1
|
Caraballo LAS, Filho LASF, Sena LS, Biagiotti D, de Moura JDS, de Sousa Júnior A, Rocha AO, de Sousa FCB, da Silva Santos NP, Sarmento JLR. Genome-wide association study applied to prolificacy in Santa Inês sheep. Trop Anim Health Prod 2025; 57:169. [PMID: 40214842 DOI: 10.1007/s11250-025-04424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/04/2025] [Indexed: 05/01/2025]
Abstract
This study aimed to identify genomic regions associated with prolificacy in Santa Inês sheep raised in tropical conditions. The prolificacy of the dam was defined as single (only one lamb born per ewe per lambing) or multiple (more than one animal born per ewe per lambing). After quality control of phenotypic data, 1584 lambing records of 715 females occurred between the years 2000 and 2018 were used. The animals were genotyped with the OvineSNP50 BeadChip panel (Illumina Inc.). After quality control of genomic data, information of 46,714 SNPs and 388 samples and females was used for the subsequent analyses. The single-step GWAS (ssGWAS) methodology was used to estimate the effects of genetic markers and their association with the prolificacy. A total of 21 windows of 10 adjacent SNPs that explained at least 0.5% of the additive genetic variance for prolificacy were identified. In such regions, genes associated with different reproductive functions in the female were found: CACNA1E, NTRK1, PLCH1, SMAD3, CENPF, TOPBP1, IL33, DRD2, MID1, HCCS, and ARHGAP6. Some candidate regions related to prolificacy harbor genes that were not previously described and genes without known functions. These results can help to identify genes associated with prolificacy and could be used in genomic reproductive studies on prolificacy, as well as in the selection of the most prolific ewes in the population.
Collapse
Affiliation(s)
- Luis Andrés Salazar Caraballo
- Agrarian Sciences Center (CCA), Federal University of Piauí (UFPI), Campus Universitário Ministro Petrônio Portella, Teresina, PI, Brazil
| | | | - Luciano Silva Sena
- Phd in Animal Science, Graduate Program in Animal Science, Agrarian Sciences Center (CCA), UFPI, Campus Universitário Ministro Petrônio Portella, Teresina, Brazil
| | - Daniel Biagiotti
- Technical College of Teresina, UFPI, Campus Ministro Petrônio Portella, Teresina, PI, Brazil
| | - José Dos Santos de Moura
- Federal Institute of Education, Science and Technology of Piauí, IFPI, José de Freitas, PI, Brazil
| | - Antônio de Sousa Júnior
- Technical College of Teresina, UFPI, Campus Ministro Petrônio Portella, Teresina, PI, Brazil
| | | | | | | | | |
Collapse
|
2
|
Lei B, Yang Y, Xu L, Zhang X, Yu M, Yu J, Li N, Yu Y. Molecular insights into the effects of tetrachlorobisphenol A on puberty initiation in Wistar rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168643. [PMID: 37992829 DOI: 10.1016/j.scitotenv.2023.168643] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Tetrachlorobisphenol A (TCBPA) is the chlorinated derivative of bisphenol A (BPA). Several studies have found that BPA adversely affects the reproductive activity largely through binding to estrogen receptors and the critical period of BPA exposure advances the vaginal opening time in the female offspring via the kisspeptin/G protein-coupled receptor 54 (KGG) system. However, whether TCBPA can affect puberty initiation via KGG and the roles of estrogen receptors in this process remain unknown. Therefore, this study investigated the influence of TCBPA on the onset time of puberty in Wistar rats and the related molecular mechanisms by combing in vitro GT1-7 cells and molecular docking. In female Wistar rats, TCBPA at ≥100 mg/kg bw/day (49.2 μmol/L in rat body) markedly advanced vaginal opening time and increased serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and gonadotropin-releasing hormone (GnRH). It also increased the relative gene expression of LH receptor (LHR), GnRH1, and FSH receptor (FSHR) in hypothalamic-pituitary-gonadal (HPG) axis tissues. In GT1-7 cells, TCBPA increased genes and proteins associated with KGG pathway and activated the extracellular-regulated protein kinase 1/2 (Erk1/2) and phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathways via G protein-coupled estrogen membrane receptor 1 (GPER1) and estrogen receptor alpha (ERα). Docking analyses supported its interactions with GPER1 and ERα, and treatment with specific inhibitors of ERα- and GPER1-modulated PI3K/Akt and Erk1/2 signaling suppressed its effects. Taken together, TCBPA-induced advancement of puberty initiation in Wistar rats thus results primarily from increased LH, GnRH, and FSH secretion together with GnRH1, FSHR, and LHR upregulation driven by ERα- and GPER1-modulated Erk1/2 and PI3K/Akt signaling. Our results provide new molecular insights into the reproductive toxicity of EDCs.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Yang Y, Xu L, Lei B, Huang Y, Yu M. Effects of trichlorobisphenol A on the expression of proteins and genes associated with puberty initiation in GT1-7 cells and the relevant molecular mechanism. Food Chem Toxicol 2024; 183:114258. [PMID: 38040238 DOI: 10.1016/j.fct.2023.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
This study evaluated the effects of Cl3BPA on kisspeptin-G-protein coupled receptor 54 (GPR54)/gonadotropin-releasing hormone (GnRH) (KGG) signals and analyzed the roles of estrogen receptor alpha (ERɑ) and G-protein coupled estrogen receptor 1 (GPER1) in regulating KGG signals. The results showed that Cl3BPA at 50 μM increased the levels of intracellular reactive oxygen species (ROS) and GnRH, upregulated the protein levels of kisspeptin and the expression of fshr, lhr and gnrh1 genes related to KGG in GT1-7 cells. In addition, 50 μM Cl3BPA significantly upregulated the phosphorylation of extracellular regulated protein kinases 1/2 (Erk1/2), the protein levels of GPER1 and the expression of the gper1 as well as the most target genes associated with mitogen-activated protein kinase (MAPK)/Erk1/2 pathways. Specific signal inhibitor experiments found that Cl3BPA activated KGG signals by activating the GPER1-mediated MAPK/Erk1/2 signaling pathway at the mRNA level. A docking test further confirmed the interactions between Cl3BPA and GPER1. The findings suggest that Cl3BPA might induce precocious puberty by increasing GnRH secretion together with KGG signaling upregulation, which is driven by GPER1-mediated signaling pathway. By comparison, ClxBPAs with fewer chlorine atoms had more obvious effects on the expression of proteins and partial genes related to KGG signals in GT1-7 cells.
Collapse
Affiliation(s)
- Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
4
|
Soejima Y, Yamamoto K, Nakano Y, Suyama A, Iwata N, Otsuka F. Functional interaction of Clock genes and bone morphogenetic proteins in the adrenal cortex. VITAMINS AND HORMONES 2023; 124:429-447. [PMID: 38408807 DOI: 10.1016/bs.vh.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The bone morphogenetic protein (BMP) system in the adrenal cortex plays modulatory roles in the control of adrenocortical steroidogenesis. BMP-6 enhances aldosterone production by modulating angiotensin (Ang) II-mitogen-activated protein kinase (MAPK) signaling, whereas activin regulates the adrenocorticotropin (ACTH)-cAMP cascade in adrenocortical cells. A peripheral clock system in the adrenal cortex was discovered and it has been shown to have functional roles in the adjustment of adrenocortical steroidogenesis by interacting with the BMP system. It was found that follistatin, a binding protein of activin, increased Clock mRNA levels, indicating an endogenous function of activin in the regulation of Clock mRNA expression. Elucidation of the interrelationships among the circadian clock system, the BMP system and adrenocortical steroidogenesis regulated by the hypothalamic-pituitary-adrenal (HPA) axis would lead to an understanding of the pathophysiology of adrenal disorders and metabolic disorders and the establishment of better medical treatment from the viewpoint of pharmacokinetics.
Collapse
Affiliation(s)
- Yoshiaki Soejima
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Atsuhito Suyama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Shikata-cho, Kitaku, Okayama, Japan.
| |
Collapse
|
5
|
George AJ, Dong B, Lail H, Gomez M, Hoffiz YC, Ware CB, Fang N, Murphy AZ, Hrabovszky E, Wanders D, Mabb AM. The E3 ubiquitin ligase RNF216/TRIAD3 is a key coordinator of the hypothalamic-pituitary-gonadal axis. iScience 2022; 25:104386. [PMID: 35620441 PMCID: PMC9126796 DOI: 10.1016/j.isci.2022.104386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
Recessive mutations in RNF216/TRIAD3 cause Gordon Holmes syndrome (GHS), in which dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis and neurodegeneration are thought to be core phenotypes. We knocked out Rnf216/Triad3 in a gonadotropin-releasing hormone (GnRH) hypothalamic cell line. Rnf216/Triad3 knockout (KO) cells had decreased steady-state GnRH and calcium transients. Rnf216/Triad3 KO adult mice had reductions in GnRH neuron soma size and GnRH production without changes in neuron densities. In addition, KO male mice had smaller testicular volumes that were accompanied by an abnormal release of inhibin B and follicle-stimulating hormone, whereas KO females exhibited irregular estrous cycling. KO males, but not females, had reactive microglia in the hypothalamus. Conditional deletion of Rnf216/Triad3 in neural stem cells caused abnormal microglia expression in males, but reproductive function remained unaffected. Our findings show that dysfunction of RNF216/TRIAD3 affects the HPG axis and microglia in a region- and sex-dependent manner, implicating sex-specific therapeutic interventions for GHS. Rnf216/Triad3 controls GnRH production and intrinsic hypothalamic cell activity Rnf216/Triad3 knockout male mice have greater reproductive impairments than females Rnf216/Triad3 controls the HPG axis differently in males and females Rnf216/Triad3 knockout male mice have reactive microglia in the hypothalamus
Collapse
|
6
|
Valencia FP, Marino AF, Noutsos C, Poon K. Concentration-dependent change in hypothalamic neuronal transcriptome by the dietary fatty acids: oleic and palmitic acids. J Nutr Biochem 2022; 106:109033. [DOI: 10.1016/j.jnutbio.2022.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/20/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
7
|
Lei B, Xu L, Huang Y, Liu Y, Yu M, Tang Q. Chlorobisphenol A activated kisspeptin/GPR54-GnRH neuroendocrine signals through ERα and GPER pathway in neuronal GT1-7 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113290. [PMID: 35158255 DOI: 10.1016/j.ecoenv.2022.113290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Chlorobisphenol A (ClxBPA) is a kind of novel estrogenic compounds. The present study aims to investigate the effects of three ClxBPA compounds on the kisspeptin/G protein-coupled receptor 54 (GPR54, also named KissR1)-gonadotropin-releasing hormone (GnRH) (KGG) system in neuronal GT1-7 cells with mechanistic insights by estrogen receptor signaling pathways. The study demonstrated that low-concentration ClxBPA induced the cell proliferation, promoted GnRH secretion, upregulated the expression of KGG neuroendocrine signal-related proteins (KissR1, GnRH1 and kisspeptin) and genes including Kiss1, GnRH1, KissR1, luteinizing hormone receptor (Lhr) and follicle-stimulating hormone receptor (Fshr) in GT1-7 cells. Additionally, ClxBPA activated nuclear estrogen receptor alpha (ERα) and member estrogen receptor G protein-coupled estrogen receptor (GPER)-regulated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (Erk1/2) signaling pathways. Pretreatment of GT1-7 cells with GPER inhibitor G15 and ERα inhibitor ICI reduced the expression of KissR1, GnRH1 and kisspeptin proteins, attenuated mRNA levels of Kiss1, GnRH1, KissR1, Fshr and Lhr genes, and decreased ClxBPA-induced GT1-7 cell proliferation. The results suggested that ClxBPA activated the KGG neuroendocrine signals and induced the proliferation of GT1-7 cells via ERα and GPER signaling pathways. This study provides a new perspective to explore the neuroendocrine toxicity mechanism of ClxBPA. CAPSULE: ClxBPA activated KGG neuroendocrine signaling pathway via ERα and GPER and induced the proliferation of GT1-7 cells.
Collapse
Affiliation(s)
- Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Lanbing Xu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yaoyao Huang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, Guangdong Province 510530, PR China.
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Qianqian Tang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
8
|
Xu D, Guo Y, Lei S, Guo A, Song D, Gao Q, Zhao S, Yin K, Wei Q, Zhang L, Wang X, Wang J, Zhang Q, Guo F. Identification and Characterization of TF-lncRNA Regulatory Networks Involved in the Tumorigenesis and Development of Adamantinomatous Craniopharyngioma. Front Oncol 2022; 11:739714. [PMID: 35155179 PMCID: PMC8827039 DOI: 10.3389/fonc.2021.739714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 12/28/2021] [Indexed: 01/18/2023] Open
Abstract
Craniopharyngiomas (CPs) are rare tumors arising from the sellar region. Although the best outcome for patients with one subtype, adamantinomatous craniopharyngioma (ACP), is obtained by gross total resection, little is known about the roles of long noncoding RNAs (lncRNAs) and transcription factors (TFs) in ACP tumorigenesis. In total, 12 human ACP and 5 control samples were subjected to transcriptome-level sequencing. We built an integrated algorithm for identifying lncRNAs and TFs regulating the CP-related pathway. Furthermore, ChIP-Seq datasets with binding domain information were used to further verify and identify TF-lncRNA correlations. RT–PCR and immunohistochemistry staining were performed to validate the potential targets. Five pathways associated with ACP were identified and defined by an extensive literature search. Based on the specific pathways and the whole gene expression profile, 266 ACP-related lncRNAs and 39 TFs were identified by our integrating algorithm. Comprehensive analysis of the ChIP-Seq datasets revealed that 29 TFs were targeted by 12000 lncRNAs in a wide range of tissues, including 161 ACP-related lncRNAs that were identified by the computational method. These 29 TFs and 161 lncRNAs, constituting 1004 TF-lncRNA pairs, were shown to potentially regulate different ACP-related pathways. A total of 232 TF-lncRNA networks were consequently established based on differential gene expression. Validation by RT–PCR and immunohistochemistry staining revealed positive expression of the ACP-related TFs E2F2 and KLF5 in ACP. Moreover, the expression of the lncRNA RP11-360P21.2 was shown to be upregulated in ACP tissues. In this study, we introduced an integrated algorithm for identifying lncRNAs and TFs regulating the ACP-related pathway. This is the first comprehensive study to systematically investigate the potential TF and lncRNA regulatory network in ACP. The resulting data serve as a valuable resource for understanding the mechanisms underlying ACP-related lncRNAs and TFs.
Collapse
Affiliation(s)
- Dingkang Xu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yufeng Guo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shixiong Lei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Abao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengqi Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiwen Yin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjie Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoxuan Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Zhengzhou University, China, Zhengzhou, China
| | - Jie Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Zhengzhou University, China, Zhengzhou, China
| | - Qi Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Zhengzhou University, China, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Inserra PIF, Charif SE, Fidel V, Giacchino M, Schmidt AR, Villarreal FM, Proietto S, Cortasa SA, Corso MC, Gariboldi MC, Leopardo NP, Fraunhoffer NA, Di Giorgio NP, Lux-Lantos VA, Halperin J, Vitullo AD, Dorfman VB. The key action of estradiol and progesterone enables GnRH delivery during gestation in the South American plains vizcacha, Lagostomus maximus. J Steroid Biochem Mol Biol 2020; 200:105627. [PMID: 32070756 DOI: 10.1016/j.jsbmb.2020.105627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/23/2022]
Abstract
The South American plains vizcacha, Lagostomus maximus, is the only mammal described so far that shows expression of estrogen receptors (ERs) and progesterone receptors (PRs) in gonadotropin-releasing hormone (GnRH) neurons. This animal therefore constitutes an exceptional model for the study of the effect of steroid hormones on the modulation of the hypothalamic-pituitary-ovarian (HPO) axis. By using both in vivo and ex vivo approaches, we have found that pharmacological doses of progesterone (P4) and estradiol (E2) produced an inhibition in the expression of hypothalamic GnRH, while physiological doses produced a differential effect on the pulsatile release frequency or genomic expression of GnRH. Our ex vivo experiment indicates that a short-term effect of E2 modulates the frequency of GnRH release pattern that would be associated with membrane ERs. On the other hand, our in vivo approach suggests that a long-term effect of E2, acting through the classical nuclear ERs-PRs pathway, would produce the modification of GnRH mRNA expression during the GnRH pre-ovulatory surge. Particularly, P4 induced a rise in GnRH mRNA expression and protein release with a decrease in its release frequency. These results suggest different levels of action of steroid hormones on GnRH modulation. We conclude that the fine action of E2 and P4 constitute the key factor to enable the hypothalamic activity during the pregnancy of this mammal.
Collapse
Affiliation(s)
- Pablo I F Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago E Charif
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Victoria Fidel
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2)
| | - Mariela Giacchino
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro R Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico M Villarreal
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2)
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago A Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María C Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María C Gariboldi
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia P Leopardo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Nicolás A Fraunhoffer
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Noelia P Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Victoria A Lux-Lantos
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME)-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo D Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica B Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina(2); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
10
|
E Q, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 2019; 63:104721. [PMID: 31734292 DOI: 10.1016/j.tiv.2019.104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Nickel (Ni) is a ubiquitous environmental pollutant, which can disrupt the production of steroid in rat Leydig cells. Steroidogenesis can be affected by non-coding RNAs (ncRNAs), which operate in normal physiological processes. To date, however, very few studies have focused on whether ncRNAs are involved in Ni-induced steroidogenesis disturbance. The present study was designed to investigate the impact of NiSO4 on the regulation of RNA networks including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in rat Leydig cells. After treatment with 1000 μmol/L NiSO4 for 24 h, 372 lncRNAs, 27 miRNAs (fold change>2, p < .05) and 3666 mRNAs (fold change>2, p < .01, and FDR < 0.01) were identified to be markedly altered by high-throughput sequencing analysis in rat Leydig cells. Functional analysis showed that the differentially expressed mRNAs were annotated into some steroid-related pathways. A dysregulated competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was constructed based on bioinformatic analysis. Furthermore, a ceRNA network related to steroidogenesis was selected to analyze further and after the validation by qRT-PCR. The LOC102549726/miR-760-3p/Atf6, LOC102549726/miR-760-3p/Ets1, LOC102549726/miR-760-3p/Sik1 and AABR07037489.1/miR-708-5p/MAPK14 ceRNA networks were eventually confirmed. Collectively, our study provided a systematic perspective on the potential role of ncRNAs in steroidogenesis disturbance induced by Ni in rat Leydig cells.
Collapse
Affiliation(s)
- Qiannan E
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Liu Y, Bai JH, Xu XL, Chen ZL, Spicer LJ, Feng T. Effects of N-carbamylglutamate and L-arginine on gonadotrophin-releasing hormone (GnRH) gene expression and secretion in GT1-7 cells. Reprod Fertil Dev 2019; 30:759-765. [PMID: 29121483 DOI: 10.1071/rd17265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 01/17/2023] Open
Abstract
Recent studies have shown that N-carbamylglutamate (NCG) and arginine (ARG) supplementation improves reproductive performance in livestock. The objectives of the present study were to evaluate the effects of NCG and ARG on GT1-7 cell gonadotrophin-releasing hormone (GnRH) secretion, gene expression and cell proliferation. GT1-7 cells were treated in vitro with different concentrations of NCG (0-1.0mM) or ARG (0-4.0mM) in serum-free medium for 12 or 24h. For GnRH secretion and cell proliferation, GT1-7 cells were more sensitive to NCG than ARG. NCG treatment after 12h increased cell numbers and inhibited GnRH secretion in a dose-dependent manner (P<0.05), although there was no significant effect of NCG on these parameters after 24h culture. ARG treatment decreased GnRH secretion after 24h (P<0.05), whereas it had no effect after 12h. GT1-7 cells express GnRH, Kiss-1 metastasis-suppressor (Kiss1), G-protein coupled receptor 54 (GPR54), neuronal nitric oxide synthase (nNOS) and estrogen receptor α (ERα) genes. High concentrations of NCG (1.0mM) and ARG (4.0mM) inhibited (P<0.05) GnRH and nNOS mRNA abundance in GT1-7 cells. ARG treatment decreased Kiss1 and increased ERα mRNA abundance. Thus, high concentrations of NCG (1.0mM) and ARG (4.0mM) may act both directly and indirectly to regulate GnRH neuron function by downregulating genes related to GnRH synthesis and secretion to slow GnRH production while stimulating GT1-7 cell proliferation.
Collapse
Affiliation(s)
- Y Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - J H Bai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - X L Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Z L Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - T Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
12
|
Effects of Huang Bai ( Phellodendri Cortex) on bone growth and pubertal development in adolescent female rats. Chin Med 2018; 13:3. [PMID: 29344080 PMCID: PMC5767045 DOI: 10.1186/s13020-017-0156-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 12/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the effects of Huang Bai (Phellodendron amurense) on growth and maturation in adolescent female rats. Methods Female Sprague-Dawley rats (28 days old; n = 72) were divided into six daily treatment groups: control (distilled water), Huang Bai (100 and 300 mg/kg), recombinant human GH (rhGH; 20 μg/kg), estradiol (1 μg/kg), and triptorelin (100 μg). Body weight, food intake, and vaginal opening were measured daily from postnatal day (PND) 28 to PND 43. Tetracycline (20 mg/kg) was injected on PND 41. After sacrifice on PND 43, the ovaries and uterus were weighed, and the tibias were fixed in 4% paraformaldehyde. Decalcified and dehydrated tibias were sectioned at a thickness of 40 μm, and sectioned tissues were examined with a fluorescence microscope. Insulin-like growth factor (IGF)-1 and bone morphogenetic protein (BMP)-2 were detected using immunohistochemistry. Results Relative to controls, body weight was higher in the triptorelin group. Bone growth rate increased in the Huang Bai 100 mg/kg (354.00 ± 31.1 μm/day), rhGH (367.10 ± 27.11 μm/day), and triptorelin (374.50 ± 25.37 μm/day) groups. Expression of IGF-1 and BMP-2 in the hypertrophic zone was higher in all experimental groups. Vaginal opening occurred earlier in the estradiol group (PND 33.58 ± 1.62) than in controls and later in the triptorelin group (PND > 43). Ovarian and uterine weights were lower in the oestradiol and triptorelin groups. However, Huang Bai had nonsignificant effects on vaginal opening and the weights of ovaries and the uterus. Conclusions Huang Bai stimulated bone growth by upregulating IGF-1 and BMP-2 in the growth plate. However, it had no effect on pubertal development.
Collapse
|
13
|
Bronzi CD, Orozco ASV, Rodriguez D, Rastrilla AM, Sosa ZY, Casais M. Noradrenaline modulates the presence of gonadotropin-releasing hormone in ovary. The importance of its interrelation on the ovarian steroidogenesis and apoptosis on dioestrus II in rat. J Steroid Biochem Mol Biol 2015; 154:39-46. [PMID: 26144997 DOI: 10.1016/j.jsbmb.2015.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 06/09/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022]
Abstract
The aim of this work was to investigate if noradrenaline (NA), added in the coeliac ganglion -superior ovarian nerve- ovary system (CG-SON-O) and in ovary incubation, modifies the release of ovarian progesterone (P4), gonadotropin-releasing hormone (GnRH) and oestradiol (E2), and the expression of 3β-HSD and 20α-HSD and proapoptotic bax and antiapoptotic bcl-2 on dioestrus II in the rat. The CG-SON-O system and the ovary were removed and placed in one cuvette containing Krebs-Ringer solution (control groups), and NA was added to the ganglion compartment in the ex vivo system and in the ovary compartment in the ovary incubation (experimental groups). P4, GnRH and E2 were measured by RIA, and gene expression was measured by RT-PCR. In the ex-vivo system, the release of ovarian P4 and GnRH and the expression of 3β-HSD and bax decreased; E2 and bcl-2 increased, and the bax/bcl-2 ratio decreased. However, in the ovary incubation, P4, GnRH, the expression of 3β-HSD and bax increased; E2, the expression of 20α-HSD and bcl-2 decreased while the bax/bcl-2 ratio increased, thus favoring apoptosis. The peripheral nervous system protected the ovary from the apoptotic mechanisms while in the ovary incubation the effect was reverted. Our results indicate that NA regulates ovarian steroidogenesis and apoptosis by modulating GnRH release from the coeliac ganglion and ovary, being NA a possible generator of a GnRH-gonadotropins axis in the ovary. This work is expected to contribute with new evidence of the clinical importance of catecholamines and GnRH in therapy and prevention of ovarian pathologies.
Collapse
Affiliation(s)
- Cynthia D Bronzi
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina; Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes 950- 1er Bloque 1er piso ala Norte D5700HHW, San Luis, República Argentina.
| | - Adriana S Vega Orozco
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes 950- 1er Bloque 1er piso ala Norte D5700HHW, San Luis, República Argentina
| | - Diego Rodriguez
- Instituto de Biología y Medicina Experimental (IByME-CONICET), Argentina
| | - Ana María Rastrilla
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes 950- 1er Bloque 1er piso ala Norte D5700HHW, San Luis, República Argentina
| | - Zulema Y Sosa
- Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes 950- 1er Bloque 1er piso ala Norte D5700HHW, San Luis, República Argentina
| | - Marilina Casais
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina; Laboratorio de Biología de la Reproducción (LABIR), Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejercito de Los Andes 950- 1er Bloque 1er piso ala Norte D5700HHW, San Luis, República Argentina; Instituto de Biología y Medicina Experimental (IByME-CONICET), Argentina
| |
Collapse
|
14
|
Chason RJ, Kang JH, Gerkowicz SA, Dufau ML, Catt KJ, Segars JH. GnRH agonist reduces estrogen receptor dimerization in GT1-7 cells: evidence for cross-talk between membrane-initiated estrogen and GnRH signaling. Mol Cell Endocrinol 2015; 404:67-74. [PMID: 25619861 PMCID: PMC4590284 DOI: 10.1016/j.mce.2015.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 12/27/2022]
Abstract
17β-estradiol (E2), a key participant on the initiation of the LH surge, exerts both positive and negative feedback on GnRH neurons. We sought to investigate potential interactions between estrogen receptors alpha (ERα) and beta (ERβ) and gonadotropin releasing hormone receptor (GnRH-R) in GT1-7 cells. Radioligand binding studies demonstrated a significant decrease in saturation E2 binding in cells treated with GnRH agonist. Conversely, there was a significant reduction in GnRH binding in GT1-7 cells treated with E2. In BRET(1) experiments, ERα-ERα dimerization was suppressed in GT1-7 cells treated with GnRH agonist (p < 0.05). There was no evidence of direct interaction between ERs and GnRH-R. This study provides the first evidence of reduced ERα homodimerization by GnRH agonist. Collectively, these findings demonstrate significant cross-talk between membrane-initiated GnRH and E2 signaling in GT1-7 cells.
Collapse
Affiliation(s)
- Rebecca J Chason
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 CRC, Room 1E-3140, 10 Center Drive, MSC 1109, Bethesda, MD 20892-1109, USA
| | - Jung-Hoon Kang
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - Sabrina A Gerkowicz
- Department of Obstetrics and Gynecology, University of Miami, 1611 NW 12th Ave, Miami, FL 33136, USA
| | - Maria L Dufau
- Section on Molecular Endocrinology, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | - Kevin J Catt
- Endocrinology and Reproduction Research Branch, Section on Hormonal Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - James H Segars
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 CRC, Room 1E-3140, 10 Center Drive, MSC 1109, Bethesda, MD 20892-1109, USA.
| |
Collapse
|
15
|
Terasaka T, Otsuka F, Tsukamoto N, Nakamura E, Inagaki K, Toma K, Ogura-Ochi K, Glidewell-Kenney C, Lawson MA, Makino H. Mutual interaction of kisspeptin, estrogen and bone morphogenetic protein-4 activity in GnRH regulation by GT1-7 cells. Mol Cell Endocrinol 2013; 381:8-15. [PMID: 23880664 PMCID: PMC4079587 DOI: 10.1016/j.mce.2013.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/12/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022]
Abstract
Reproduction is integrated by interaction of neural and hormonal signals converging on hypothalamic neurons for controlling gonadotropin-releasing hormone (GnRH). Kisspeptin, the peptide product of the kiss1 gene and the endogenous agonist for the GRP54 receptor, plays a key role in the regulation of GnRH secretion. In the present study, we investigated the interaction between kisspeptin, estrogen and BMPs in the regulation of GnRH production by using mouse hypothalamic GT1-7 cells. Treatment with kisspeptin increased GnRH mRNA expression and GnRH protein production in a concentration-dependent manner. The expression levels of kiss1 and GPR54 were not changed by kisspeptin stimulation. Kisspeptin induction of GnRH was suppressed by co-treatment with BMPs, with BMP-4 action being the most potent for suppressing the kisspeptin effect. The expression of kisspeptin receptor, GPR54, was suppressed by BMPs, and this effect was reversed in the presence of kisspeptin. It was also revealed that BMP-induced Smad1/5/8 phosphorylation and Id-1 expression were suppressed and inhibitory Smad6/7 was induced by kisspeptin. In addition, estrogen induced GPR54 expression, while kisspeptin increased the expression levels of ERα and ERβ, suggesting that the actions of estrogen and kisspeptin are mutually enhanced in GT1-7 cells. Moreover, kisspeptin stimulated MAPKs and AKT signaling, and ERK signaling was functionally involved in the kisspeptin-induced GnRH expression. BMP-4 was found to suppress kisspeptin-induced GnRH expression by reducing ERK signaling activity. Collectively, the results indicate that the axis of kisspeptin-induced GnRH production is bi-directionally controlled, being augmented by an interaction between ERα/β and GPR54 signaling and suppressed by BMP-4 action in GT1-7 neuron cells.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takeda M, Otsuka F, Takahashi H, Inagaki K, Miyoshi T, Tsukamoto N, Makino H, Lawson MA. Interaction between gonadotropin-releasing hormone and bone morphogenetic protein-6 and -7 signaling in LβT2 gonadotrope cells. Mol Cell Endocrinol 2012; 348:147-54. [PMID: 21846488 PMCID: PMC3719407 DOI: 10.1016/j.mce.2011.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 07/30/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
It is known that bone morphogenetic proteins (BMPs) regulate gonadotropin transcription and production by pituitary gonadotrope cells. However, the role of BMPs in gonadotropin-releasing hormone (GnRH)-induced FSH production remains uncertain. Here, we describe a functional link between BMP-6 and BMP-7 signals and FSH transcriptional activity induced by GnRH using mouse gonadotrope LβT2 cells. In LβT2 cells, BMP-6 and BMP-7 increased mouse FSHβ-promoter activity in a concentration-dependent manner. The induction by BMP-6 and BMP-7 was inhibited by treatment with extracellular domains of ActRII but not BMPRII. These findings suggest that the type II receptor ActRII participates in BMP-induced FSHβ transcription regulation. Notably, BMP-6, but not BMP-7, enhanced GnRH-induced FSHβ-promoter activity in LβT2 cells. Since GnRH stimulated MAPK phosphorylation in LβT2 cells, a functional link between MAPK and FSHβ transcription was examined. Inhibition of the ERK pathway, but not that of p38 or SAPK/JNK signaling, suppressed GnRH-induced FSHβ transcription, suggesting that ERK is functionally involved in GnRH-induced FSHβ transcription. Co-treatment with BMP-7, but not with BMP-6, suppressed GnRH-induced MAPK phosphorylation in LβT2 cells. Thus, the difference between BMP-6 and BMP-7 in enhancing GnRH-induced FSHβ transcription may be due to the differential effects of BMP ligands on GnRH-induced ERK signaling. On the other hand, GnRH reduced Smad1/5/8 phosphorylation but increased Smad6/7 expression. These findings imply the presence of a functional link between GnRH action, MAPK signaling and the BMP system in pituitary gonadotropes for fine-tuning of FSH gene expression.
Collapse
Affiliation(s)
- Masaya Takeda
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Fumio Otsuka
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
- Corresponding author. Tel.: +81 86 235 7235; fax: +81 86 222 5214. (F. Otsuka)
| | - Hiroaki Takahashi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Kenichi Inagaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Tomoko Miyoshi
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Naoko Tsukamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | - Mark A. Lawson
- Department of Reproductive Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Otsuka F, Inagaki K. Unique bioactivities of bone morphogenetic proteins in regulation of reproductive endocrine functions. Reprod Med Biol 2011; 10:131-142. [PMID: 29662354 DOI: 10.1007/s12522-011-0082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 03/29/2011] [Indexed: 01/28/2023] Open
Abstract
Remarkable progress has been made in understanding the mechanism by which growth factors and oocytes can regulate the development and function of granulosa cells. Insufficiency of two oocyte-specific growth factors, growth differentiation factor-9 and bone morphogenetic protein (BMP)-15, cause female infertility. Expression of mRNA and/or protein for the BMP system components, including ligands, receptors and intracellular signal transduction factors, was demonstrated in cell components of growing preantral follicles, and biofunctional experiments have further revealed many important roles of the BMP system in regulation of reproductive function. In this review, recent advances in studies on biological actions of BMPs in ovarian folliculogenesis and in related endocrine tissues are discussed.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital 2-5-1 Shikata-cho, Kitaku 700-8558 Okayama Japan
| | - Kenichi Inagaki
- Endocrine Center of Okayama University Hospital 2-5-1 Shikata-cho, Kitaku 700-8558 Okayama Japan
| |
Collapse
|
18
|
Rouach V, Katzburg S, Koch Y, Stern N, Somjen D. Bone loss in ovariectomized rats: Dominant role for estrogen but apparently not for FSH. J Cell Biochem 2011; 112:128-37. [DOI: 10.1002/jcb.22908] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Nakamura E, Otsuka F, Inagaki K, Miyoshi T, Yamanaka R, Tsukamoto N, Suzuki J, Ogura T, Makino H. A novel antagonistic effect of the bone morphogenetic protein system on prolactin actions in regulating steroidogenesis by granulosa cells. Endocrinology 2010; 151:5506-18. [PMID: 20810564 DOI: 10.1210/en.2010-0265] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the mechanism by which prolactin (PRL) regulates follicular steroidogenesis in the ovary, we examined the functional roles of PRL in steroidogenesis using rat oocyte/granulosa cell coculture and focusing on the bone morphogenetic protein (BMP) system. The expression of long and short forms of PRL receptor (PRLR) were detected in both oocytes and granulosa cells, and PRL effectively up-regulated PRLR expression in granulosa cells in the presence of FSH. PRL suppressed FSH-induced estradiol production and increased FSH-induced progesterone production in granulosa cells. The PRL effects on FSH-induced progesterone were blocked by coculture with oocytes, implying roles of oocyte-derived factors in suppression of progesterone production in PRL-exposed granulosa cells. In accordance with the data for steroids, FSH-induced aromatase expression was suppressed by PRL, whereas FSH-induced steroidogenic acute regulatory protein, P450scc (P450 side-chain cleavage enzyme), and 3β-hydroxysteroid dehydrogenase type 2 levels were amplified by PRL. However, forskolin- and N(6),O(2)-dibutyryl cAMP-induced steroid levels and FSH- and forskolin-induced cAMP were not affected by PRL, suggesting that PRL action on FSH-induced steroidogenesis was not due to cAMP-protein kinase A regulation. Treatment with a BMP-binding protein, noggin, facilitated PRL-induced estradiol reduction, and noggin increased PRL-induced progesterone production in FSH-treated granulosa cells cocultured with oocytes, suggesting that endogenous BMPs reduce progesterone but increase estradiol when exposed to high concentrations of PRL. PRL increased the expression of BMP ligands in oocyte/granulosa cell coculture and augmented BMP-induced phosphorylated mothers against decapentaplegic 1/5/8 signaling by reducing inhibitory phosphorylated mothers against decapentaplegic 6 expression through the Janus kinase/signal transducer and activator of transcription (STAT) pathway. In addition to STAT activation, PRL enhanced FSH-induced MAPK phosphorylation in granulosa cells, in which ERK activation was preferentially involved in suppression of FSH-induced estradiol. Furthermore, noggin treatment enhanced PRLR signaling including MAPK and STAT. Considering that BMPs suppressed PRLR in granulosa cells, it is likely that the BMP system in growing follicles plays a key role in antagonizing PRLR signaling actions in the ovary exposed to high concentrations of PRL.
Collapse
Affiliation(s)
- Eri Nakamura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama City, 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tsukamoto N, Otsuka F, Miyoshi T, Yamanaka R, Inagaki K, Yamashita M, Otani H, Takeda M, Suzuki J, Ogura T, Iwasaki Y, Makino H. Effects of bone morphogenetic protein (BMP) on adrenocorticotropin production by pituitary corticotrope cells: involvement of up-regulation of BMP receptor signaling by somatostatin analogs. Endocrinology 2010; 151:1129-41. [PMID: 20056821 DOI: 10.1210/en.2009-1102] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanism by which somatostatin analogs suppress ACTH production by corticotropinomas has yet to be fully elucidated. We here studied the effects of somatostatin analogs on ACTH secretion using mouse corticotrope AtT20 cells focusing on the biological activity of bone morphogenetic proteins (BMPs). BMP ligands, receptors and Smads, and somatostatin receptors (SSTRs)-2, -3, and -5 were expressed in AtT20 cells. BMP-2, -4, -6, and -7 decreased basal ACTH production with BMP-4 effects being the most prominent. BMP-4 also inhibited CRH-induced ACTH production and proopiomelanocortin (POMC) transcription. However, the decrease in CRH-induced cAMP accumulation caused by BMP-4 was not sufficient to completely account for BMP-4 actions, indicating that ACTH suppression by BMPs was not directly linked to cAMP inhibition. CRH-activated ERK1/ERK2, p38-MAPK, stress-activated protein kinase/c-Jun NH(2)-terminal kinase, protein kinase C, and Akt pathways and CRH-induced ACTH synthesis was significantly decreased in the presence of U0126 or SB203580. Because BMPs attenuated CRH-induced ERK and p38 phosphorylation, it was suggested that BMP-4 suppresses ACTH production by inhibiting CRH-induced ERK and p38 phosphorylation. Somatostatin analogs octreotide and pasireotide (SOM230) significantly suppressed CRH-induced ACTH and cAMP production in AtT20 cells and reduced ERK and p38 phosphorylation. Notably, CRH-induced ACTH production was enhanced in the presence of noggin, a BMP-binding protein. The inhibitory effects of octreotide and SOM230 on CRH-induced ACTH production were also attenuated by noggin, implying that the endogenous BMP system plays a key role in inhibiting CRH-induced ACTH production by AtT20 cells. The findings that OCT and SOM230 up-regulated BMP-Smad1/Smad5/Smad8 signaling and ALK-3 and BMPRII and down-regulated inhibitory Smad6/7 establish that the activation of endogenous BMP system is functionally involved in the mechanism by which somatostatin analogs suppress CRH-induced ACTH production.
Collapse
Affiliation(s)
- Naoko Tsukamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Bone morphogenetic proteins (BMPs) were originally identified with regard to their actions to regulate ectopic formation of bone and cartilage and early embryonic development. Subsequently, our research program has investigated a BMP system that exists in the mammalian ovary and plays roles in regulating numerous granulosa cell functions. BMP ligands including BMP-2, -4, -6, -7 and -15 were found to inhibit gondotropin-dependent progesterone synthesis by granulosa cells, which led to the hypothesis that BMPs are a physiological luteinization inhibitor in growing ovarian follicles during the follicular phase of the ovarian cycle. The physiological importance of the BMP system for normal mammalian reproduction has been further recognized by the discovery of aberrant reproductive phenotypes of female sheep and humans having mutated genes encoding BMP-15. Physiological roles of BMPs in the pituitary, hypothalamus, adrenal and other tissues have also been discovered. Here we discuss recent advances in the understanding of autocrine/paracrine actions of BMPs in the systemic regulation of endocrine function.
Collapse
Affiliation(s)
- Fumio Otsuka
- Endocrine Center of Okayama University Hospital, Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|