1
|
Higashihara E, Harada T, Fukuhara H. Juxtaglomerular apparatus-mediated homeostatic mechanisms: therapeutic implication for chronic kidney disease. Expert Opin Pharmacother 2024; 25:819-832. [PMID: 38773961 DOI: 10.1080/14656566.2024.2357188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/24/2024]
Abstract
INTRODUCTION Juxtaglomerular apparatus (JGA)-mediated homeostatic mechanism links to how sodium-glucose cotransporter 2 inhibitors (SGLT2is) slow progression of chronic kidney disease (CKD) and may link to how tolvaptan slows renal function decline in autosomal dominant polycystic kidney disease (ADPKD). AREA COVERED JGA-mediated homeostatic mechanism has been hypothesized based on investigations of tubuloglomerular feedback and renin-angiotensin system. We reviewed clinical trials of SGLT2is and tolvaptan to assess the relationship between this mechanism and these drugs. EXPERT OPINION When sodium load to macula densa (MD) increases, MD increases adenosine production, constricting afferent arteriole (Af-art) and protecting glomeruli. Concurrently, MD signaling suppresses renin secretion, increases urinary sodium excretion, and counterbalances reduced sodium filtration. However, when there is marked increase in sodium load per-nephron, as in advanced CKD, MD adenosine production increases, relaxing Af-art and maintaining sodium homeostasis at the expense of glomeruli. The beneficial effects of tolvaptan on renal function in ADPKD may also depend on the JGA-mediated homeostatic mechanisms since tolvaptan inhibits sodium reabsorption in the thick ascending limb.The JGA-mediated homeostatic mechanism regulates Af-arts, constricting to relaxing according to homeostatic needs. Understanding this mechanism may contribute to the development of pharmacotherapeutic compounds and better care for patients with CKD.
Collapse
Affiliation(s)
- Eiji Higashihara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Japan
| | - Takeo Harada
- Department of Renal and Cardiovascular Research, Otsuka Pharmaceutical Co. Ltd, Tokushima, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
2
|
Shen Y, Cai H, Ma S, Zhu W, Zhao H, Li J, Ye H, Yang L, Zhao C, Huang X, Xiao Z. Telocinobufagin Has Antitumor Effects in Non-Small-Cell Lung Cancer by Inhibiting STAT3 Signaling. JOURNAL OF NATURAL PRODUCTS 2022; 85:765-775. [PMID: 35200033 DOI: 10.1021/acs.jnatprod.1c00761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-small-cell lung carcer (NSCLC), the main histological subtype of lung cancer, is responsible for significant morbidity and mortality worldwide. Telocinobufagin, an active compound of the Chinese traditional medicine ChanSu, has antitumor effects, but its mechanism of action remains unknown. Therefore, we investigated the effect of telocinobufagin on NSCLC growth and metastasis and its possible mechanism of action, in vitro and in vivo. Cell proliferation, migration, and apoptosis were measured by methyl thiazol tetrazolium assay, colony formation, 5-ethynyl-2'-deoxyuridine incorporation, Transwell migration, wound healing, and flow cytometry analysis. A mouse xenograft model was used to evaluate tumor formation in vivo. Telocinobufagin was found to suppress proliferation and metastasis and induce apoptosis in human NSCLC cells. Moreover, telocinobufagin was able to significantly inhibit STAT3 phosphorylation at tyrosine 705 (Y705) and its downstream targets. Additionally, telocinobufagin also impaired the IL-6-induced nuclear translocation of STAT3. Consistent with the in vitro experiments, telocinobufagin reduced the A549 xenograft tumor burden and the levels of P-STAT3Y705, MCL1, BCL2, and cleaved PARP1 in vivo. These results support telocinobufagin as a promising STAT3 signaling inhibitor candidate for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Yili Shen
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haijian Cai
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shenjie Ma
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wenjing Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haiyang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jifa Li
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Hua Ye
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chengguang Zhao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhongxiao Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, China
| |
Collapse
|
3
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Nadal-Quirós M, Moore LC, Marcano M. Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase. Am J Physiol Renal Physiol 2015; 309:F434-46. [PMID: 26109090 PMCID: PMC4556890 DOI: 10.1152/ajprenal.00539.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/18/2015] [Indexed: 11/22/2022] Open
Abstract
The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules.
Collapse
Affiliation(s)
| | - Leon C Moore
- Department of Physiology and Biophysics, State University of New York Health Science Center, Stony Brook, New York
| | - Mariano Marcano
- Department of Computer Science, University of Puerto Rico, Río Piedras, Puerto Rico
| |
Collapse
|
5
|
Edwards A, Castrop H, Laghmani K, Vallon V, Layton AT. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. Am J Physiol Renal Physiol 2014; 307:F137-F146. [PMID: 24848496 PMCID: PMC4101627 DOI: 10.1152/ajprenal.00158.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/18/2014] [Indexed: 11/22/2022] Open
Abstract
This study aims to understand the extent to which modulation of the Na(+)-K(+)-2Cl(-) cotransporter NKCC2 differential splicing affects NaCl delivery to the macula densa. NaCl absorption by the thick ascending limb and macula densa cells is mediated by apical NKCC2. A recent study has indicated that differential splicing of NKCC2 is modulated by dietary salt (Schieβl IM, Rosenauer A, Kattler V, Minuth WW, Oppermann M, Castrop H. Am J Physiol Renal Physiol 305: F1139-F1148, 2013). Given the markedly different ion affinities of its splice variants, modulation of NKCC2 differential splicing is believed to impact NaCl reabsorption. To assess the validity of that hypothesis, we have developed a mathematical model of macula densa cell transport and incorporated that cell model into a previously applied model of the thick ascending limb (Weinstein AM, Krahn TA. Am J Physiol Renal Physiol 298: F525-F542, 2010). The macula densa model predicts a 27.4- and 13.1-mV depolarization of the basolateral membrane [as a surrogate for activation of tubuloglomerular feedback (TGF)] when luminal NaCl concentration is increased from 25 to 145 mM or luminal K(+) concentration is increased from 1.5 to 3.5 mM, respectively, consistent with experimental measurements. Simulations indicate that with luminal solute concentrations consistent with in vivo conditions near the macula densa, NKCC2 operates near its equilibrium state. Results also suggest that modulation of NKCC2 differential splicing by low salt, which induces a shift from NKCC2-A to NKCC2-B primarily in the cortical thick ascending limb and macula densa cells, significantly enhances salt reabsorption in the thick limb and reduces Na(+) and Cl(-) delivery to the macula densa by 3.7 and 12.5%, respectively. Simulation results also predict that the NKCC2 isoform shift hyperpolarizes the macula densa basolateral cell membrane, which, taken in isolation, may inhibit the release of the TGF signal. However, excessive early distal salt delivery and renal salt loss during a low-salt diet may be prevented by an asymmetric TGF response, which may be more sensitive to flow increases.
Collapse
Affiliation(s)
- Aurélie Edwards
- University of Paris 6, University of Paris 5, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Hayo Castrop
- Institute of Physiology University of Regensburg, Regensburg, Germany
| | - Kamel Laghmani
- University of Paris 6, University of Paris 5, Institut National de la Santé et de la Recherche Médicale UMRS 1138, Centre National de la Recherche Scientifique ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Volker Vallon
- Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, California, and San Diego Veterans Affairs Healthcare System, San Diego, California; and
| | - Anita T Layton
- Department of Mathematics, Duke University, Durham, North Carolina
| |
Collapse
|
6
|
Fuster DG, Alexander RT. Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 2013; 466:61-76. [PMID: 24337822 DOI: 10.1007/s00424-013-1408-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 10/25/2022]
Abstract
The SLC9 gene family encodes Na(+)/H(+) exchangers (NHEs). These transmembrane proteins transport ions across lipid bilayers in a diverse array of species from prokaryotes to eukaryotes, including plants, fungi, and animals. They utilize the electrochemical gradient of one ion to transport another ion against its electrochemical gradient. Currently, 13 evolutionarily conserved NHE isoforms are known in mammals [22, 46, 128]. The SLC9 gene family (solute carrier classification of transporters: www.bioparadigms.org) is divided into three subgroups [46]. The SLC9A subgroup encompasses plasmalemmal isoforms NHE1-5 (SLC9A1-5) and the predominantly intracellular isoforms NHE6-9 (SLC9A6-9). The SLC9B subgroup consists of two recently cloned isoforms, NHA1 and NHA2 (SLC9B1 and SLC9B2, respectively). The SLC9C subgroup consist of a sperm specific plasmalemmal NHE (SLC9C1) and a putative NHE, SLC9C2, for which there is currently no functional data [46]. NHEs participate in the regulation of cytosolic and organellar pH as well as cell volume. In the intestine and kidney, NHEs are critical for transepithelial movement of Na(+) and HCO3(-) and thus for whole body volume and acid-base homeostasis [46]. Mutations in the NHE6 or NHE9 genes cause neurological disease in humans and are currently the only NHEs directly linked to human disease. However, it is becoming increasingly apparent that members of this gene family contribute to the pathophysiology of multiple human diseases.
Collapse
Affiliation(s)
- Daniel G Fuster
- Division of Nephrology, Hypertension and Clinical Pharmacology and Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland,
| | | |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW We review some basic homeostatic principles that are frequently disregarded to provide boundary conditions to test any new theory containing new details. Homeostasis as applied to total body salt is discussed with a linear model for salt homeostasis that is extraordinarily simple wherein total body salt drives the salt excretion. The basics of tubuloglomerular feedback (TGF) and its implications for salt homeostasis are then reviewed. RECENT FINDINGS Advances in the field discussed include new details on the apical and basolateral transport of sodium chloride (NaCl) in the macula densa cells during TGF response, direct evidence of contribution of TGF to renal autoregulation and the description of vasodilatory adenosine A2b receptors in the 'efferent' TGF response. Finally, recent information about the role of proximal tubular microvilli as mechanosensors in the flow-dependent tubular reabsorption as a mechanism to explain glomerulotubular balance is reviewed. SUMMARY Notwithstanding the complexity of salt balance at a molecular level, the overall salt homeostasis is simple. Various natritropic nerves and hormones stabilize any disturbance in salt balance. A change in glomerular filtration rate (GFR) brought about by these natritropes will be partially counteracted by the impact of TGF on nephron function. Thus, by stabilizing GFR, TGF reduces the usefulness of GFR as an instrument of salt balance, and lessens the efficiency of salt homeostasis.
Collapse
|
8
|
Xia M, Chen L, Muh RW, Li PL, Li N. Production and actions of hydrogen sulfide, a novel gaseous bioactive substance, in the kidneys. J Pharmacol Exp Ther 2009; 329:1056-62. [PMID: 19246614 PMCID: PMC2683781 DOI: 10.1124/jpet.108.149963] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/25/2009] [Indexed: 11/22/2022] Open
Abstract
Hydrogen sulfide (H(2)S), a novel endogenous gaseous bioactive substance, has recently been implicated in the regulation of cardiovascular and neuronal functions. However, its role in the control of renal function is unknown. In the present study, incubation of renal tissue homogenates with L-cysteine (L-Cys) (as a substrate) produced H(2)S in a concentration-dependent manner. This H(2)S production was completely abolished by inhibition of both cystathionine beta-synthetase (CBS) and cystathionine gamma-lyase (CGL), two major enzymes for the production of H(2)S, using amino-oxyacetic acid (AOAA), an inhibitor of CBS, and propargylglycine (PPG), an inhibitor of CGL. However, inhibition of CBS or CGL alone induced a small decrease in H(2)S production. In anesthetized Sprague-Dawley rats, intrarenal arterial infusion of an H(2)S donor (NaHS) increased renal blood flow, glomerular filtration rate (GFR), urinary sodium (U(Na) x V), and potassium (U(K) x V) excretion. Consistently, infusion of both AOAA and PPG to inhibit the endogenous H(2)S production decreased GFR, U(Na) x V, and U(K) x V, and either one of these inhibitors alone had no significant effect on renal functions. Infusion of L-Cys into renal artery to increase the endogenous H(2)S production also increased GFR, U(Na) x V, and U(K) x V, which was blocked by AOAA plus PPG. It was shown that H(2)S had both vascular and tubular effects and that the tubular effect of H(2)S might be through inhibition of Na(+)/K(+)/2Cl(-) cotransporter and Na(+)/K(+)/ATPase activity. These results suggest that H(2)S participates in the control of renal function and increases urinary sodium excretion via both vascular and tubular actions in the kidney.
Collapse
Affiliation(s)
- Min Xia
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
The autacoid, adenosine, is present in the normoxic kidney and generated in the cytosol as well as at extracellular sites. The rate of adenosine formation is enhanced when the rate of ATP hydrolysis prevails over the rate of ATP synthesis during increased tubular transport work or during oxygen deficiency. Extracellular adenosine acts on adenosine receptor subtypes (A(1), A(2A), A(2B), and A(3)) in the cell membranes to affect vascular and tubular functions. Adenosine lowers glomerular filtration rate by constricting afferent arterioles, especially in superficial nephrons, and thus lowers the salt load and transport work of the kidney consistent with the concept of metabolic control of organ function. In contrast, it leads to vasodilation in the deep cortex and the semihypoxic medulla, and exerts differential effects on NaCl transport along the tubular and collecting duct system. These vascular and tubular effects point to a prominent role of adenosine and its receptors in the intrarenal metabolic regulation of kidney function, and, together with its role in inflammatory processes, form the basis for potential therapeutic approaches in radiocontrast media-induced acute renal failure, ischemia reperfusion injury, and in patients with cardiorenal failure.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego and VA San Diego Healthcare System, San Diego, CA 92161, USA.
| | | |
Collapse
|
10
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Compr Physiol 2008. [DOI: 10.1002/cphy.cp020413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Loreaux EL, Kaul B, Lorenz JN, Lingrel JB. Ouabain-Sensitive alpha1 Na,K-ATPase enhances natriuretic response to saline load. J Am Soc Nephrol 2008; 19:1947-54. [PMID: 18667729 DOI: 10.1681/asn.2008020174] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Na,K-ATPase is ubiquitously expressed and is essential for maintaining electrochemical and osmotic gradients. The alpha subunit of Na,K-ATPase is the receptor for cardiotonic steroids, which act through the ouabain-binding site and are important in cardiovascular regulation. Interestingly, the presence of endogenous Na,K-ATPase ligands has been implicated in the natriuretic response to perturbations such as hypertension and salt loading; therefore, it is important to characterize the role of the ouabain-binding sites in this context. Because the alpha1 isoform of mice and rats is relatively ouabain resistant, gene-targeting strategies were used to produce mice with reversed responses of the alpha1 and/or alpha2 isoforms to ouabain to assess for altered natriuretic responses to acute salt loading. Regardless of the sensitivity of the alpha2 isoform to ouabain, conferring ouabain sensitivity to alpha1 augmented the natriuretic response to an acute salt load. In addition, when endogenous Na,K-ATPase inhibitors were sequestered with an anti-digoxin antibody fragment, the sodium excretion rates in the ouabain-sensitive alpha1 isoform mice were equivalent to the ouabain-resistant alpha1 isoform mice. These data suggest that the ouabain-binding site of the alpha1 Na,K-ATPase can participate in the natriuretic response to a salt load by responding to endogenous Na,K-ATPase ligands.
Collapse
Affiliation(s)
- Elizabeth L Loreaux
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | |
Collapse
|
12
|
Schnermann J, Briggs JP. Tubuloglomerular feedback: mechanistic insights from gene-manipulated mice. Kidney Int 2008; 74:418-26. [PMID: 18418352 DOI: 10.1038/ki.2008.145] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tubuloglomerular feedback (TGF) describes a causal and direct relationship between tubular NaCl concentration at the end of the ascending limb of the loop of Henle and afferent arteriolar tone. The use of genetically altered mice has led to an expansion of our understanding of the mechanisms underlying the functional coupling of epithelial, mesangial, and vascular cells in TGF. Studies in mice with deletions of the A or B isoform of NKCC2 (Na,K,2Cl cotransporter) and of ROMK indicate that NaCl uptake is required for response initiation. A role for transcellular salt transport is suggested by the inhibitory effect of ouabain in mutant mice with an ouabain-sensitive alpha1 Na,K-ATPase. No effect on TGF was observed in NHE2- and H/K-ATPase-deficient mice. TGF responses are abolished in A1 adenosine receptor-deficient mice, and studies in mice with null mutations in NTPDase1 or ecto-5'-nucleotidase indicate that adenosine involved in TGF is mainly derived from dephosphorylation of released ATP. Angiotensin II is a required cofactor for the elicitation of TGF responses, as AT1 receptor or angiotensin-converting enzyme deficiencies reduce TGF responses, mostly by reducing adenosine effectiveness. Overall, the evidence from these studies in genetically altered mice indicates that transcellular NaCl transport induces the generation of adenosine that, in conjunction with angiotensin II, elicits afferent arteriolar constriction.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
13
|
Hanner F, Chambrey R, Bourgeois S, Meer E, Mucsi I, Rosivall L, Shull GE, Lorenz JN, Eladari D, Peti-Peterdi J. Increased renal renin content in mice lacking the Na+/H+ exchanger NHE2. Am J Physiol Renal Physiol 2008; 294:F937-44. [PMID: 18287398 DOI: 10.1152/ajprenal.00591.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macula densa (MD) cells express the Na(+)/H(+) exchanger (NHE) isoform NHE2 at the apical membrane, which may play an important role in tubular salt sensing through the regulation of cell volume and intracellular pH. These studies aimed to determine whether NHE2 participates in the MD control of renin synthesis. Renal renin content and activity and elements of the MD signaling pathway were analyzed using wild-type (NHE2(+/+)) and NHE2 knockout (NHE2(-/-)) mice. Immunofluorescence studies indicated that NHE2(-/-) mice lack NHE3 at the MD apical membrane, so the other apical NHE isoform has not compensated for the lack of NHE2. Importantly, the number of renin-expressing cells in the afferent arteriole in NHE2(-/-) mice was increased approximately 2.5-fold using renin immunohistochemistry. Western blotting confirmed approximately 20% higher renal cortical renin content in NHE2(-/-) mice compared with wild type. No-salt diet for 1 wk significantly increased renin content and activity in NHE2(+/+) mice, but the response was blunted in NHE2(-/-) mice. Renal tissue renin activity and plasma renin concentration were elevated three- and twofold, respectively, in NHE2(-/-) mice compared with wild type. NHE2(-/-) mice also exhibited a significantly increased renal cortical cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase (mPGES) expression, indicating MD-specific mechanisms responsible for the increased renin content. Significant and chronic activation of ERK1/2 was observed in MD cells of NHE2(-/-) kidneys. Removal of salt or addition of NHE inhibitors to cultured mouse MD-derived (MMDD1) cells caused a time-dependent activation of ERK1/2. In conclusion, the NHE2 isoform appears to be important in the MD feedback control of renin secretion, and the signaling pathway likely involves MD cell shrinkage and activation of ERK1/2, COX-2, and mPGES, all well-established elements of the MD-PGE(2)-renin release pathway.
Collapse
Affiliation(s)
- Fiona Hanner
- Department of Physiology, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vallon V, Miracle C, Thomson S. Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail 2008; 10:176-87. [PMID: 18242127 DOI: 10.1016/j.ejheart.2008.01.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 01/07/2008] [Accepted: 01/15/2008] [Indexed: 02/06/2023] Open
Abstract
Therapy of heart failure is more difficult when renal function is impaired. Here, we outline the effects on kidney function of the autacoid, adenosine, which forms the basis for adenosine A(1) receptor (A(1)R) antagonists as treatment for decompensated heart failure. A(1)R antagonists induce a eukaliuretic natriuresis and diuresis by blocking A(1)R-mediated NaCl reabsorption in the proximal tubule and the collecting duct. Normally, suppressing proximal reabsorption will lower glomerular filtration rate (GFR) through the tubuloglomerular feedback mechanism (TGF). But the TGF response, itself, is mediated by A(1)R in the preglomerular arteriole, so blocking A(1)R allows natriuresis to proceed while GFR remains constant or increases. The influence of A(1)R over vascular resistance in the kidney is augmented by angiotensin II while A(1)R activation directly suppresses renin secretion. These interactions could modulate the overall impact of A(1)R blockade on kidney function in patients taking angiotensin II blockers. A(1)R blockers may increase the energy utilized for transport in the semi-hypoxic medullary thick ascending limb, an effect that could be prevented with loop diuretics. Finally, while the vasodilatory effect of A(1)R blockade could protect against renal ischaemia, A(1)R blockade may act on non-resident cells to exacerbate reperfusion injury, where ischaemia to occur. Despite these uncertainties, the available data on A(1)R antagonist therapy in patients with decompensated heart failure are promising and warrant confirmation in further studies.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VASDHCS, San Diego, CA 92161, USA.
| | | | | |
Collapse
|
15
|
Navar LG, Arendshorst WJ, Pallone TL, Inscho EW, Imig JD, Bell PD. The Renal Microcirculation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|