(II) cannot be ruled out.
Collapse
Affiliation(s)
- Dirk Neuhof
- Laboratory of Radiation Biology, Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
9
|
Kim W, Seong J, An JH, Oh HJ. Enhancement of tumor radioresponse by wortmannin in C3H/HeJ hepatocarcinoma. JOURNAL OF RADIATION RESEARCH 2007; 48:187-95. [PMID: 17435377 DOI: 10.1269/jrr.06077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The objective of this study was to explore whether a specific inhibitor of PI3K, wortmannin, could potentiate the antitumor effect of radiation in vivo, particularly on radioresistant murine tumors. C3H/HeJ mice bearing syngeneic hepatocarcinoma (HCa-I) were treated with 25 Gy radiation, wortmannin, or both. Wortmannin was administered intraperitoneally (1 mg/kg) once daily for 14 days. Tumor response to treatment was determined by a tumor growth delay assay. Possible mechanisms of action were explored by examining the level of apoptosis and regulating molecules. The expression of regulating molecules was analyzed by Western blot for p53 and p21(WAF1/CIP1), and immunohistochemical staining for p21(WAF1/CIP1), CD31 and VEGF. In the tumor growth delay assay, wortmannin increased the effect of tumor radioresponse with an enhancement factor (EF) of 2.00. The level of apoptosis achieved by the combined treatments was shown to be no more than an additive effect; peak apoptotic index was 11% in radiation alone, 13% in wortmannin alone, and 19% in the combination group. Markedly increased areas of necrosis at 24 h in the combination group were noted. Western blotting showed upregulation of p21(WAF1/CIP1) in the combination treatment group, which correlated with low levels of VEGF. Microvascular density was evidently also reduced, based on low expression of CD31. In murine hepatocarcinoma, the antitumor effect of radiation was potentiated by wortmannin. The mechanism seems to involve not only the increase of induced apoptosis but also enhanced vascular injury. Wortmannin, in combination with radiation therapy, may have potential benefits in cancer treatment.
Collapse
Affiliation(s)
- Wonwoo Kim
- Department of Radiation Oncology, Brain Korea 21 Project for Medicine, Yonsei University, Seoul, South Korea
| | | | | | | |
Collapse
|
10
|
Hamasu T, Inanami O, Tsujitani M, Yokoyama K, Takahashi E, Kashiwakura I, Kuwabara M. Post-irradiation hypoxic incubation of X-irradiated MOLT-4 cells reduces apoptotic cell death by changing the intracellular redox state and modulating SAPK/JNK pathways. Apoptosis 2005; 10:557-67. [PMID: 15909118 DOI: 10.1007/s10495-005-1888-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To elucidate radiobiological effects of hypoxia on X-ray-induced apoptosis, MOLT-4 cells were treated under four set of conditions: (1) both X irradiation and incubation under normoxia, (2) X irradiation under hypoxia and subsequent incubation under normoxia, (3) X irradiation under normoxia and subsequent incubation under hypoxia, and (4) both X irradiation and incubation under hypoxia, and the induction of apoptosis was examined by fluorescence microscopy. About 28-33% apoptosis was observed in cells treated under conditions 1 and 2, but this value was significantly reduced to around 18-20% in cells treated under conditions 3 and 4, suggesting that post-irradiation hypoxic incubation rather than hypoxic irradiation mainly caused the reduction of apoptosis. The activation and expression of apoptosis signal-related molecules SAPK/JNK, Fas and caspase-3 were also suppressed by hypoxic incubation. Effects of hypoxic incubation were canceled when cells were treated under conditions 3 and 4 with an oxygen-mimicking hypoxic cell radiosensitizer, whereas the addition of N-acetyl-L-cysteine again reduced the induction of apoptosis. From these results it was concluded that hypoxia reduced the induction of apoptosis by changing the intracellular redox state, followed by the regulation of apoptotic signals in X-irradiated MOLT-4 cells.
Collapse
Affiliation(s)
- T Hamasu
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Chen Z, Sakai K. Enhancement of radiation-induced apoptosis by preirradiation with low-dose X-rays in human leukemia MOLT-4 cells. JOURNAL OF RADIATION RESEARCH 2004; 45:239-243. [PMID: 15304966 DOI: 10.1269/jrr.45.239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The effects of low-dose preirradiation on the process of radiation-induced cell death were investigated in human leukemic MOLT-4 cells. By 0.2 Gy of X-rays given 12 h prior to a challenge dose of 5 Gy, the process of apoptosis was accelerated. The acceleration was associated with a certain increase in caspase 3 activity, a disruption of the mitochondrial transmembrane potential, and an accumulation of p53 proteins. This finding is in contrast to the radiation adaptive responses in which a small dose of preirradiation would induce certain radiation resistance and decrease the cell death after irradiation with higher doses.
Collapse
Affiliation(s)
- Zhiyun Chen
- Low Dose Radiation Research Center, Central Research Institute of Electric Power Industry, Tokyo, Japan
| | | |
Collapse
|
12
|
Solhaug A, Refsnes M, Holme JA. Role of cell signalling involved in induction of apoptosis by benzo[a]pyrene and cyclopenta[c,d]pyrene in Hepa1c1c7 cells. J Cell Biochem 2004; 93:1143-54. [PMID: 15449320 DOI: 10.1002/jcb.20251] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The reactive metabolites of benzo[a]pyrene (B[a]P) and cyclopenta[c,d]pyrene (CPP) induced an accumulation/phosphorylation of p53 in Hepa1c1c7 cells, whereas inhibition of p53 reduced the apoptosis. Judged by the inhibiting effect of wortmannin, phosphatidyl-inositol-3 (PI-3) kinases such as DNA-dependent protein kinase (DNA-PK), ATM (ataxia-telangiectasia mutated), and/or ATR (ATM related kinase), appeared to be involved in the DNA damage recognition and the B[a]P-/CPP-induced accumulation of p53. B[a]P and CPP also induced phosphorylation of jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). While inhibition of JNK had no effects on the B[a]P-/CPP-induced apoptosis, inhibition of p38 MAPK activity reduced this effect. Interestingly, survival signals such as phosphorylation of Akt and Bad seemed to be induced by the B[a]P-/CPP-compounds. Furthermore, also extracellular signal-regulated kinase (ERK)1/2 was activated and seemed to function as a survival signal in B[a]P-/CPP-induced apoptosis.
Collapse
Affiliation(s)
- Anita Solhaug
- Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway
| | | | | |
Collapse
|