1
|
Zhou CS, Lv HH, Guo XH, Cao Q, Zhang RX, Ma DY. Transcriptional analysis of Bemisia tabaci MEAM1 cryptic species under the selection pressure of neonicotinoids imidacloprid, acetamiprid and thiamethoxam. BMC Genomics 2022; 23:15. [PMID: 34983398 PMCID: PMC8728913 DOI: 10.1186/s12864-021-08241-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neonicotinoids are widely applied in the control of the destructive agricultural pest Bemisia tabaci, and resistance against these chemicals has become a common, severe problem in the control of whiteflies. To investigate the molecular mechanism underlying resistance against nenonicotinoids in whiteflies, RNA-seq technology was applied, and the variation in the transcriptomic profiles of susceptible whiteflies and whiteflies selected by imidacloprid, acetamiprid and thiamethoxam treatment was characterized. RESULTS A total of 90.86 GB of clean sequence data were obtained from the 4 transcriptomes. Among the 16,069 assembled genes, 584, 110 and 147 genes were upregulated in the imidacloprid-selected strain (IMI), acetamiprid-selected strain (ACE), and thiamethoxam (THI)-selected strain, respectively, relative to the susceptible strain. Detoxification-related genes including P450s, cuticle protein genes, GSTs, UGTs and molecular chaperone HSP70s were overexpressed in the selected resistant strains, especially in the IMI strain. Five genes were downregulated in all three selected resistant strains, including 2 UDP-glucuronosyltransferase 2B18-like genes (LOC 109030370 and LOC 109032577). CONCLUSIONS Ten generations of selection with the three neonicotinoids induced different resistance levels and gene expression profiles, mainly involving cuticle protein and P450 genes, in the three selected resistant whitefly strains. The results provide a reference for research on resistance and cross-resistance against neonicotinoids in B. tabaci.
Collapse
Affiliation(s)
- Cheng Song Zhou
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Huan Huan Lv
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Universities of the Xinjiang Uygur Autonomous Region, 311 Nongda East Road, Urumqi, 830052, China
| | - Xiao Hu Guo
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Universities of the Xinjiang Uygur Autonomous Region, 311 Nongda East Road, Urumqi, 830052, China
| | - Qian Cao
- Agricultural Product Inspection and Test Center, 99 Wuyi East Road, Changji, 831100, China
| | - Rui Xingyue Zhang
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - De Ying Ma
- Engineering Research Centre of Cotton, Ministry of Education /College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
2
|
Strobl V, Albrecht M, Villamar-Bouza L, Tosi S, Neumann P, Straub L. The neonicotinoid thiamethoxam impairs male fertility in solitary bees, Osmia cornuta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117106. [PMID: 33930781 DOI: 10.1016/j.envpol.2021.117106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The ongoing loss of global biodiversity is endangering ecosystem functioning and human food security. While environmental pollutants are well known to reduce fertility, the potential effects of common neonicotinoid insecticides on insect fertility remain poorly understood. Here, we show that field-realistic neonicotinoid exposure can drastically impact male insect fertility. In the laboratory, male and female solitary bees Osmia cornuta were exposed to four concentrations of the neonicotinoid thiamethoxam to measure survival, food consumption, and sperm traits. Despite males being exposed to higher dosages of thiamethoxam, females revealed an overall increased hazard rate for survival; suggesting sex-specific differences in toxicological sensitivity. All tested sublethal concentrations (i.e., 1.5, 4.5 and 10 ng g-1) reduced sperm quantity by 57% and viability by 42% on average, with the lowest tested concentration leading to a reduction in total living sperm by 90%. As the tested sublethal concentrations match estimates of global neonicotinoid pollution, this reveals a plausible mechanism for population declines, thereby reflecting a realistic concern. An immediate reduction in environmental pollutants is required to decelerate the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | | | - Laura Villamar-Bouza
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; European Food Safety Authority (EFSA), Pesticides Unit, Parma, Italy
| | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| |
Collapse
|
3
|
Zhou CS, Cao Q, Li GZ, Ma DY. Role of several cytochrome P450s in the resistance and cross-resistance against imidacloprid and acetamiprid of Bemisia tabaci (Hemiptera: Aleyrodidae) MEAM1 cryptic species in Xinjiang, China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:209-215. [PMID: 31973859 DOI: 10.1016/j.pestbp.2019.11.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoids are commonly used for the control of the whitefly Bemisia tabaci in cotton field. Laboratory test and field experiments have found that whitefly has a high risk of developing resistance and cross-resistance to the pesticide. Over expression of cytochrome P450 is one of the main mechanism that controls pesticide resistance in many insects. In this study we use MEAM1 whitefly, the dominant cryptic species of B. tabaci in Xinjiang cotton field, to investigate the possible resistance and cross-resistance mechanism controlled by cytochrome P450 enzymes. The P450 enzyme activity was higher in both selected strains of imidacloprid and acetamipird than that of susceptible strain. Synergism test showed that piperonyl butoxide (PBO) distinctly increased the control efficiency of imidacloprid and acetamiprid to the two resistance selected strains. Four out of 13 cytochrome genes, CYP4CS3, CYP6CX5, CYP6DW2 and CYP6CM1 were significantly up-regulated in the two selected strains based on real-time fluorescence quantitative PCR results. Other 3 genes, CYP6CX2, CYP6CX4 and CYP6DW3 were only highly expressed in the acetamiprid selected strain instead of the susceptible strain and imidacloprid selected strain. CYP6CM1 showed the highest expression level among all the 13 tested genes. No functional mutation of CYP6CM1 was found by sequence analysis. The possible role of these genes involving the resistance and cross-resistance of the whitefly MEAM1 cryptic species against neonicotinoids was discussed.
Collapse
Affiliation(s)
- Cheng-Song Zhou
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - Qian Cao
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - Guo-Zhi Li
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China
| | - De-Ying Ma
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests, College of Agronomy, Xinjiang Agricultural University, Uygur Autonomous Region, Xinjiang 830052, China.
| |
Collapse
|
4
|
Wu Y, Ding J, Xu B, You L, Ge L, Yang G, Liu F, Stanley D, Song Q, Wu J. Two Fungicides Alter Reproduction of the Small Brown Planthopper Laodelphax striatellus by Influencing Gene and Protein Expression. J Proteome Res 2018; 17:978-986. [PMID: 29411984 DOI: 10.1021/acs.jproteome.7b00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Aside from their intended actions, fungicides can drive pest insect outbreaks due to virtually continuous use and pest evolution. Small brown planthopper (SBPH), Laodelphax striatellus, outbreaks occurred recently in many provinces in China, with devastating rice losses. Because exposure to the fungicide jinggangmycin (JGM) increased reproduction of the brown plant hopper, Nilaparvata lugens, via its influence on fatty acid synthase, we posed the hypothesis that JGM and carbendazim (CBM) influence SBPH reproduction via their influence on enzymes involved in other aspects of lipid metabolism. Exposure to the fungicide CBM stimulated SBPH reproduction (egg-laying up by 78%) and to another fungicide, JGM, led to decreased egg-laying (down by 47.3%). These inverse effects are mediated by down-regulated expression of l-3-hydroxyacyl-coenzyme A dehydrogenase (LCHAD) in JGM-treated females and up-regulated expression of hydroxysteroid dehydrogenase-like protein 2-like (HSD) in CBM-treated females. RNAi knockdown of, separately, LCHAD and HSD led to reduced egg-laying (down by 52% for dsLCHAD and by 73% for dsHSD). dsLCHAD, dsHSD, and JGM treatments also led to severely reduced ovarian development in experimental SBPH, with shorted and thinned valvula and lack of egg cells in ovaries. Valvula of CBM-treated females enlarged, with banana-shaped eggs in ovaries. These data strongly support our hypothesis.
Collapse
Affiliation(s)
- You Wu
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - Jun Ding
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - Bing Xu
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - Linlin You
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - Linquan Ge
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - Guoqing Yang
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - Fang Liu
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service , 1503 South Providence Road, Columbia, Missouri 65203, United States
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri , 1-31 Agriculture Building, Columbia, Missouri 65211, United States
| | - Jincai Wu
- School of Plant Protection, Yangzhou University , Yangzhou 225009, P. R. China
| |
Collapse
|
5
|
Xie W, Yang X, Chen C, Yang Z, Guo L, Wang D, Huang J, Zhang H, Wen Y, Zhao J, Wu Q, Wang S, Coates BS, Zhou X, Zhang Y. The invasive MED/Q Bemisia tabaci genome: a tale of gene loss and gene gain. BMC Genomics 2018; 19:68. [PMID: 29357812 PMCID: PMC5778671 DOI: 10.1186/s12864-018-4448-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/11/2018] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Sweetpotato whitefly, Bemisia tabaci MED/Q and MEAM1/B, are two economically important invasive species that cause considerable damages to agriculture crops through direct feeding and indirect vectoring of plant pathogens. Recently, a draft genome of B. tabaci MED/Q has been assembled. In this study, we focus on the genomic comparison between MED/Q and MEAM1/B, with a special interest in MED/Q's genomic signatures that may contribute to the highly invasive nature of this emerging insect pest. RESULTS The genomes of both species share similarity in syntenic blocks, but have significant divergence in the gene coding sequence. Expansion of cytochrome P450 monooxygenases and UDP glycosyltransferases in MED/Q and MEAM1/B genome is functionally validated for mediating insecticide resistance in MED/Q using in vivo RNAi. The amino acid biosynthesis pathways in MED/Q genome are partitioned among the host and endosymbiont genomes in a manner distinct from other hemipterans. Evidence of horizontal gene transfer to the host genome may explain their obligate relationship. Putative loss-of-function in the immune deficiency-signaling pathway due to the gene loss is a shared ancestral trait among hemipteran insects. CONCLUSIONS The expansion of detoxification genes families, such as P450s, may contribute to the development of insecticide resistance traits and a broad host range in MED/Q and MEAM1/B, and facilitate species' invasions into intensively managed cropping systems. Numerical and compositional changes in multiple gene families (gene loss and gene gain) in the MED/Q genome sets a foundation for future hypothesis testing that will advance our understanding of adaptation, viral transmission, symbiosis, and plant-insect-pathogen tritrophic interactions.
Collapse
Affiliation(s)
- Wen Xie
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Xin Yang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | | | - Zezhong Yang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Litao Guo
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Dan Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Yanan Wen
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | | | - Qingjun Wu
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Shaoli Wang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY, 40546-0091, USA.
| | - Youjun Zhang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, No. 12 Zhongguancun Nandajie, Haidian District, Beijing, 100081, China.
| |
Collapse
|
6
|
RNA interference-mediated knockdown of the hydroxyacid-oxoacid transhydrogenase gene decreases thiamethoxam resistance in adults of the whitefly Bemisia tabaci. Sci Rep 2017; 7:41201. [PMID: 28117358 PMCID: PMC5259701 DOI: 10.1038/srep41201] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 12/16/2016] [Indexed: 11/08/2022] Open
Abstract
Bemisia tabaci has developed a high level of resistance to thiamethoxam, a second generation neonicotinoid insecticide that has been widely used to control this pest. In this study, we investigated whether hydroxyacid-oxoacid transhydrogenase (HOT) is involved in resistance to the neonicotinoid insecticide thiamethoxam in the whitefly. We cloned the full-length gene that encodes HOT in B. tabaci. Its cDNA contains a 1428-bp open reading frame encoding 475 amino acid residues. Then we evaluated the mRNA expression level of HOT in different developmental stages, and found HOT expression was significantly greater in thiamethoxam resistance adults than in thiamethoxam susceptible adults. Subsequently, seven field populations of B. tabaci adults were sampled, the expression of mRNA level of HOT significant positive correlated with thiamethoxam resistance level. At last, we used a modified gene silencing system to knock-down HOT expression in B. tabaci adults. The results showed that the HOT mRNA levels decreased by 57% and thiamethoxam resistance decreased significantly after 2 days of feeding on a diet containing HOT dsRNA. The results indicated that down-regulation of HOT expression decreases thiamethoxam resistance in B. tabaci adults.
Collapse
|
7
|
Ilias A, Lagnel J, Kapantaidaki DE, Roditakis E, Tsigenopoulos CS, Vontas J, Tsagkarakou A. Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC Genomics 2015; 16:939. [PMID: 26573457 PMCID: PMC4647701 DOI: 10.1186/s12864-015-2161-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
Background Bemisia tabaci is one of the most damaging agricultural pests world-wide. Although its control is based on insecticides, B. tabaci has developed resistance against almost all classes of insecticides, including neonicotinoids. Results We employed an RNA-seq approach to generate genome wide expression data and identify genes associated with neonicotinoid resistance in Mediterranean (MED) B. tabaci (Q1 biotype). Twelve libraries from insecticide resistant and susceptible whitefly populations were sequenced on an Illumina Next-generation sequencing platform, and genomic sequence information of approximately 73 Gbp was generated. A reference transcriptome was built by de novo assembly and functionally annotated. A total of 146 P450s, 18 GSTs and 23 CCEs enzymes (unigenes) potentially involved in the detoxification of xenobiotics were identified, along with 78 contigs encoding putative target proteins of six different insecticide classes. Ten unigenes encoding nicotinic Acetylcholine Receptors (nAChR), the target of neoinicotinoids, were identified and phylogenetically classified. No nAChR polymorphism potentially related with the resistant phenotypes, was observed among the studied strains. DE analysis revealed that among the 550 differentially (logFC > 1) over-transcribed unigenes, 52 detoxification enzymes were over expressed including unigenes with orthologues in P450s, GSTs, CCE and UDP-glucuronosyltransferases. Eight P450 unigenes belonging to clades CYP2, CYP3 and CYP4 were highly up-regulated (logFC > 2) including CYP6CM1, a gene already known to confer imidacloprid resistance in B. tabaci. Using quantitative qPCRs, a larger screening of field MED B. tabaci from Crete with known neonicotinoid phenotype was performed to associate expression levels of P450s with resistance levels. Expression levels of five P450s, including CYP6CM1, were found associated with neonicotinoid resistance. However, a significant correlation was found only in CYP303 and CYP6CX3, with imidacloprid and acetamiprid respectively. Conclusion Our work has generated new toxicological data and genomic resources which will significantly enrich the available dataset and substantially facilitate the molecular studies in MED B. tabaci. No evidence of target site neonicotinoid resistance has been found. Eight P450 unigenes, including CYP6CM1, were found significantly over-expressed in resistant B. tabaci. This study suggests at least two novel P450s (CYP303 and CYP6CX3) as candidates for their functional characterization as detoxification mechanisms of neonicotinoid resistance in B. tabaci. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2161-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aris Ilias
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece.
| | - Jacques Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| | - Despoina E Kapantaidaki
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece. .,Department of Environmental and Natural Resources, University of Patras, Agrinio, Greece.
| | - Emmanouil Roditakis
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece.
| | - Costas S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece.
| | - John Vontas
- Department of Crop Science, Agricultural University of Athens, Athens, Greece. .,Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion, Greece.
| | - Anastasia Tsagkarakou
- Hellenic Agricultural Organisation - "DΕMETER", NAGREF - Institute of Olive Tree, Subtropical Crops and Viticulture, Heraklion, Greece.
| |
Collapse
|
8
|
Bass C, Denholm I, Williamson MS, Nauen R. The global status of insect resistance to neonicotinoid insecticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 121:78-87. [PMID: 26047114 DOI: 10.1016/j.pestbp.2015.04.004] [Citation(s) in RCA: 608] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 05/19/2023]
Abstract
The first neonicotinoid insecticide, imidacloprid, was launched in 1991. Today this class of insecticides comprises at least seven major compounds with a market share of more than 25% of total global insecticide sales. Neonicotinoid insecticides are highly selective agonists of insect nicotinic acetylcholine receptors and provide farmers with invaluable, highly effective tools against some of the world's most destructive crop pests. These include sucking pests such as aphids, whiteflies, and planthoppers, and also some coleopteran, dipteran and lepidopteran species. Although many insect species are still successfully controlled by neonicotinoids, their popularity has imposed a mounting selection pressure for resistance, and in several species resistance has now reached levels that compromise the efficacy of these insecticides. Research to understand the molecular basis of neonicotinoid resistance has revealed both target-site and metabolic mechanisms conferring resistance. For target-site resistance, field-evolved mutations have only been characterized in two aphid species. Metabolic resistance appears much more common, with the enhanced expression of one or more cytochrome P450s frequently reported in resistant strains. Despite the current scale of resistance, neonicotinoids remain a major component of many pest control programmes, and resistance management strategies, based on mode of action rotation, are of crucial importance in preventing resistance becoming more widespread. In this review we summarize the current status of neonicotinoid resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.
Collapse
Affiliation(s)
- Chris Bass
- Department of Biological Chemistry, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Ian Denholm
- Department of Human and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Martin S Williamson
- Department of Biological Chemistry, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Ralf Nauen
- R&D, Pest Control Biology, Bayer CropScience, Monheim 40789, Germany.
| |
Collapse
|
9
|
Jyothi-Prakash PA, Mohanty B, Wijaya E, Lim TM, Lin Q, Loh CS, Kumar PP. Identification of salt gland-associated genes and characterization of a dehydrin from the salt secretor mangrove Avicennia officinalis. BMC PLANT BIOLOGY 2014; 14:291. [PMID: 25404140 PMCID: PMC4247641 DOI: 10.1186/s12870-014-0291-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salt stress is a major challenge for growth and development of plants. The mangrove tree Avicennia officinalis has evolved salt tolerance mechanisms such as salt secretion through specialized glands on its leaves. Although a number of structural studies on salt glands have been done, the molecular mechanism of salt secretion is not clearly understood. Also, studies to identify salt gland-specific genes in mangroves have been scarce. RESULTS By subtractive hybridization (SH) of cDNA from salt gland-rich cell layers (tester) with mesophyll tissues as the driver, several Expressed Sequence Tags (ESTs) were identified. The major classes of ESTs identified include those known to be involved in regulating metabolic processes (37%), stress response (17%), transcription (17%), signal transduction (17%) and transport functions (12%). A visual interactive map generated based on predicted functional gene interactions of the identified ESTs suggested altered activities of hydrolase, transmembrane transport and kinases. Quantitative Real-Time PCR (qRT-PCR) was carried out to validate the expression specificity of the ESTs identified by SH. A Dehydrin gene was chosen for further experimental analysis, because it is significantly highly expressed in salt gland cells, and dehydrins are known to be involved in stress remediation in other plants. Full-length Avicennia officinalis Dehydrin1 (AoDHN1) cDNA was obtained by Rapid Amplification of cDNA Ends. Phylogenetic analysis and further characterization of this gene suggested that AoDHN1 belongs to group II Late Embryogenesis Abundant proteins. qRT-PCR analysis of Avicennia showed up-regulation of AoDHN1 in response to salt and drought treatments. Furthermore, some functional insights were obtained by growing E. coli cells expressing AoDHN1. Growth of E. coli cells expressing AoDHN1 was significantly higher than that of the control cells without AoDHN1 under salinity and drought stresses, suggesting that the mangrove dehydrin protein helps to mitigate the abiotic stresses. CONCLUSIONS Thirty-four ESTs were identified to be enriched in salt gland-rich tissues of A. officinalis leaves. qRT-PCR analysis showed that 10 of these were specifically enriched in the salt gland-rich tissues. Our data suggest that one of the selected genes, namely, AoDHN1 plays an important role to mitigate salt and drought stress responses.
Collapse
Affiliation(s)
- Pavithra A Jyothi-Prakash
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Bijayalaxmi Mohanty
- />Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Edward Wijaya
- />IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871 Japan
| | - Tit-Meng Lim
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Qingsong Lin
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
| | - Chiang-Shiong Loh
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />NUS Environmental Research Institute (NERI), National University of Singapore, #02-01, T-Lab Building, 5A Engineering Drive 1, Singapore, Republic of Singapore
| | - Prakash P Kumar
- />Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, Republic of Singapore
- />Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore, Republic of Singapore
| |
Collapse
|
10
|
Zhai Y, Lin Q, Zhou X, Zhang X, Liu T, Yu Y. Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS One 2014; 9:e106800. [PMID: 25198611 PMCID: PMC4157791 DOI: 10.1371/journal.pone.0106800] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/02/2014] [Indexed: 12/18/2022] Open
Abstract
To accurately evaluate gene expression levels and obtain more accurate quantitative real-time RT-PCR (qRT-PCR) data, normalization relative to reliable reference gene(s) is required. Drosophila suzukii, is an invasive fruit pest native to East Asia, and recently invaded Europe and North America, the stability of its reference genes have not been previously investigated. In this study, ten candidate reference genes (RPL18, RPS3, AK, EF-1β, TBP, NADH, HSP22, GAPDH, Actin, α-Tubulin), were evaluated for their suitability as normalization genes under different biotic (developmental stage, tissue and population), and abiotic (photoperiod, temperature) conditions. The three statistical approaches (geNorm, NormFinder and BestKeeper) and one web-based comprehensive tool (RefFinder) were used to normalize analysis of the ten candidate reference genes identified α-Tubulin, TBP and AK as the most stable candidates, while HSP22 and Actin showed the lowest expression stability. We used three most stable genes (α-Tubulin, TBP and AK) and one unstably expressed gene to analyze the expression of P-glycoprotein in abamectin-resistant and sensitive strains, and the results were similar to reference genes α-Tubulin, TBP and AK, which show good stability, while the result of HSP22 has a certain bias. The three validated reference genes can be widely used for quantification of target gene expression with qRT-PCR technology in D.suzukii.
Collapse
Affiliation(s)
- Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail: (YY); (YZ)
| | - Qingcai Lin
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Xianhong Zhou
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Tingli Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail: (YY); (YZ)
| |
Collapse
|
11
|
Zhang T, Li L, Qin XS, Zhou Y, Zhang XF, Wang LQ, De Felici M, Chen H, Qin GQ, Shen W. Di-(2-ethylhexyl) phthalate and bisphenol A exposure impairs mouse primordial follicle assembly in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:343-353. [PMID: 24458533 DOI: 10.1002/em.21847] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Bisphenol-A (BPA) and diethylhexyl phthalate (DEHP) are estrogenic compounds widely used in commercial plastic products. Previous studies have shown that exposure to such compounds have adverse effects on various aspects of mammalian reproduction including folliculogenesis. The objective of this study was to examine the effects of BPA and DEHP exposure on primordial follicle formation. We found that germ cell nest breakdown and primordial follicle assembly were significantly reduced when newborn mouse ovaries were exposed to 10 or 100 μM BPA and DEHP in vitro. Moreover, BPA and DEHP exposure increased the number of TUNEL positive oocytes and the mRNA level of the pro-apoptotic gene Bax in oocytes. These effects were associated with decreased expression of oocyte specific genes such as LIM homeobox 8 (Lhx8), factor in the germline alpha (Figla), spermatogenesis and oogenesis helix-loop-helix (Sohlh2), and newborn ovary homeobox (Nobox). Interestingly, BPA and DEHP exposure also prevented DNA demethylation of CpG sites of the Lhx8 gene in oocytes, a process normally associated with folliculogenesis. Finally, folliculogenesis was severely impaired in BPA and DEHP exposed ovaries after transplantation into the kidney capsules of immunodeficient mice. In conclusion, BPA and DEHP exposures impair mouse primordial follicle assembly in vitro.
Collapse
Affiliation(s)
- Teng Zhang
- Laboratory of Germ Cell Biology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang N, Xie W, Jones CM, Bass C, Jiao X, Yang X, Liu B, Li R, Zhang Y. Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance. INSECT MOLECULAR BIOLOGY 2013; 22:485-96. [PMID: 23889345 PMCID: PMC4229068 DOI: 10.1111/imb.12038] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Bemisia tabaci has developed high levels of resistance to many insecticides including the neonicotinoids and there is strong evidence that for some compounds resistance is stage-specific. To investigate the molecular basis of B. tabaci resistance to the neonicotinoid thiamethoxam we used a custom whitefly microarray to compare gene expression in the egg, nymph and adult stages of a thiamethoxam-resistant strain (TH-R) with a susceptible strain (TH-S). Gene ontology and bioinformatic analyses revealed that in all life stages many of the differentially expressed transcripts encoded enzymes involved in metabolic processes and/or metabolism of xenobiotics. Several of these are candidate resistance genes and include the cytochrome P450 CYP6CM1, which has been shown to confer resistance to several neonicotinoids previously, a P450 belonging to the Cytochrome P450s 4 family and a glutathione S-transferase (GST) belonging to the sigma class. Finally several ATP-binding cassette transporters of the ABCG subfamily were highly over-expressed in the adult stage of the TH-R strain and may play a role in resistance by active efflux. Here, we evaluated both common and stage-specific gene expression signatures and identified several candidate resistance genes that may underlie B. tabaci resistance to thiamethoxam.
Collapse
Affiliation(s)
- N Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - W Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - CM Jones
- Liverpool School of Tropical Medicine, Vector GroupLiverpool, Merseyside, UK
| | - C Bass
- Biological Chemistry and Crop Protection Department, Rothamsted ResearchHarpenden, Hertfordshire, UK
| | - X Jiao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - X Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - B Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - R Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Y Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
- Correspondence: Youjun Zhang, Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Haidian District, Beijing 100081, China. Tel: + 86 10 82109518; fax: + 86 10 82109518; e-mail:
| |
Collapse
|
13
|
Yang N, Xie W, Yang X, Wang S, Wu Q, Li R, Pan H, Liu B, Shi X, Fang Y, Xu B, Zhou X, Zhang Y. Transcriptomic and proteomic responses of sweetpotato whitefly, Bemisia tabaci, to thiamethoxam. PLoS One 2013; 8:e61820. [PMID: 23671574 PMCID: PMC3650016 DOI: 10.1371/journal.pone.0061820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), is one of the most widely distributed agricultural pests. Although it has developed resistance to many registered insecticides including the neonicotinoid insecticide thiamethoxam, the mechanisms that regulate the resistance are poorly understood. To understand the molecular basis of thiamethoxam resistance, "omics" analyses were carried out to examine differences between resistant and susceptible B. tabaci at both transcriptional and translational levels. RESULTS A total of 1,338 mRNAs and 52 proteins were differentially expressed between resistant and susceptible B. tabaci. Among them, 11 transcripts had concurrent transcription and translation profiles. KEGG analysis mapped 318 and 35 differentially expressed genes and proteins, respectively, to 160 and 59 pathways (p<0.05). Thiamethoxam treatment activated metabolic pathways (e.g., drug metabolism), in which 118 transcripts were putatively linked to insecticide resistance, including up-regulated glutathione-S-transferase, UDP glucuronosyltransferase, glucosyl/glucuronosyl transferase, and cytochrome P450. Gene Ontology analysis placed these genes and proteins into protein complex, metabolic process, cellular process, signaling, and response to stimulus categories. Quantitative real-time PCR analysis validated "omics" response, and suggested a highly overexpressed P450, CYP6CX1, as a candidate molecular basis for the mechanistic study of thiamethoxam resistance in whiteflies. Finally, enzymatic activity assays showed elevated detoxification activities in the resistant B. tabaci. CONCLUSIONS This study demonstrates the applicability of high-throughput omics tools for identifying molecular candidates related to thiamethoxam resistance in an agricultural important insect pest. In addition, transcriptomic and proteomic analyses provide a solid foundation for future functional investigations into the complex molecular mechanisms governing the neonicotinoid resistance in whiteflies.
Collapse
Affiliation(s)
- Nina Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xin Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Rumei Li
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Huipeng Pan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Baiming Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaobin Shi
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Yong Fang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Baoyun Xu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (XGZ); (YJZ)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (XGZ); (YJZ)
| |
Collapse
|