1
|
Huang J, Shi L, Yang Y, Zhao F, Chen R, Liao W, Zhu J, Yang D, Wu X, Han S. Mesenchymal cell-derived exosomes and miR-29a-3p mitigate renal fibrosis and vascular rarefaction after renal ischemia reperfusion injury. Stem Cell Res Ther 2025; 16:135. [PMID: 40075481 PMCID: PMC11905586 DOI: 10.1186/s13287-025-04226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Renal fibrosis and vascular rarefaction are significant complications of ischemia/reperfusion (I/R) injury. Human umbilical cord mesenchymal cell-derived exosomes (hucMSC-exos) have shown potential in mitigating these conditions. This study investigates the role of miR-29a-3p in exosomes and its therapeutic effects on I/R-induced renal damage. METHODS Male C57BL/6 mice were subjected to unilateral renal ischemia for 28 min followed by reperfusion. Exosomes and miR-29a-3p mimics/inhibitors were injected into the mice. Renal function, histological analysis, and molecular assays were performed to evaluate fibrosis and vascular integrity. RESULTS Exosome treatment significantly improved renal function and reduced fibrosis and vascular rarefaction post-I/R. MiR-29a-3p was highly expressed in hucMSC-exos but reduced in renal fibrosis models. MiR-29a-3p mimic reduced, while its inhibitor exacerbated I/R-induced renal fibrosis and vascular rarefaction. Collagen I and TNFR1 were identified as direct targets of miR-29a-3p in fibroblasts and endothelial cells, respectively. Exosomes overexpressing miR-29a-3p provided superior protection compared to unmodified hucMSC-exos. CONCLUSION HucMSC-exos, particularly those overexpressing miR-29a-3p, have potent therapeutic effects against renal fibrosis and vascular rarefaction post-I/R. MiR-29a-3p targets TNFR1 and collagen I, highlighting its potential in renal fibrosis therapy.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Lang Shi
- Department of Nephrology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yifei Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fan Zhao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Rengui Chen
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Wenliang Liao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Dingping Yang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Xiongfei Wu
- Department of Nephrology, Guiqian International General Hospital, Guiyang, Guizhou, China.
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
2
|
Giuliani KTK, Nag P, Adams BC, Wang X, Hong S, Grivei A, Johnston RL, Waddell N, Ho KKC, Tian Y, Khan MA, Kim CS, Ng MSY, Gobe G, Ungerer JPJ, Forbes JM, Healy HG, Kassianos AJ. Human proximal tubular epithelial cell interleukin-1 receptor signalling triggers G2/M arrest and cellular senescence during hypoxic kidney injury. Cell Death Dis 2025; 16:61. [PMID: 39890773 PMCID: PMC11785723 DOI: 10.1038/s41419-025-07386-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Hypoxia and interleukin (IL)-1β are independent mediators of tubulointerstitial fibrosis, the histological hallmark of chronic kidney disease (CKD). Here, we examine how hypoxia and IL-1β act in synergy to augment maladaptive proximal tubular epithelial cell (PTEC) repair in human CKD. Ex vivo patient-derived PTECs were cultured under normoxic (21% O2) or hypoxic (1% O2) conditions in the absence or presence of IL-1β and examined for maladaptive repair signatures. Hypoxic PTECs incubated with IL-1β displayed a discrete transcriptomic profile distinct from PTECs cultured under hypoxia alone, IL-1β alone or under normoxia. Hypoxia+IL-1β-treated PTECs had 692 'unique' differentially expressed genes (DEGs) compared to normoxic PTECs, with 'cell cycle' the most significantly enriched KEGG pathway based on 'unique' down-regulated DEGs (including CCNA2, CCNB1 and CCNB2). Hypoxia+IL-1β-treated PTECs displayed signatures of cellular senescence, with reduced proliferation, G2/M cell cycle arrest, increased p21 expression, elevated senescence-associated β-galactosidase (SA-β-gal) activity and increased production of pro-inflammatory/fibrotic senescence-associated secretory phenotype (SASP) factors compared to normoxic conditions. Treatment of Hypoxia+IL-1β-treated PTECs with either a type I IL-1 receptor (IL-1RI) neutralizing antibody or a senolytic drug combination, quercetin+dasatinib, attenuated senescent cell burden. In vitro findings were validated in human CKD bio-specimens (kidney tissue, urine), with elevated PTEC IL-1RI expression and senescence (SA-β-gal activity) detected in fibrotic kidneys and numbers of senescent (SA-β-gal+) urinary PTECs correlating with urinary IL-1β levels and severity of interstitial fibrosis. Our data identify a mechanism whereby hypoxia in combination with IL-1β/IL-1RI signalling trigger PTEC senescence, providing novel therapeutic and diagnostic check-points for restoring tubular regeneration in human CKD.
Collapse
Affiliation(s)
- Kurt T K Giuliani
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Purba Nag
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Benjamin C Adams
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Xiangju Wang
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Seokchan Hong
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Division of Rheumatology, Department of Internal Medicine, Asan Medical Centre, Seoul, Republic of Korea
| | - Anca Grivei
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Nicola Waddell
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kenneth K C Ho
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Yilin Tian
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Muhammad Ali Khan
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Princess Alexandra Hospital and University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Dhaka, Bangladesh
| | - Chang Seong Kim
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Republic of Korea
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Monica S Y Ng
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Glenda Gobe
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Kidney Disease Research Collaborative, Princess Alexandra Hospital and University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Jacobus P J Ungerer
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Josephine M Forbes
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Helen G Healy
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Andrew J Kassianos
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, QLD, Australia.
- Kidney Health Service, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Institute of Health and Biomedical Innovation/School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Deng B, Lin S, Wang Y, Zhang M, Shen Y, Zhou P, Shen A, Wang L, Ding F, Liu J. Hyaluronic Acid-Nanocoated Bacteria Generate an Anti-Inflammatory Tissue-Repair Effect in Impaired Gut and Extraintestinal Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412783. [PMID: 39568244 DOI: 10.1002/adma.202412783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Indexed: 11/22/2024]
Abstract
Diverse extraintestinal diseases are characterized by localized inflammatory responses and tissue damage, accompanied with intestinal inflammation and injury. Here, a dual-functionality and dual-location intervention strategy is reported, which is the use of hyaluronic acid-nanocoated Clostridium butyricum to generate an anti-inflammatory tissue-repair effect in the impaired gut and extraintestinal organs. Nanocoated bacteria attenuate intestinal mucosal inflammation and recover gut barrier integrity by leveraging the immunosuppressive nature of hyaluronic acid and the butyrate-producing ability of Clostridium butyricum. Nanocoated bacteria also alleviate the interstitial inflammation and pathological damage of extraintestinal organs via remodeling microbial metabolites and decreasing microbial translocation. In murine models of acute kidney injury and chronic kidney disease, oral delivery of nanocoated bacteria demonstrates the potency to restore renal function and eliminate renal fibrosis. This work proposes a type of next-generation living therapeutics for treating extraintestinal diseases.
Collapse
Affiliation(s)
- Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Wang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Mengmeng Zhang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuqi Shen
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Peihui Zhou
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Aiwen Shen
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
4
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Sun L, Liu L, Jiang J, Liu K, Zhu J, Wu L, Lu X, Huang Z, Yuan Y, Crowley SD, Mao H, Xing C, Ren J. Transcription factor Twist1 drives fibroblast activation to promote kidney fibrosis via signaling proteins Prrx1/TNC. Kidney Int 2024; 106:840-855. [PMID: 39181396 DOI: 10.1016/j.kint.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The transcription factor Twist1 plays a vital role in normal development in many tissue systems and continues to be important throughout life. However, inappropriate Twist1 activity has been associated with kidney injury and fibrosis, though the underlying mechanisms involved remain incomplete. Here, we explored the role of Twist1 in regulating fibroblast behaviors and the development kidney fibrosis. Initially Twist1 protein and activity was found to be markedly increased within interstitial myofibroblasts in fibrotic kidneys in both humans and rodents. Treatment of rat kidney interstitial fibroblasts with transforming growth factor-β1 (a profibrotic factor) also induced Twist1 expression in vitro. Gain- and loss-of-function experiments supported that Twist1 signaling was responsible for transforming growth factor-β1-induced fibroblast activation and fetal bovine serum-induced fibroblast proliferation. Mechanistically, Twist1 protein promoted kidney fibroblast activation by driving the expression of downstream signaling proteins, Prrx1 and Tnc. Twist1 directly enhanced binding to the promoter of Prrx1 but not TNC, whereas the promoter of TNC was directly bound by Prrx1. Finally, mice with fibroblast-specific deletion of Twist1 exhibited less Prrx1 and TNC protein abundance, interstitial extracellular matrix deposition and kidney inflammation in both the unilateral ureteral obstruction and ischemic-reperfusion injury-induced-kidney fibrotic models. Inhibition of Twist1 signaling with Harmine, a β-carboline alkaloid, improved extracellular matrix deposition in both injury models. Thus, our results suggest that Twist1 signaling promotes the activation and proliferation of kidney fibroblasts, contributing to the development of interstitial fibrosis, offering a potential therapeutic target for chronic kidney disease.
Collapse
Affiliation(s)
- Lianqin Sun
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lishan Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanjuan Jiang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kang Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jingfeng Zhu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Medicine, Durham VA Medical Center, Durham, North Carolina, USA
| | - Huijuan Mao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jiafa Ren
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
6
|
Thursz M, Mathurin P. Targeting IL-1 in severe alcohol-related hepatitis: How many frogs will we need to kiss to find an effective therapy? J Hepatol 2024; 80:678-680. [PMID: 38499249 DOI: 10.1016/j.jhep.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Affiliation(s)
- Mark Thursz
- Department of Metabolism, Digestion & Reproduction, Imperial College, London W2 1NY, UK.
| | - Philippe Mathurin
- Service des maladies de l'appareil digestif, Hôpital Huriez, Rue Polonowski, 59037 Lille, France.
| |
Collapse
|
7
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
8
|
Bisgaard LS, Christensen PM, Oh J, Torta F, Füchtbauer EM, Nielsen LB, Christoffersen C. Kidney derived apolipoprotein M and its role in acute kidney injury. Front Pharmacol 2024; 15:1328259. [PMID: 38313311 PMCID: PMC10834784 DOI: 10.3389/fphar.2024.1328259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Aim: Apolipoprotein M (apoM) is mainly expressed in liver and in proximal tubular epithelial cells in the kidney. In plasma, apoM associates with HDL particles via a retained signal peptide and carries sphingosine-1-phosphate (S1P), a small bioactive lipid. ApoM is undetectable in urine from healthy individuals but lack of megalin receptors in proximal tubuli cells induces loss of apoM into the urine. Besides this, very little is known about kidney-derived apoM. The aim of this study was to address the role of apoM in kidney biology and in acute kidney injury. Methods: A novel kidney-specific human apoM transgenic mouse model (RPTEC-hapoMTG) was generated and subjected to either cisplatin or ischemia/reperfusion injury. Further, a stable transfection of HK-2 cells overexpressing human apoM (HK-2-hapoMTG) was developed to study the pattern of apoM secretion in proximal tubuli cells. Results: Human apoM was present in plasma from RPTEC-hapoMTG mice (mean 0.18 μM), with a significant increase in plasma S1P levels. In vitro apoM was secreted to both the apical (urine) and basolateral (blood) compartment from proximal tubular epithelial cells. However, no differences in kidney injury score was seen between RPTEC-hapoMTG and wild type (WT) mice upon kidney injury. Further, gene expression of inflammatory markers (i.e., IL6, MCP-1) was similar upon ischemia/reperfusion injury. Conclusion: Our study suggests that kidney-derived apoM is secreted to plasma, supporting a role for apoM in sequestering molecules from excretion in urine. However, overexpression of human apoM in the kidney did not protect against acute kidney injury.
Collapse
Affiliation(s)
- Line S. Bisgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pernille M. Christensen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeongah Oh
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Federico Torta
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Lars Bo Nielsen
- The Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Wen Y, Lu X, Privratsky JR, Ren J, Ali S, Yang B, Rudemiller NP, Zhang J, Nedospasov SA, Crowley SD. TNF- α from the Proximal Nephron Exacerbates Aristolochic Acid Nephropathy. KIDNEY360 2024; 5:44-56. [PMID: 37986166 PMCID: PMC10833606 DOI: 10.34067/kid.0000000000000314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Key Points Proximal tubular TNF aggravates kidney injury and fibrogenesis in aristolochic acid nephropathy. Tubular TNF disrupts the cell cycle in injured tubular epithelial cells. TNF-mediated toxic renal injury is independent of systemic immune responses. Background Aristolochic acid nephropathy (AAN) presents with tubular epithelial cell (TEC) damage and tubulointerstitial inflammation. Although TNF-α regulates cell apoptosis and inflammatory responses, the effects of tubular TNF in the progression of AAN require elucidation. Methods Floxed TNF mice on the 129/SvEv background were crossed with PEPCK-Cre mice to generate PEPCK-Cre + TNF flox/flox (TNF PTKO) mice or bred with Ksp-Cre mice to generate KSP-Cre + TNF flox/flox (TNF DNKO) mice. TNF PTKO, TNF DNKO, and wild-type controls (Cre negative littermates) were subjected to acute and chronic AAN. Results Deletion of TNF in the proximal but not distal nephron attenuated kidney injury, renal inflammation, and tubulointerstitial fibrosis after acute or chronic aristolochic acid (AA) exposure. The TNF PTKO mice did not have altered numbers of infiltrating myeloid cells in AAN kidneys. Nevertheless, kidneys from AA-treated TNF PTKO mice had reduced levels of proteins involved in regulated cell death, higher proportions of TECs in the G0/G1 phase, and reduced TEC proportions in the G2/M phase. Pifithrin-α , which restores the cell cycle, abrogated differences between the wild-type and PTKO cohorts in G2/M phase arrest of TECs and kidney fibrosis after AA exposure. Conclusions TNF from the proximal but not the distal nephron propagates kidney injury and fibrogenesis in AAN in part by inducing G2/M cell cycle arrest of TECs.
Collapse
Affiliation(s)
- Yi Wen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
- Department of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Jamie R. Privratsky
- Department of Anesthesiology, Durham VA and Duke University Medical Center, Durham, North Carolina
| | - Jiafa Ren
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Saba Ali
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Bo Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Nathan P. Rudemiller
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| | - Jiandong Zhang
- Division of Cardiology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Institute of Cell Biology and Neurobiology, Universitatsmedizin, Berlin, Germany
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina
| |
Collapse
|
10
|
Affiliation(s)
- Stefanie Steiger
- Renal Division, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|