1
|
Yang L, Huang J, Huang N, Qin S, Chen Z, Xiao G, Shao H, Zi C, Hu JM. Structure-activity relationship of synthesized glucans from Ganoderma lucidum with in vitro hypoglycemic activity. Int J Biol Macromol 2025; 288:138586. [PMID: 39689800 DOI: 10.1016/j.ijbiomac.2024.138586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/19/2024]
Abstract
The synthetic polysaccharides, which have precise structure, can be used to design new drugs by comparing structure-activity relationships (SAR). Improved protein stability may be due to the interaction between the polysaccharides and protein, which includes covalent and noncovalent interactions. It is critical to investigate the SAR of polysaccharides with a precise structure from the perspective of protein stability. Glucans-insulin interaction may be a useful stratagy to solve this problem. This study reports the SAR of the synthesized glucan GLSWA-1 and its substructures 2-4 on insulin secretion and discusses its mechanism. The results showed that although GLSWA-1 and its substructures 2-4 bind insulin to varying degrees, compound 2 improves insulin secretion in a dose-dependent manner. Further research found that compound 2 maintains the thermal stability of insulin better than GLSWA-1 through stronger hydrogen bonding, and molecular dynamics simulations demonstrated that compound 2 can form a "groove-binding model" with insulin. This study considerably improves the research on the SAR of glucan based on insulin thermostability and indicates that compound 2, its linear structure, appropriate chain flexibility ((1 → 6)-glucoside bonds), low molecular weight, and smaller steric hindrance is a potential hypoglycemic agent.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jia Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; School of life sciences, Yunnan University, Kunming, Yunnan 650500, China
| | - Ni Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shihui Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhiyuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Huiyan Shao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Chengting Zi
- College of Science, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
2
|
Ge L, Huang P, Miao H, Yu H, Wu D, Chen F, Lin Y, Lin Y, Li W, Hua J. The new landscape of differentially expression proteins in placenta tissues of gestational diabetes based on iTRAQ proteomics. Placenta 2023; 131:36-48. [PMID: 36473392 DOI: 10.1016/j.placenta.2022.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 10/26/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) refers to abnormal glucose tolerance that occurs or is firstly diagnosed during pregnancy. GDM is related to various adverse pregnancy outcomes, but GDM pathogeny has not been fully elucidated. Nevertheless, previous studies have observed that many proteins in the placentas of patients with GDM are dysregulated. The present study aimed to establish a novel differentially expressed protein (DEP) landscape of GDM and normal maternal placentas and to explore the possible connection between DEPs and GDM pathogenesis. This study provides new insights into the mechanism of GDM and should make an important contribution to the development of biomarkers. METHODS The morphological characteristics of the placenta were observed on 30 GDM and normal maternal placental tissues stained with haematoxylin and eosin. Isobaric tags for relative and absolute quantitation (iTRAQ) was used in the proteomics screening of the DEPs of the normal and GDM maternal placentas. Bioinformatics analysis was performed on the DEPs, and parallel reaction monitoring (PRM) was performed to verify the DEPs. Finally, the quantitative analysis of iTRAQ and PRM was verified by immunohistochemical assay. RESULTS A total of 68 DEPs in the GDM placenta were identified with iTRAQ proteomics experiment, comprising 21 up-regulated and 47 down-regulated DEPs. Bioinformatics analysis showed that the regulation of transport, catabolic process of non-coding RNA, cytoskeleton and cell binding were the most abundant Gene Ontology terms, and RNA degradation was an important pathway for significant enrichment. Protein-protein interaction network analysis showed that heterogeneous nuclear ribonucleoproteins A2/B1 (HNRNPA2B1), heterogeneous nuclear ribonucleoprotein A/B (HNRNPAB), heterogeneous nuclear ribonucleoprotein L (HNRNPL) and heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) were the cores of the up-regulated proteins. Band 3 anion transport protein (SLC4A1), spectrin beta chain erythrocytic (SPTB), ankyrin-1 (ANK1), spectrin beta chain non-erythrocytic 2 (SPTBN2), D-3-phosphoglycerate dehydrogenase (PHGDH) and exosome complex component RRP42 (EXOSC7) were the cores of the down-regulated proteins. These proteins are involved in the binding, splicing, processing, transport and degradation of RNA and in the formation and maintenance of the cytoskeleton. PRM verification results showed that seven proteins, namely, epiplakin (EPPK1), cold-inducible RNA-binding protein (CIRBP), HNRNPA2B1, HNRNPAB, HNRNPL, Ras-related protein Rab-21 (RAB21) and Ras-related protein Rab-3B (RAB3B), were up-regulated, whereas SPTB and SLC4A1 were down-regulated. The results of immunohistochemical assay also showed that the expression of five proteins, namely EPPK1, HNRNPA2B1, HNRNPAB, CIRBP and RAB21, were significantly higher in GDM placental tissues (P < 0.01). The GDM placentas showed changes in the morphological evaluation, including poor villous maturation, obvious increase in the number of syncytiotrophoblast nodules, thickening of the wall of dry villous arterioles with lumen stenosis, increased fibrinous exudation and excessive filling of villous interstitial vessels. DISCUSSION Differentially expressed proteins related to a variety of biological processes in the GDM placenta were found. Fourteen proteins, namely, HNRNPA2B1, HNRNPAB, HNRNPL, HNRNPA3, EPPK1, CIRBP, RAB21, RAB3B, SLC4A1, SPTB, ANK1, SPTBN2, PHGDH and EXOSC7, which were differentially expressed in the placenta, may play an important role in regulating the occurrence and development of gestational diabetes through multi-channel and multi-link regulation.
Collapse
Affiliation(s)
- Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Pingping Huang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haiyan Miao
- Department of Obstetrics and Gynecology, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Honghong Yu
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dongmei Wu
- Department of Obstetrics and Gynecology, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Fan Chen
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yan Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuzheng Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wenfang Li
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jinghe Hua
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
3
|
Sambathkumar R, Migliorini A, Nostro MC. Pluripotent Stem Cell-Derived Pancreatic Progenitors and β-Like Cells for Type 1 Diabetes Treatment. Physiology (Bethesda) 2018; 33:394-402. [DOI: 10.1152/physiol.00026.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we focus on the processes guiding human pancreas development and provide an update on methods to efficiently generate pancreatic progenitors (PPs) and β-like cells in vitro from human pluripotent stem cells (hPSCs). Furthermore, we assess the strengths and weaknesses of using PPs and β-like cell for cell replacement therapy for the treatment of Type 1 diabetes with respect to cell manufacturing, engrafting, functionality, and safety. Finally, we discuss the identification and use of specific cell surface markers to generate safer populations of PPs for clinical translation and to study the development of PPs in vivo and in vitro.
Collapse
Affiliation(s)
- Rangarajan Sambathkumar
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Adriana Migliorini
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
| | - Maria Cristina Nostro
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Aigha II, Memon B, Elsayed AK, Abdelalim EM. Differentiation of human pluripotent stem cells into two distinct NKX6.1 populations of pancreatic progenitors. Stem Cell Res Ther 2018; 9:83. [PMID: 29615106 PMCID: PMC5883581 DOI: 10.1186/s13287-018-0834-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The expression of a specific combination of transcription factors (TFs) in the multipotent progenitor cells (MPCs) is critical for determining pancreatic cell fate. NKX6.1 expression in PDX1+ MPCs is required for functional β cell generation. We have recently demonstrated the generation of a novel population of human pluripotent stem cell (hPSC)-derived MPCs that exclusively express NKX6.1, independently of PDX1 (PDX1-/NKX6.1+). Therefore, the aim of this study was to characterize this novel population to elucidate its role in pancreatic development. METHODS The hPSCs were exposed to two differentiation protocols to generate MPCs that were analyzed using different techniques. RESULTS Based on the expression of PDX1 and NKX6.1, we generated three different populations of MPCs, two of them were NKX6.1+. One of these NKX6.1 populations coexpressed PDX1 (PDX1+/NKX6.1+) which is known to mature into functional β cells, and an additional novel population did not express PDX1 (PDX1-/NKX6.1+) with an undefined role in pancreatic cell fate. This novel population was enriched using our recently established protocol, allowing their reorganization in three-dimensional (3D) structures. Since NKX6.1 induction in MPCs can direct them to endocrine and/or ductal cells in humans, we examined the coexpression of endocrine and ductal markers. We found that the expression of the pancreatic endocrine progenitor markers chromogranin A (CHGA) and neurogenin 3 (NGN3) was not detected in the NKX6.1+ 3D structures, while few structures were positive for NKX2.2, another endocrine progenitor marker, thereby shedding light on the origin of this novel population and its role in pancreatic endocrine development. Furthermore, SOX9 was highly expressed in the 3D structures, but cytokeratin 19, a main ductal marker, was not detected in these structures. CONCLUSIONS These data support the existence of two independent NKX6.1+ MPC populations during human pancreatic development and the novel PDX1-/NKX6.1+ population may be involved in a unique trajectory to generate β cells in humans.
Collapse
Affiliation(s)
- Idil I Aigha
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar
| | - Ahmed K Elsayed
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
5
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
6
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
7
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
8
|
Al-Khawaga S, Memon B, Butler AE, Taheri S, Abou-Samra AB, Abdelalim EM. Pathways governing development of stem cell-derived pancreatic β cells: lessons from embryogenesis. Biol Rev Camb Philos Soc 2017. [DOI: 10.1111/brv.12349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sara Al-Khawaga
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| | - Alexandra E. Butler
- Larry L. Hillblom Islet Research Center, David Geffen School of Medicine; University of California; Los Angeles CA 90095 U.S.A
| | - Shahrad Taheri
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Abdul B. Abou-Samra
- Department of Medicine; Weill Cornell Medicine in Qatar, Qatar Foundation, Education City, PO BOX 24144; Doha Qatar
- Department of Medicine; Qatar Metabolic Institute, Hamad Medical Corporation; Doha Qatar
| | - Essam M. Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute; Hamad Bin Khalifa University, Qatar Foundation, Education City; Doha Qatar
| |
Collapse
|
9
|
Honoré C, Rescan C, Hald J, McGrath PS, Petersen MBK, Hansson M, Klein T, Østergaard S, Wells JM, Madsen OD. Revisiting the immunocytochemical detection of Neurogenin 3 expression in mouse and man. Diabetes Obes Metab 2016; 18 Suppl 1:10-22. [PMID: 27615127 DOI: 10.1111/dom.12718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/08/2016] [Indexed: 12/13/2022]
Abstract
During embryonic development, endocrine cells of the pancreas are specified from multipotent progenitors. The transcription factor Neurogenin 3 (NEUROG3) is critical for this development and it has been shown that all endocrine cells of the pancreas arise from endocrine progenitors expressing NEUROG3. A thorough understanding of the role of NEUROG3 during development, directed differentiation of pluripotent stem cells and in models of cellular reprogramming, will guide future efforts directed at finding novel sources of β-cells for cell replacement therapies. In this article, we review the expression and function of NEUROG3 in both mouse and human and present the further characterization of a monoclonal antibody directed against NEUROG3. This antibody has been previously been used for detection of both mouse and human NEUROG3. However, our results suggest that the epitope recognized by this antibody is specific to mouse NEUROG3. Thus, we have also generated a monoclonal antibody specifically recognizing human NEUROG3 and present the characterization of this antibody here. Together, these antibodies will provide useful tools for future studies of NEUROG3 expression, and the data presented in this article suggest that recently described expression patterns of NEUROG3 in human foetal and adult pancreas should be re-examined.
Collapse
Affiliation(s)
- C Honoré
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark.
| | - C Rescan
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - J Hald
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - P S McGrath
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - M B K Petersen
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - M Hansson
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - T Klein
- Gubra Aps, Agern Alle 1, Hørsholm, Denmark
| | - S Østergaard
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| | - J M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - O D Madsen
- Department of Islet and Stem Cell Biology, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
10
|
Abstract
A wealth of data and comprehensive reviews exist on pancreas development in mammals, primarily mice, and other vertebrates. By contrast, human pancreatic development has been less comprehensively reviewed. Here, we draw together those studies conducted directly in human embryonic and fetal tissue to provide an overview of what is known about human pancreatic development. We discuss the relevance of this work to manufacturing insulin-secreting β-cells from pluripotent stem cells and to different aspects of diabetes, especially permanent neonatal diabetes, and its underlying causes.
Collapse
Affiliation(s)
- Rachel E Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester M13 9WU, UK
| | - Andrew A Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - James P Strutt
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - David T Gerrard
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Bioinformatics Unit, Faculty of Life Science, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Neil A Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Science Centre, University of Manchester, Oxford Rd, Manchester M13 9PT, UK Endocrinology Department, Central Manchester University Hospitals NHS Foundation Trust, Grafton St, Manchester M13 9WU, UK
| |
Collapse
|
11
|
Koumanov F, Pereira VJ, Richardson JD, Sargent SL, Fazakerley DJ, Holman GD. Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes. Diabetologia 2015; 58:1877-86. [PMID: 26024738 PMCID: PMC4499112 DOI: 10.1007/s00125-015-3627-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/21/2015] [Indexed: 01/10/2023]
Abstract
AIMS/HYPOTHESIS The glucose transporter GLUT4 is present mainly in insulin-responsive tissues of fat, heart and skeletal muscle and is translocated from intracellular membrane compartments to the plasma membrane (PM) upon insulin stimulation. The transit of GLUT4 to the PM is known to be dependent on a series of Rab proteins. However, the extent to which the activity of these Rabs is regulated by the action of insulin action is still unknown. We sought to identify insulin-activated Rab proteins and Rab effectors that facilitate GLUT4 translocation. METHODS We developed a new photoaffinity reagent (Bio-ATB-GTP) that allows GTP-binding proteomes to be explored. Using this approach we screened for insulin-responsive GTP loading of Rabs in primary rat adipocytes. RESULTS We identified Rab3B as a new candidate insulin-stimulated G-protein in adipocytes. Using constitutively active and dominant negative mutants and Rab3 knockdown we provide evidence that Rab3 isoforms are key regulators of GLUT4 translocation in adipocytes. Insulin-stimulated Rab3 GTP binding is associated with disruption of the interaction between Rab3 and its negative effector Noc2. Disruption of the Rab3-Noc2 complex leads to displacement of Noc2 from the PM. This relieves the inhibitory effect of Noc2, facilitating GLUT4 translocation. CONCLUSIONS/INTERPRETATION The discovery of the involvement of Rab3 and Noc2 in an insulin-regulated step in GLUT4 translocation suggests that the control of this translocation process is unexpectedly similar to regulated secretion and particularly pancreatic insulin-vesicle release.
Collapse
Affiliation(s)
- Francoise Koumanov
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Vinit J. Pereira
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | | | - Samantha L. Sargent
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - Daniel J. Fazakerley
- />Charles Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, NSW Australia
| | - Geoffrey D. Holman
- />Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
12
|
Epimorphin alters the inhibitory effects of SOX9 on Mmp13 in activated hepatic stellate cells. PLoS One 2014; 9:e100091. [PMID: 24971829 PMCID: PMC4074045 DOI: 10.1371/journal.pone.0100091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 05/22/2014] [Indexed: 01/09/2023] Open
Abstract
Background and Aims Liver fibrosis is a major cause of morbidity and mortality. It is characterised by excessive extracellular matrix (ECM) deposition from activated hepatic stellate cells (HSCs). Although potentially reversible, treatment remains limited. Understanding how ECM influences the pathogenesis of the disease may provide insight into novel therapeutic targets for the disease. The extracellular protein Epimorphin (EPIM) has been implicated in tissue repair mechanisms in several tissues, partially, through its ability to manipulate proteases. In this study, we have identified that EPIM modulates the ECM environment produced by activated hepatic stellate cells (HSCs), in part, through down-regulation of pro-fibrotic Sex-determining region Y-box 9 (SOX9). Methods Influence of EPIM on ECM was investigated in cultured primary rat HSCs. Activated HSCs were treated with recombinant EPIM or SOX9 siRNA. Core fibrotic factors were evaluated by immunoblotting, qPCR and chromatin immunoprecipitation (ChIP). Results During HSC activation EPIM became significantly decreased in contrast to pro-fibrotic markers SOX9, Collagen type 1 (COL1), and α- Smooth muscle actin (α-SMA). Treatment of activated HSCs with recombinant EPIM caused a reduction in α-SMA, SOX9, COL1 and Osteopontin (OPN), while increasing expression of the collagenase matrix metalloproteinase 13 (MMP13). Sox9 abrogation in activated HSCs increased EPIM and MMP13 expression. Conclusion These data provide evidence for EPIM and SOX9 functioning by mutual negative feedback to regulate attributes of the quiescent or activated state of HSCs. Further understanding of EPIM's role may lead to opportunities to modulate SOX9 as a therapeutic avenue for liver fibrosis.
Collapse
|
13
|
Salisbury RJ, Blaylock J, Berry AA, Jennings RE, De Krijger R, Piper Hanley K, Hanley NA. The window period of NEUROGENIN3 during human gestation. Islets 2014; 6:e954436. [PMID: 25322831 PMCID: PMC4376053 DOI: 10.4161/19382014.2014.954436] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The basic helix-loop-helix transcription factor, NEUROG3, is critical in causing endocrine commitment from a progenitor cell population in the developing pancreas. In human, NEUROG3 has been detected from 8 weeks post-conception (wpc). However, the profile of its production and when it ceases to be detected is unknown. In this study we have defined the profile of NEUROG3 detection in the developing pancreas to give insight into when NEUROG3-dependent endocrine commitment is possible in the human fetus. Immunohistochemistry allowed counting of cells with positively stained nuclei from 7 wpc through to term. mRNA was also isolated from sections of human fetal pancreas and NEUROG3 transcription analyzed by quantitative reverse transcription and polymerase chain reaction. NEUROG3 was detected as expected at 8 wpc. The number of NEUROG3-positive cells increased to peak levels between 10 wpc and 14 wpc. It declined at and after 18 wpc such that it was not detected in human fetal pancreas at 35-41 wpc. Analysis of NEUROG3 transcription corroborated this profile by demonstrating very low levels of transcript at 35-41 wpc, more than 10-fold lower than levels at 12-16 wpc. These data define the appearance, peak and subsequent disappearance of the critical transcription factor, NEUROG3, in human fetal pancreas for the first time. By inference, the window for pancreatic endocrine differentiation via NEUROG3 action opens at 8 wpc and closes between 21 and 35 wpc.
Collapse
Affiliation(s)
- Rachel J Salisbury
- Center for Endocrinology and Diabetes;
Institute of Human Development; Faculty of Medical & Human Sciences; Manchester
Academic Health Sciences Center; University of
Manchester; Manchester, UK
| | - Jennifer Blaylock
- Center for Endocrinology and Diabetes;
Institute of Human Development; Faculty of Medical & Human Sciences; Manchester
Academic Health Sciences Center; University of
Manchester; Manchester, UK
| | - Andrew A Berry
- Center for Endocrinology and Diabetes;
Institute of Human Development; Faculty of Medical & Human Sciences; Manchester
Academic Health Sciences Center; University of
Manchester; Manchester, UK
| | - Rachel E Jennings
- Center for Endocrinology and Diabetes;
Institute of Human Development; Faculty of Medical & Human Sciences; Manchester
Academic Health Sciences Center; University of
Manchester; Manchester, UK
- Endocrinology Department; Central Manchester
University Hospitals NHS Foundation Trust; Manchester,
UK
| | - Ronald De Krijger
- Erasmus MC; University Medical
Center; Rotterdam, The Netherlands
- Department of Pathology; Reinier de Graaf
Hospital; Delft, The Netherlands
| | - Karen Piper Hanley
- Center for Endocrinology and Diabetes;
Institute of Human Development; Faculty of Medical & Human Sciences; Manchester
Academic Health Sciences Center; University of
Manchester; Manchester, UK
| | - Neil A Hanley
- Center for Endocrinology and Diabetes;
Institute of Human Development; Faculty of Medical & Human Sciences; Manchester
Academic Health Sciences Center; University of
Manchester; Manchester, UK
- Endocrinology Department; Central Manchester
University Hospitals NHS Foundation Trust; Manchester,
UK
- Correspondence to: Neil Hanley;
| |
Collapse
|
14
|
Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Piper Hanley K, Hanley NA. Development of the human pancreas from foregut to endocrine commitment. Diabetes 2013; 62:3514-22. [PMID: 23630303 PMCID: PMC3781486 DOI: 10.2337/db12-1479] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Knowledge of human pancreas development underpins our interpretation and exploitation of human pluripotent stem cell (PSC) differentiation toward a β-cell fate. However, almost no information exists on the early events of human pancreatic specification in the distal foregut, bud formation, and early development. Here, we have studied the expression profiles of key lineage-specific markers to understand differentiation and morphogenetic events during human pancreas development. The notochord was adjacent to the dorsal foregut endoderm during the fourth week of development before pancreatic duodenal homeobox-1 detection. In contrast to the published data from mouse embryos, during human pancreas development, we detected only a single-phase of Neurogenin 3 (NEUROG3) expression and endocrine differentiation from approximately 8 weeks, before which Nirenberg and Kim homeobox 2.2 (NKX2.2) was not observed in the pancreatic progenitor cell population. In addition to revealing a number of disparities in timing between human and mouse development, these data, directly assembled from human tissue, allow combinations of transcription factors to define sequential stages and differentiating pancreatic cell types. The data are anticipated to provide a useful reference point for stem cell researchers looking to differentiate human PSCs in vitro toward the pancreatic β-cell so as to model human development or enable drug discovery and potential cell therapy.
Collapse
Affiliation(s)
- Rachel E. Jennings
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Endocrinology Department, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
| | - Andrew A. Berry
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Rebecca Kirkwood-Wilson
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Neil A. Roberts
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Thomas Hearn
- Centre for Human Development, Stem Cells and Regeneration, Human Genetics, University of Southampton, Southampton General Hospital, Southampton, U.K
| | - Rachel J. Salisbury
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Jennifer Blaylock
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Karen Piper Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
| | - Neil A. Hanley
- Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical & Human Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, U.K
- Endocrinology Department, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester, U.K
- Corresponding author: Neil A. Hanley,
| |
Collapse
|
15
|
Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion. Nat Genet 2012; 45:197-201. [PMID: 23263489 DOI: 10.1038/ng.2507] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/26/2012] [Indexed: 12/15/2022]
Abstract
Insulin secretion has a crucial role in glucose homeostasis, and failure to secrete sufficient insulin is a hallmark of type 2 diabetes. Genome-wide association studies (GWAS) have identified loci contributing to insulin processing and secretion; however, a substantial fraction of the genetic contribution remains undefined. To examine low-frequency (minor allele frequency (MAF) 0.5-5%) and rare (MAF < 0.5%) nonsynonymous variants, we analyzed exome array data in 8,229 nondiabetic Finnish males using the Illumina HumanExome Beadchip. We identified low-frequency coding variants associated with fasting proinsulin concentrations at the SGSM2 and MADD GWAS loci and three new genes with low-frequency variants associated with fasting proinsulin or insulinogenic index: TBC1D30, KANK1 and PAM. We also show that the interpretation of single-variant and gene-based tests needs to consider the effects of noncoding SNPs both nearby and megabases away. This study demonstrates that exome array genotyping is a valuable approach to identify low-frequency variants that contribute to complex traits.
Collapse
|
16
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
17
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
18
|
Matthews LC, Hanley NA. The stress of starvation: glucocorticoid restraint of beta cell development. Diabetologia 2011; 54:223-6. [PMID: 21072627 PMCID: PMC3017310 DOI: 10.1007/s00125-010-1963-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Developmental insults during gestation, such as under-nutrition, are known to restrict the number of beta cells that form in the fetal pancreas and are maintained in adulthood, leading to increased risk of type 2 diabetes. There are now substantial data indicating that glucocorticoids mediate this effect of under-nutrition on beta cell mass and that even at physiological levels they restrain fetal beta cell development in utero. There are emerging clues that this occurs downstream of endocrine commitment by neurogenin 3 but prior to terminal beta cell differentiation. Deciphering the precise mechanism will be important as it might unveil new pathways by which to manipulate beta cell mass that could be exploited as novel therapies for patients with diabetes.
Collapse
Affiliation(s)
- L. C. Matthews
- Endocrinology and Diabetes Group, School of Biomedicine, Manchester Academic Health Sciences Centre, AV Hill Building, University of Manchester, Manchester, M13 9PT UK
| | - N. A. Hanley
- Endocrinology and Diabetes Group, School of Biomedicine, Manchester Academic Health Sciences Centre, AV Hill Building, University of Manchester, Manchester, M13 9PT UK
| |
Collapse
|