1
|
Saito Y, Takekuma Y, Komatsu Y, Sugawara M. Impact of baseline proteinuria on progression-free survival after regorafenib treatment for metastatic colorectal cancer. Support Care Cancer 2025; 33:443. [PMID: 40316784 DOI: 10.1007/s00520-025-09497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
PURPOSE Regorafenib improves the survival of patients with metastatic colorectal cancer (mCRC). However, proteinuria frequently occurs in regorafenib treatment, and development of severe hypertension, which is closely related to proteinuria, is associated with better treatment outcomes. We previously reported that patients with baseline proteinuria exhibit regorafenib-induced problematic symptoms. In this study, we aimed to assess the effect of baseline proteinuria on the treatment efficacy of regorafenib for mCRC. METHODS Patients with mCRC receiving regorafenib (n = 100) were categorized into control (without baseline proteinuria) and pre-existing proteinuria (baseline grades 1-2) groups and retrospectively evaluated. The primary endpoint was the progression-free survival (PFS). RESULTS Patients in the pre-existing proteinuria group exhibited significantly worse PFS than those in the control group (median with 95% confidence interval [CI] = 51 (46-56) and 56 (49-81) days, respectively; P = 0.04). Overall survival and disease control rate were lower in the pre-existing proteinuria group than in the control group although the difference was not statistically significant (P = 0.11 and 0.10, respectively). Similar results were obtained in the propensity score-matched population. Multivariate Cox hazard regression analyses revealed that baseline pre-existing proteinuria was associated with poor PFS (adjusted hazard ratio = 1.67; 95% CI = 1.03-2.72; P = 0.04). Additionally, ratio of drug suspension duration during all treatment cycles was higher in patients with pre-existing proteinuria than those without symptoms. CONCLUSION Our results suggest that patients with baseline proteinuria experience poor PFS following regorafenib treatment for mCRC, although we should consider the clinical significance of the difference.
Collapse
Affiliation(s)
- Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 4-1, Maeda 7-jo 15-chome, Teine-ku, Sapporo, 006-8585, Japan.
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-jo, Nishi 5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Yoshito Komatsu
- Cancer Center, Hokkaido University Hospital, Kita 14-jo, Nishi 5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-jo, Nishi 5-chome, Kita-ku, Sapporo, 060-8648, Japan
- Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo, Nishi 6-chome, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
2
|
Karasu N, Kuzucu M, Mat OC, Gul M, Yay A, Dundar M. Protective effect of deinoxanthin in sorafenib-induced nephrotoxicity in rats with the hepatocellular carcinoma model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5969-5988. [PMID: 39625488 DOI: 10.1007/s00210-024-03633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/13/2024] [Indexed: 04/11/2025]
Abstract
Sorafenib is a synthetic compound and an orally administered multichines inhibitor that targets growth signaling and angiogenesis. It is widely recognized as the standard of care for advanced hepatocellular carcinoma (HCC) but has toxic side effects. Deinoxanthin, purified from the radioresistant bacterium Deinococcus radiodurans, has strong antioxidant characteristics. In this study, the protective effect of deinoxanthin against sorafenib-induced nephrotoxicity was investigated in a rat model of hepatocellular carcinoma. In this regard, the expressions of DDAH1, KIM1, and INOS genes were examined, histopathological and immunohistochemical analyses were performed, and various parameters such as SOD, MDA, GST, CAT, TAS, and TOS were tested biochemically. BUN and creatinine levels were measured in renal tissues. RT-qPCR, Western blot, and ELISA methods were used for all these analyses. As a result, the analyses show that deinoxanthin, which has a high antioxidant capacity, reduces kidney injury and can be used as a protective agent. The primary objective of this study is to evaluate the potential of deinoxanthin as a protective agent against the nephrotoxic side effects of sorafenib in HCC. Our study identified the potential synergistic effects of sorafenib and deinoxanthin on nephrotoxicity in rats with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nilgun Karasu
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey
- Faculty of Medicine, Department of Medical Genetics, Uskudar University, Istanbul, Turkey
| | - Mehmet Kuzucu
- Faculty of Arts and Sciences, Department of Biology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Ozge Cengiz Mat
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Mustafa Gul
- Faculty of Medicine, Department of Physiology, Ataturk University, Erzurum, Turkey
| | - Arzu Yay
- Faculty of Medicine, Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Faculty of Medicine, Department of Medical Genetics, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
3
|
Java A, Sparks MA, Kavanagh D. Post-transplant Thrombotic Microangiopathy. J Am Soc Nephrol 2025; 36:940-951. [PMID: 39888686 PMCID: PMC12059091 DOI: 10.1681/asn.0000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/28/2025] [Indexed: 02/02/2025] Open
Abstract
Thrombotic microangiopathy (TMA) is a challenging and serious complication of kidney transplantation that significantly affects graft and patient survival, occurring in 0.8%-15% of transplant recipients. TMA is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and organ injury due to endothelial damage and microthrombi formation in small vessels. However, clinical features can range from a renal-limited form, diagnosed only on a kidney biopsy, to full-blown systemic manifestations, which include neurologic, gastrointestinal, and cardiovascular injury. TMA can arise because of genetic or acquired defects such as in complement-mediated TMA or can occur in the context of other conditions like infections, autoimmune diseases, or immunosuppressive drugs, where complement activation may also play a role. Recurrent TMA after kidney transplant is almost always complement-mediated, although complement overactivation may also play a role in de novo post-transplant TMAs associated with ischemia-reperfusion injury, immunosuppressive drugs, antibody-mediated rejection, viral infections, and relapse of autoimmune diseases, such as antiphospholipid antibody syndrome. Differentiating between a complement-mediated process and one triggered by other factors is often challenging but critical to minimize allograft damage because the former is nonresponsive to supportive therapy, needs long-term anticomplement therapy, and has a high risk of recurrence. Given the central role of complement and effect of genetic defects on the risk of recurrence in many forms of post-transplant TMA, genetic testing for complement disorders is key for proper diagnosis and management. Given that complement activation may also play a role in a subset of TMAs associated with other conditions, prompt recognition and timely initiation of anticomplement therapy is equally important. In addition, TMA associated with noncomplement genes, often part of a broader syndromic process with distinct clinical features, has also been described. Early identification and treatment are essential to prevent graft failure and other severe complications. This review explores the pathophysiologic mechanisms underlying various post-transplant TMAs.
Collapse
Affiliation(s)
- Anuja Java
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew A. Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Renal Section, Durham VA Health Care System, Durham, North Carolina
| | - David Kavanagh
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
4
|
Chatterjee A, Tumarin J, Prabhakar S. Cellular cross-talk drives mesenchymal transdifferentiation in diabetic kidney disease. Front Med (Lausanne) 2025; 11:1499473. [PMID: 39839616 PMCID: PMC11747801 DOI: 10.3389/fmed.2024.1499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies. Additionally, the observations of slowing of glomerular filtration rate (GFR) decline and reduction of proteinuria by recent drugs such as SGLT-2 blockers, whose primary mechanism of action is on proximal tubules, further strengthen the concept of cross-talk between the tubular and glomerular cells. Recently, the focus of research on the pathogenesis of DKD has primarily centered around exploring the cross-talk between various signaling pathways in the diabetic kidney as well as cross-talk between tubular and glomerular endothelial cells and podocytes with special relevance to epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). The focus of this review is to provide a general description of cell-to-cell cross-talk in the diabetic kidney and to highlight these concepts with evidence in relation to the physiology and pathophysiology of DKD.
Collapse
Affiliation(s)
| | | | - Sharma Prabhakar
- Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, United States
| |
Collapse
|
5
|
Nishimura Y, Hanada S. Origins and Molecular Mechanisms Underlying Renal Vascular Development. KIDNEY360 2024; 5:1718-1726. [PMID: 39115947 DOI: 10.34067/kid.0000000000000543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Kidneys play a crucial role in maintaining homeostasis within the body, and this function is intricately linked to the vascular structures within them. For vascular cells in the kidney to mature and function effectively, a well-coordinated spatial alignment between the nephrons and complex network of blood vessels is essential. This arrangement ensures efficient blood filtration and regulation of the electrolyte balance, blood pressure, and fluid levels. Additionally, the kidneys are vital in regulating the acid-base balance and producing hormones involved in erythropoiesis and blood pressure control. This article focuses on the vascular development of the kidneys, summarizing the current understanding of the origin and formation of the renal vasculature, and the key molecules involved. A comprehensive review of existing studies has been conducted to elucidate the cellular and molecular mechanisms governing renal vascular development. Specific molecules play a critical role in the development of renal vasculature, contributing to the spatial alignment between nephrons and blood vessels. By elucidating the cellular and molecular mechanisms involved in renal vascular development, this study aims to advance renal regenerative medicine and offer potential avenues for therapeutic interventions in kidney disease.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Department of Clinical Engineering, Faculty of Medical Science and Technology, Gunma Paz University, Takasaki, Japan
| | | |
Collapse
|
6
|
Gu HM, Sou SJ, Ku JY, Kim KH, Park YJ, Choi SH, Ha HK, Hwang EC, Lee CH. Impact of diabetes mellitus and hypertension on renal function during first-line targeted therapy for metastatic renal cell carcinoma: a retrospective multicenter study. Transl Androl Urol 2024; 13:1912-1921. [PMID: 39434726 PMCID: PMC11491201 DOI: 10.21037/tau-24-231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Background Renal function deterioration during systemic therapy in patients with metastatic renal cell carcinoma (mRCC) is a long-term concern in treatment planning. Although hypertension (HTN) and diabetes mellitus (DM) are the most common factors that affect chronic kidney disease (CKD) development and progression, their impact on renal function during targeted therapy is unclear. This study investigated whether DM and HTN were associated with a decline in renal function during first-line targeted therapy for mRCC. Methods This retrospective multicenter study analyzed patients receiving first-line targeted therapy for mRCC. They were classified as follows: group 1: HTN-, DM-; group 2: HTN+, DM-; group 3: HTN-, DM+; and group 4: HTN+, DM+. Changes in renal function and factors affecting progression to stage 4 CKD after targeted therapy were analyzed. Results Among the 424 enrolled patients, 303 (71.5%) and 121 (28.5%) were treated with sunitinib and pazopanib, respectively [median duration: 10.3 months, interquartile range (IQR), 3.1-37.0 months]. Although all groups showed a decreased mean estimated glomerular filtration rate (eGFR) after treatment (P<0.001 for group 1, group 2, and group 4, P=0.02 for group 3, respectively), there were no significant differences in changes in eGFR (∆eGFR) between groups (P=0.10). However, actual renal function change calculated using percent ∆eGFR (%∆eGFR) showed differences between groups (P=0.02); the %∆eGFR of group 4 was significantly lower compared with group 1 (P=0.008). The mean progression time to stage 4 CKD in group 4 (38.6 months) was significantly shorter compared to the other groups (P<0.001). Multivariate analysis identified increased age (P=0.008), increased number of metastatic sites (P=0.047), and DM and HTN coexistence (P<0.001) as predictors of progression to stage 4 CKD. Conclusions Patients with DM and HTN experienced further decline in renal function and had a higher risk of progression to stage 4 CKD after targeted therapy compared to patients without these risk factors. Recognition and proactive management of DM and HTN are necessary to facilitate the proper administration of life-prolonging oncological treatments.
Collapse
Affiliation(s)
- Hui Mo Gu
- Department of Urology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung Jun Sou
- Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ja Yoon Ku
- Department of Urology, Dongnam Institute of Radiological & Medical Sciences Cancer Center, Busan, Republic of Korea
| | - Kyung Hwan Kim
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hong Koo Ha
- Department of Urology, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Chan Ho Lee
- Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
7
|
Finn LS. Nephrotic Syndrome Throughout Childhood: Diagnosing Podocytopathies From the Womb to the Dorm. Pediatr Dev Pathol 2024; 27:426-458. [PMID: 38745407 DOI: 10.1177/10935266241242669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The etiologies of podocyte dysfunction that lead to pediatric nephrotic syndrome (NS) are vast and vary with age at presentation. The discovery of numerous novel genetic podocytopathies and the evolution of diagnostic technologies has transformed the investigation of steroid-resistant NS while simultaneously promoting the replacement of traditional morphology-based disease classifications with a mechanistic approach. Podocytopathies associated with primary and secondary steroid-resistant NS manifest as diffuse mesangial sclerosis, minimal change disease, focal segmental glomerulosclerosis, and collapsing glomerulopathy. Molecular testing, once an ancillary option, has become a vital component of the clinical investigation and when paired with kidney biopsy findings, provides data that can optimize treatment and prognosis. This review focuses on the causes including selected monogenic defects, clinical phenotypes, histopathologic findings, and age-appropriate differential diagnoses of nephrotic syndrome in the pediatric population with an emphasis on podocytopathies.
Collapse
Affiliation(s)
- Laura S Finn
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at The University of Pennsylvania, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
8
|
Gaydarski L, Dimitrova IN, Stanchev S, Iliev A, Kotov G, Kirkov V, Stamenov N, Dikov T, Georgiev GP, Landzhov B. Unraveling the Complex Molecular Interplay and Vascular Adaptive Changes in Hypertension-Induced Kidney Disease. Biomedicines 2024; 12:1723. [PMID: 39200188 PMCID: PMC11351430 DOI: 10.3390/biomedicines12081723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Angiogenesis, the natural mechanism by which fresh blood vessels develop from preexisting ones, is altered in arterial hypertension (AH), impacting renal function. Studies have shown that hypertension-induced renal damage involves changes in capillary density (CD), indicating alterations in vascularization. We aimed to elucidate the role of the apelin receptor (APLNR), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF) in hypertension-induced renal damage. We used two groups of spontaneously hypertensive rats aged 6 and 12 months, representing different stages of AH, and compared them to age-matched normotensive controls. The kidney tissue samples were prepared through a well-established protocol. All data analysis was conducted with a dedicated software program. APLNR was localized in tubular epithelial cells and the endothelial cells of the glomeruli, with higher expression in older SHRs. The localization of nNOS and VEGF was similar. The expression of APLNR and nNOS increased with AH progression, while VEGF levels decreased. CD was lower in young SHRs compared to controls and decreased significantly in older SHRs in comparison to age-matched controls. Our statistical analysis revealed significant differences in molecule expression between age groups and varying correlations between the expression of the three molecules and CD.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Georgi Kotov
- Department of Rheumatology, Clinic of Rheumatology, University Hospital “St. Ivan Rilski”, Medical Faculty, Medical University of Sofia, 1612 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health “Prof. Dr. Tzekomir Vodenicharov”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| | - Tihomir Dikov
- Department of General and Clinical Pathology, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Georgi P. Georgiev
- Department of Orthopedics and Traumatology, University Hospital Queen Giovanna-ISUL, Medical University of Sofia, 1527 Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (L.G.); (S.S.); (A.I.); (N.S.); (B.L.)
| |
Collapse
|
9
|
Gaudet A, Zheng X, Kambham N, Bhalla V. Esm-1 mediates transcriptional polarization associated with diabetic kidney disease. Am J Physiol Renal Physiol 2024; 326:F1016-F1031. [PMID: 38601985 PMCID: PMC11386982 DOI: 10.1152/ajprenal.00419.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a secreted proteoglycan, with notable expression in kidney, which attenuates inflammation and albuminuria. However, little is known about Esm1 expression in mature tissues in the presence or absence of diabetes. We utilized publicly available single-cell RNA sequencing data to characterize Esm1 expression in 27,786 renal endothelial cells (RECs) obtained from three mouse and four human databases. We validated our findings using bulk transcriptome data from 20 healthy subjects and 41 patients with DKD and using RNAscope. In both mice and humans, Esm1 is expressed in a subset of all REC types and represents a minority of glomerular RECs. In patients, Esm1(+) cells exhibit conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and shift expression toward chemotaxis pathways. Esm1 correlates with a majority of genes within these pathways, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. Diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1(+) cells. Thus, Esm1 appears to be a marker for glomerular transcriptional polarization in DKD.NEW & NOTEWORTHY Esm-1 is primarily expressed in glomerular endothelium in humans. Cells expressing Esm1 exhibit a high degree of conservation in the enrichment of genes related to blood vessel development. In the context of diabetes, these cells are reduced in number and show a significant transcriptional shift toward the chemotaxis pathway. In diabetes, there is a transcriptional polarization in the glomerulus that is reflected by the degree of Esm1 deficiency.
Collapse
Affiliation(s)
- Alexandre Gaudet
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xiaoyi Zheng
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
10
|
Zeng J, Deng Q, Chen Z, Yan S, Dong Q, Zhang Y, Cui Y, Li L, He Y, Shi J. Recent development of VEGFR small molecule inhibitors as anticancer agents: A patent review (2021-2023). Bioorg Chem 2024; 146:107278. [PMID: 38484586 DOI: 10.1016/j.bioorg.2024.107278] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.
Collapse
Affiliation(s)
- Jing Zeng
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zheng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuang Yan
- Sichuan University of Arts and Science, DaZhou 635000, China
| | - Qin Dong
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China; Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources, Sichuan 611137, China.
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
11
|
Saito Y, Takekuma Y, Komatsu Y, Sugawara M. Impact of preexisting proteinuria on the development of regorafenib-induced problematic proteinuria in real-world metastatic colorectal cancer treatment. Sci Rep 2024; 14:5153. [PMID: 38431746 PMCID: PMC10908833 DOI: 10.1038/s41598-024-55727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Regorafenib is the first multikinase inhibitor for treating metastatic colorectal cancer (mCRC). Proteinuria is a frequently encountered adverse effect, regardless of prior administration of vascular endothelial growth factor inhibitors. Herein, we aimed to assess the impact of baseline preexisting proteinuria on regorafenib-induced problematic proteinuria during real-world mCRC therapy. Patients with mCRC receiving regorafenib (n = 100) were retrospectively assessed and divided into control and preexisting proteinuria (baseline grade of 1-2) groups. The primary endpoint was the development of grade ≥ 2 (grade ≥ 3 in case of baseline grade 2 patients) proteinuria. Propensity score-matching was performed to confirm the robustness of primary analyses. Defined proteinuria occurred in 30.7 and 57.9% of patients in the control and preexisting proteinuria groups, respectively, with significant differences in the all-patient population (P = 0.01). The preexisting proteinuria group exhibited significant defined proteinuria development within 7 days of regorafenib initiation, grade ≥ 3 symptoms, and treatment suspension owing to proteinuria. Similar results were obtained in the propensity score-matched population. According to multivariate logistic regression analysis, baseline proteinuria was a singular risk factor for defined proteinuria development (adjusted odds ratio; 3.76, 95% confidence interval; 1.45-9.75, P = 0.007). Collectively, our study revealed that patients with preexisting proteinuria develop regorafenib-induced proteinuria degradation.
Collapse
Affiliation(s)
- Yoshitaka Saito
- Department of Clinical Pharmaceutics & Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 4-1, Maeda 7-Jo 15-Chome, Teine-Ku, Sapporo, Hokkaido, 006-8585, Japan.
| | - Yoh Takekuma
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
| | - Yoshito Komatsu
- Cancer Center, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
| | - Mitsuru Sugawara
- Department of Pharmacy, Hokkaido University Hospital, Kita 14-Jo, Nishi 5-Chome, Kita-Ku, Sapporo, 060-8648, Japan
- Laboratory of Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-Jo, Nishi 6-Chome, Kita-Ku, Sapporo, 060-0812, Japan
| |
Collapse
|
12
|
Gujarati NA, Chow AK, Mallipattu SK. Central role of podocytes in mediating cellular cross talk in glomerular health and disease. Am J Physiol Renal Physiol 2024; 326:F313-F325. [PMID: 38205544 PMCID: PMC11207540 DOI: 10.1152/ajprenal.00328.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Podocytes are highly specialized epithelial cells that surround the capillaries of the glomeruli in the kidney. Together with the glomerular endothelial cells, these postmitotic cells are responsible for regulating filtrate from the circulating blood with their organized network of interdigitating foot processes that wrap around the glomerular basement membrane. Although podocyte injury and subsequent loss is the hallmark of many glomerular diseases, recent evidence suggests that the cell-cell communication between podocytes and other glomerular and nonglomerular cells is critical for the development and progression of kidney disease. In this review, we highlight these key cellular pathways of communication and how they might be a potential target for therapy in glomerular disease. We also postulate that podocytes might serve as a central hub for communication in the kidney under basal conditions and in response to cellular stress, which may have implications for the development and progression of glomerular diseases.
Collapse
Affiliation(s)
- Nehaben A Gujarati
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Andrew K Chow
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Renal Section, Northport Veterans Affairs Medical Center, Northport, New York, United States
| |
Collapse
|
13
|
Hu S, Hang X, Wei Y, Wang H, Zhang L, Zhao L. Crosstalk among podocytes, glomerular endothelial cells and mesangial cells in diabetic kidney disease: an updated review. Cell Commun Signal 2024; 22:136. [PMID: 38374141 PMCID: PMC10875896 DOI: 10.1186/s12964-024-01502-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/28/2024] [Indexed: 02/21/2024] Open
Abstract
Diabetic kidney disease (DKD) is a long-term and serious complication of diabetes that affects millions of people worldwide. It is characterized by proteinuria, glomerular damage, and renal fibrosis, leading to end-stage renal disease, and the pathogenesis is complex and involves multiple cellular and molecular mechanisms. Among three kinds of intraglomerular cells including podocytes, glomerular endothelial cells (GECs) and mesangial cells (MCs), the alterations in one cell type can produce changes in the others. The cell-to-cell crosstalk plays a crucial role in maintaining the glomerular filtration barrier (GFB) and homeostasis. In this review, we summarized the recent advances in understanding the pathological changes and interactions of these three types of cells in DKD and then focused on the signaling pathways and factors that mediate the crosstalk, such as angiopoietins, vascular endothelial growth factors, transforming growth factor-β, Krüppel-like factors, retinoic acid receptor response protein 1 and exosomes, etc. Furthermore, we also simply introduce the application of the latest technologies in studying cell interactions within glomerular cells and new promising mediators for cell crosstalk in DKD. In conclusion, this review provides a comprehensive and updated overview of the glomerular crosstalk in DKD and highlights its importance for the development of novel intervention approaches.
Collapse
Affiliation(s)
- Shiwan Hu
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xing Hang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
14
|
Li M, Armelloni S, Mattinzoli D, Ikehata M, Chatziantoniou C, Alfieri C, Molinari P, Chadjichristos CE, Malvica S, Castellano G. Crosstalk mechanisms between glomerular endothelial cells and podocytes in renal diseases and kidney transplantation. Kidney Res Clin Pract 2024; 43:47-62. [PMID: 38062623 PMCID: PMC10846991 DOI: 10.23876/j.krcp.23.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 02/06/2024] Open
Abstract
The glomerular filtration barrier (GFB), composed of endothelial cells, glomerular basement membrane, and podocytes, is a unique structure for filtering blood while detaining plasma proteins according to size and charge selectivity. Structurally, the fenestrated endothelial cells, which align the capillary loops, are in close proximity to mesangial cells. Podocytes are connected by specialized intercellular junctions known as slit diaphragms and are separated from the endothelial compartment by the glomerular basement membrane. Podocyte-endothelial cell communication or crosstalk is required for the development and maintenance of an efficient filtration process in physiological conditions. In pathological situations, communication also has an essential role in promoting or delaying disease progression. Podocytes and endothelial cells can secrete signaling molecules, which act as crosstalk effectors and, through binding to their target receptors, can trigger bidirectional paracrine or autocrine signal transduction. Moreover, the emerging evidence of extracellular vesicles derived from various cell types engaging in cell communication has also been reported. In this review, we summarize the principal pathways involved in the development and maintenance of the GFB and the progression of kidney disease, particularly in kidney transplantation.
Collapse
Affiliation(s)
- Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Armelloni
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Deborah Mattinzoli
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Masami Ikehata
- Renal Research Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christos Chatziantoniou
- Unité Mixte de Recherche Scientifique 1155, Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Carlo Alfieri
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Paolo Molinari
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Christos E. Chadjichristos
- Unité Mixte de Recherche Scientifique 1155, Institut National de la Santé et de la Recherche Médicale, Hôpital Tenon, Paris, France
- Faculty of Medicine, Sorbonne University, Paris, France
| | - Silvia Malvica
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Castellano
- Department of Nephrology, Dialysis and Kidney Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Suvakov S, Kattah AG, Gojkovic T, Enninga EAL, Pruett J, Jayachandran M, Sousa C, Santos J, Abou Hassan C, Gonzales-Suarez M, Garovic VD. Impact of Aging and Cellular Senescence in the Pathophysiology of Preeclampsia. Compr Physiol 2023; 13:5077-5114. [PMID: 37770190 DOI: 10.1002/cphy.c230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The incidence of hypertensive disorders of pregnancy is increasing, which may be due to several factors, including an increased age at pregnancy and more comorbid health conditions during reproductive years. Preeclampsia, the most severe hypertensive disorder of pregnancy, has been associated with an increased risk of future disease, including cardiovascular and kidney diseases. Cellular senescence, the process of cell cycle arrest in response to many physiologic and maladaptive stimuli, may play an important role in the pathogenesis of preeclampsia and provide a mechanistic link to future disease. In this article, we will discuss the pathophysiology of preeclampsia, the many mechanisms of cellular senescence, evidence for the involvement of senescence in the development of preeclampsia, as well as evidence that cellular senescence may link preeclampsia to the risk of future disease. Lastly, we will explore how a better understanding of the role of cellular senescence in preeclampsia may lead to therapeutic trials. © 2023 American Physiological Society. Compr Physiol 13:5077-5114, 2023.
Collapse
Affiliation(s)
- Sonja Suvakov
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamara Gojkovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Elizabeth A L Enninga
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jacob Pruett
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ciria Sousa
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Janelle Santos
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Coline Abou Hassan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
- Division of Research, Department of Obstetrics and Gynecology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Arai H, Yamamoto S, Matsubara T, Miyake T, Tochio A, Mii A, Shimizu A, Minamiguchi S, Muso E, Yanagita M. Focal Segmental Sclerosis Associated with the Novel Multi-tyrosine Kinase Inhibitor Ponatinib. Intern Med 2023; 62:2693-2698. [PMID: 36642524 PMCID: PMC10569927 DOI: 10.2169/internalmedicine.1283-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 01/15/2023] Open
Abstract
Ponatinib is a novel multi-tyrosine kinase inhibitor (TKI) with potent inhibitory activity against refractory chronic myeloid leukemia (CML). Despite its high clinical efficacy, ponatinib induces various adverse events due to its multi-target characteristic. However, renal complications associated with ponatinib are rare. A 76-year-old woman had a history of chronic myeloid leukemia (CML) resistant to imatinib and nilotinib. Our patient developed proteinuria and renal function deterioration during treatment with ponatinib but not with imatinib or nilotinib. We herein report the first case of a patient with secondary focal segmental glomerulosclerosis (FSGS) with partial glomerular collapse induced by ponatinib treatment.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Japan
| | - Shinya Yamamoto
- Department of Nephrology, Kyoto University Graduate School of Medicine, Japan
| | - Takeshi Matsubara
- Department of Nephrology, Kyoto University Graduate School of Medicine, Japan
| | - Takafumi Miyake
- Department of Nephrology, Kyoto University Graduate School of Medicine, Japan
| | - Akira Tochio
- Department of Nephrology, Kyoto University Graduate School of Medicine, Japan
- Department of Nephrology, Japanese Red Cross Society Wakayama Medical Center, Japan
| | - Akiko Mii
- Department of Nephrology, Nippon Medical School, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Japan
| | | | - Eri Muso
- Division of Nephrology and Dialysis, Kitano Hospital, Japan
- Department of Food and Nutrition, Faculty of Contemporary Home Economics, Kyoto Kacho University, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Japan
| |
Collapse
|
17
|
Li S, Zhang Y, Yang Y, Chen S, Yang Z, Kuang C, Zhong Y, Liu F. The impact of statin use before intensive care unit admission on patients with acute kidney injury after cardiac surgery. Front Pharmacol 2023; 14:1259828. [PMID: 37781714 PMCID: PMC10537929 DOI: 10.3389/fphar.2023.1259828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious complication after cardiac surgery. The influence of statin use before surgery on the renal outcome of patients undergoing cardiac surgery is controversial. The purpose of this study was to evaluate the effect of statins on postoperative renal outcomes in patients undergoing cardiac surgery. Methods: We included CSA-AKI patients in the Medical Information Mart for Intensive Care (MIMIC)-IV database and were divided into statin group and non-statin group according to whether they used statins before entering intensive care units (ICU). The main outcomes were hospitalization and 30-day mortality, and the secondary outcomes were 60-day mortality and 90-day mortality. We used propensity score matching (PSM) to adjust for confounding factors. The 95% confidence interval (CI) and risk ratio (RO) were calculated by the COX proportional regression model. At the same time, stratified analysis was used to explore whether the relationship between the statins use before intensive care units and mortality was different in each subgroup and whether the relationship between different doses of Atorvastatin and mortality was different. Result: We identified 675 pre-ICU statin users and 2095 non-statin users. In the COX proportional regression model, pre-ICU statin use was associated with decreased in-hospital (HR = 0.407, 95%confidence interval 0.278-0.595, p < 0.001) and 30-day mortality (HR = 0.407, 95%CI 0.279-0.595, p < 0.001). The survival rate of patients who took statins before entering ICU was significantly higher than that of those who did not use statins at 30 days, 60 days and 90 days. There is a significant interaction between patients with aged>65 years (HR = 0.373, 95%CI 0.240-0.581, p < 0.001), Acute kidney injury grade I (HR = 0.244, 95%CI 0.118-0.428, p < 0.001), and without post-myocardial infarction syndrome (HR = 0.344, 95%CI 0.218-0.542, p < 0.001). The mortality in hospital and 60 days of CSA-AKI patients treated with ≥80 mg Atorvastatin before operation was significantly reduced (p < 0.05). Conclusion: The pre-ICU statin use was significantly associated with decreased risk in hospital and 30-day mortality. The preoperative use of ≥80 mg Atorvastatin may improve the prognosis of CSA-AKI.
Collapse
Affiliation(s)
- Shishi Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Youlin Zhang
- Department of the Second Clinical, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Yan Yang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Sining Chen
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhiqian Yang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chaoying Kuang
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yuzhen Zhong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Luxen M, Zwiers PJ, Meester F, Jongman RM, Kuiper T, Moser J, Pultar M, Skalicky S, Diendorfer AB, Hackl M, van Meurs M, Molema G. Unique miRNome and transcriptome profiles underlie microvascular heterogeneity in mouse kidney. Am J Physiol Renal Physiol 2023; 325:F299-F316. [PMID: 37410897 PMCID: PMC10511173 DOI: 10.1152/ajprenal.00005.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Endothelial cells in blood vessels in the kidney exert different functions depending on the (micro)vascular bed they are located in. The present study aimed to investigate microRNA and mRNA transcription patterns that underlie these differences. We zoomed in on microvascular compartments in the mouse renal cortex by laser microdissecting the microvessels prior to small RNA- and RNA-sequencing analyses. By these means, we characterized microRNA and mRNA transcription profiles of arterioles, glomeruli, peritubular capillaries, and postcapillary venules. Quantitative RT-PCR, in situ hybridization, and immunohistochemistry were used to validate sequencing results. Unique microRNA and mRNA transcription profiles were found in all microvascular compartments, with dedicated marker microRNAs and mRNAs showing enriched transcription in a single microvascular compartment. In situ hybridization validated the localization of microRNAs mmu-miR-140-3p in arterioles, mmu-miR-322-3p in glomeruli, and mmu-miR-451a in postcapillary venules. Immunohistochemical staining showed that von Willebrand factor protein was mainly expressed in arterioles and postcapillary venules, whereas GABRB1 expression was enriched in glomeruli, and IGF1 was enriched in postcapillary venules. More than 550 compartment-specific microRNA-mRNA interaction pairs were identified that carry functional implications for microvascular behavior. In conclusion, our study identified unique microRNA and mRNA transcription patterns in microvascular compartments of the mouse kidney cortex that underlie microvascular heterogeneity. These patterns provide important molecular information for future studies into differential microvascular engagement in health and disease.NEW & NOTEWORTHY Renal endothelial cells display a high level of heterogeneity depending on the (micro)vascular bed they reside in. The molecular basis contributing to these differences is poorly understood yet of high importance to increase understanding of microvascular engagement in the kidney in health and disease. This report describes m(icro)RNA expression profiles of microvascular beds in the mouse renal cortex and uncovers microvascular compartment-specific m(icro)RNAs and miRNA-mRNA pairs, thereby revealing important molecular mechanisms underlying renal microvascular heterogeneity.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter J Zwiers
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Femke Meester
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rianne M Jongman
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Timara Kuiper
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Huijink TM, van 't Hof CJ, van Furth LA, de Haan NA, Maassen H, Venema LH, Lammerts RGM, van den Heuvel MC, Hillebrands JL, van den Born J, Berger SP, Leuvenink HGD. Loss of Endothelial Glycocalyx During Normothermic Machine Perfusion of Porcine Kidneys Irrespective of Pressure and Hematocrit. Transplant Direct 2023; 9:e1507. [PMID: 37456589 PMCID: PMC10348736 DOI: 10.1097/txd.0000000000001507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/18/2023] Open
Abstract
Normothermic machine perfusion (NMP) is a promising modality for marginal donor kidneys. However, little is known about the effects of NMP on causing endothelial glycocalyx (eGC) injury. This study aims to evaluate the effects of NMP on eGC injury in marginal donor kidneys and whether this is affected by perfusion pressures and hematocrits. Methods Porcine slaughterhouse kidneys (n = 6/group) underwent 35 min of warm ischemia. Thereafter, the kidneys were preserved with oxygenated hypothermic machine perfusion for 3 h. Subsequently, 4 h of NMP was applied using pressure-controlled perfusion with an autologous blood-based solution containing either 12%, 24%, or 36% hematocrit. Pressures of 55, 75, and 95 mm Hg were applied in the 24% group. Perfusate, urine, and biopsy samples were collected to determine both injury and functional parameters. Results During NMP, hyaluronan levels in the perfusate increased significantly (P < 0.0001). In addition, the positivity of glyco-stained glycocalyx decreased significantly over time, both in the glomeruli (P = 0.024) and peritubular capillaries (P = 0.003). The number of endothelial cells did not change during NMP (P = 0.157), whereas glomerular endothelial expression of vascular endothelial growth factor receptor-2 decreased significantly (P < 0.001). Microthrombi formation was significantly increased after NMP. The use of different pressures and hematocrits did not affect functional parameters during perfusion. Conclusions NMP is accompanied with eGC and vascular endothelial growth factor receptor-2 loss, without significant loss of endothelial cells. eGC loss was not affected by the different pressures and hematocrits used. It remains unclear whether endothelial injury during NMP has harmful consequences for the transplanted kidney.
Collapse
Affiliation(s)
- Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cor J van 't Hof
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Annick van Furth
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nora A de Haan
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Hanno Maassen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Leonie H Venema
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rosa G M Lammerts
- Department of Transplantation Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
Zhang K, Fu Z, Zhang Y, Chen X, Cai G, Hong Q. The role of cellular crosstalk in the progression of diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1173933. [PMID: 37538798 PMCID: PMC10395826 DOI: 10.3389/fendo.2023.1173933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications of diabetes, and its main manifestations are progressive proteinuria and abnormal renal function, which eventually develops end stage renal disease (ESRD). The pathogenesis of DN is complex and involves many signaling pathways and molecules, including metabolic disorders, genetic factors, oxidative stress, inflammation, and microcirculatory abnormalities strategies. With the development of medical experimental techniques, such as single-cell transcriptome sequencing and single-cell proteomics, the pathological alterations caused by kidney cell interactions have attracted more and more attention. Here, we reviewed the characteristics and related mechanisms of crosstalk among kidney cells podocytes, endothelial cells, mesangial cells, pericytes, and immune cells during the development and progression of DN and highlighted its potential therapeutic effects.
Collapse
|
21
|
Wang X, Shields CA, Ekperikpe U, Amaral LM, Williams JM, Cornelius DC. VASCULAR AND RENAL MECHANISMS OF PREECLAMPSIA. CURRENT OPINION IN PHYSIOLOGY 2023; 33:100655. [PMID: 37009057 PMCID: PMC10062189 DOI: 10.1016/j.cophys.2023.100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Preeclampsia (PE) is a multisystem obstetric disorder that affects 2-10% of pregnancies worldwide and it is a leading cause of maternal and fetal morbidity and mortality. The etiology of PE development is not clearly delineated, but since delivery of the fetus and placenta often leads to symptom resolution in the most cases of PE, it is hypothesized that the placenta is the inciting factor of the disease. Current management strategies for PE focus on treating the maternal symptoms to stabilize the mother in an attempt to prolong the pregnancy. However, the efficacy of this management strategy is limited. Therefore, identification of novel therapeutic targets and strategies is needed. Here, we provide a comprehensive overview of the current state of knowledge regarding mechanisms of vascular and renal pathophysiology during PE and discuss potential therapeutic targets directed at improving maternal vascular and renal function.
Collapse
Affiliation(s)
- Xi Wang
- Department of Pharmacology, University of Mississippi Medical Center
| | - Corbin A Shields
- Department of Emergency Medicine, University of Mississippi Medical Center
| | - Ubong Ekperikpe
- Department of Pharmacology, University of Mississippi Medical Center
| | - Lorena M Amaral
- Department of Pharmacology, University of Mississippi Medical Center
| | | | - Denise C Cornelius
- Department of Pharmacology, University of Mississippi Medical Center
- Department of Emergency Medicine, University of Mississippi Medical Center
| |
Collapse
|
22
|
Smith KD, Akilesh S. Collapsing glomerulopathy: unraveling varied pathogeneses. Curr Opin Nephrol Hypertens 2023; 32:213-222. [PMID: 36811644 DOI: 10.1097/mnh.0000000000000873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Collapsing glomerulopathy presents clinically with nephrotic syndrome and rapid progressive loss of kidney function. Animal models and patient studies have uncovered numerous clinical and genetic conditions associated with collapsing glomerulopathy, as well as putative mechanisms, which will be reviewed here. RECENT FINDINGS Collapsing glomerulopathy is classified pathologically as a variant of focal and segmental glomerulosclerosis (FSGS). As such, most research efforts have focused on the causative role of podocyte injury in driving the disease. However, studies have also shown that injury to the glomerular endothelium or interruption of the podocyte-glomerular endothelial cell signaling axis can also cause collapsing glomerulopathy. Furthermore, emerging technologies are now enabling exploration of diverse molecular pathways that can precipitate collapsing glomerulopathy using biopsies from patients with the disease. SUMMARY Since its original description in the 1980s, collapsing glomerulopathy has been the subject of intense study, and these efforts have uncovered numerous insights into potential disease mechanisms. Newer technologies will enable profiling of the intra-patient and inter-patient variability in collapsing glomerulopathy mechanisms directly in patient biopsies, which will improve the diagnosis and classification of collapsing glomerulopathy.
Collapse
Affiliation(s)
- Kelly D Smith
- Department of Laboratory Medicine and Pathology, University of Washington
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington
- Kidney Research Institute, Seattle, Washington, USA
| |
Collapse
|
23
|
Mima A, Yasuzawa T. Role of insulin signaling and its associated signaling in glomerulus for diabetic kidney disease. Histol Histopathol 2023; 38:487-492. [PMID: 36326211 DOI: 10.14670/hh-18-543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The number of patients with diabetic kidney disease (DKD) has been rising significantly over the last several decades and is one of the most frequent causes of chronic kidney disease (CKD) in the United States. Hyperglycemia accelerates development of DKD, a direct result of increased intracellular glucose availability. Two large clinical studies, the Diabetes Control and Complications Trial in type 1 diabetes and the United Kingdom Prospective Diabetes Study in type 2 diabetes showed that intensive glycemic control delayed the onset and the progression of DKD. On the other hand, it is reported that glycemic control alone is not sufficient to control DKD progression. Recent data support that insulin signaling and its associated signaling contribute significantly to preserve glomerular function. However, little is known about the key regulators of insulin signaling in glomerular component cells. In this review, we summarize the novel knowledge regarding the reno-protective effects of insulin signaling or its associated signaling in glomerular constituent cells on DKD.
Collapse
Affiliation(s)
- Akira Mima
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan.
| | - Toshinori Yasuzawa
- Department of Nephrology, Osaka Medical and Pharmaceutical University, Osaka, Japan
- School of Human Cultures, University of Shiga Prefecture, Shiga, Japan
| |
Collapse
|
24
|
Chyła-Danił G, Sałaga-Zaleska K, Kreft E, Krzesińska A, Herman S, Kuchta A, Sakowicz-Burkiewicz M, Lenartowicz M, Jankowski M. Suramin Affects the Renal VEGF-A/VEGFR Axis in Short-Term Streptozotocin-Induced Diabetes. Pharmaceuticals (Basel) 2023; 16:ph16030470. [PMID: 36986570 PMCID: PMC10053825 DOI: 10.3390/ph16030470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic nephropathy (DN) accounts for approximately 50% of end-stage renal diseases. Vascular endothelial growth factor A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in DN, but its role is unclear. The lack of pharmacological tools to modify renal concentrations further hinders the understanding of its role in DN. In this study, rats were evaluated after 3 weeks of streptozotocin-induced diabetes and two suramin treatments (10 mg/kg, ip). Vascular endothelial growth factor A expression was evaluated by western blot of glomeruli and immunofluorescence of the renal cortex. RT-PCR for receptors Vegfr1 mRNA and Vegfr2 mRNA quantitation was performed. The soluble adhesive molecules (sICAM-1, sVCAM-1) in blood were measured by ELISA and the vasoreactivity of interlobar arteries to acetylcholine was evaluated using wire myography. Suramin administration reduced the expression and intraglomerular localisation of VEGF-A. Increased VEGFR-2 expression in diabetes was reduced by suramin to non-diabetic levels. Diabetes reduced the sVCAM-1 concentrations. Suramin in diabetes restored acetylcholine relaxation properties to non-diabetic levels. In conclusion, suramin affects the renal VEGF-A/VEGF receptors axis and has a beneficial impact on endothelium-dependent relaxation of renal arteries. Thus, suramin may be used as a pharmacological agent to investigate the potential role of VEGF-A in the pathogenesis of renal vascular complications in short-term diabetes.
Collapse
Affiliation(s)
- Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Aleksandra Krzesińska
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | - Sylwia Herman
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| | | | - Małgorzata Lenartowicz
- Laboratory of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, Dębinki 7, 80-210 Gdańsk, Poland
| |
Collapse
|
25
|
‘t Hart DC, Yildiz D, Palacio-Castañeda V, Li L, Gumuscu B, Brock R, Verdurmen WPR, van der Vlag J, Nijenhuis T. Co-Culture of Glomerular Endothelial Cells and Podocytes in a Custom-Designed Glomerulus-on-a-Chip Model Improves the Filtration Barrier Integrity and Affects the Glomerular Cell Phenotype. BIOSENSORS 2023; 13:bios13030339. [PMID: 36979551 PMCID: PMC10046631 DOI: 10.3390/bios13030339] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Crosstalk between glomerular endothelial cells and glomerular epithelial cells (podocytes) is increasingly becoming apparent as a crucial mechanism to maintain the integrity of the glomerular filtration barrier. However, in vitro studies directly investigating the effect of this crosstalk on the glomerular filtration barrier are scarce because of the lack of suitable experimental models. Therefore, we developed a custom-made glomerulus-on-a-chip model recapitulating the glomerular filtration barrier, in which we investigated the effects of co-culture of glomerular endothelial cells and podocytes on filtration barrier function and the phenotype of these respective cell types. The custom-made glomerulus-on-a-chip model was designed using soft lithography. The chip consisted of two parallel microfluidic channels separated by a semi-permeable polycarbonate membrane. The glycocalyx was visualized by wheat germ agglutinin staining and the barrier integrity of the glomerulus-on-a-chip model was determined by measuring the transport rate of fluorescently labelled dextran from the top to the bottom channel. The effect of crosstalk on the transcriptome of glomerular endothelial cells and podocytes was investigated via RNA-sequencing. Glomerular endothelial cells and podocytes were successfully cultured on opposite sides of the membrane in our glomerulus-on-a-chip model using a polydopamine and collagen A double coating. Barrier integrity of the chip model was significantly improved when glomerular endothelial cells were co-cultured with podocytes compared to monocultures of either glomerular endothelial cells or podocytes. Co-culture enlarged the surface area of podocyte foot processes and increased the thickness of the glycocalyx. RNA-sequencing analysis revealed the regulation of cellular pathways involved in cellular differentiation and cellular adhesion as a result of the interaction between glomerular endothelial cells and podocytes. We present a novel custom-made glomerulus-on-a-chip co-culture model and demonstrated for the first time using a glomerulus-on-a-chip model that co-culture affects the morphology and transcriptional phenotype of glomerular endothelial cells and podocytes. Moreover, we showed that co-culture improves barrier function as a relevant functional readout for clinical translation. This model can be used in future studies to investigate specific glomerular paracrine pathways and unravel the role of glomerular crosstalk in glomerular (patho) physiology.
Collapse
Affiliation(s)
- Daan C. ‘t Hart
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Valentina Palacio-Castañeda
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Lanhui Li
- Biosensors and Devices Laboratory, Biomedical Engineering Department, Institute for Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Burcu Gumuscu
- Biosensors and Devices Laboratory, Biomedical Engineering Department, Institute for Complex Molecular Systems, Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Roland Brock
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Wouter P. R. Verdurmen
- Department of Medical Biosciences, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute for Medical Innovations, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
26
|
Gaudet A, Zheng X, Kambham N, Bhalla V. Esm-1 mediates transcriptional polarization associated with diabetic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530562. [PMID: 36993439 PMCID: PMC10054923 DOI: 10.1101/2023.03.01.530562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a cytokine- and glucose-regulated, secreted proteoglycan, that is notably expressed in kidney and attenuates inflammation and albuminuria. Esm1 has restricted expression at the vascular tip during development but little is known about its expression pattern in mature tissues, and its precise effects in diabetes. Methods We utilized publicly available single-cell RNA sequencing data to explore the characteristics of Esm1 expression in 27,786 renal endothelial cells obtained from four adult human and three mouse databases. We validated our findings using bulk transcriptome data from an additional 20 healthy subjects and 41 patients with DKD and using RNAscope. Using correlation matrices, we relate Esm1 expression to the glomerular transcriptome and evaluated these matrices with systemic over-expression of Esm-1. Results In both mice and humans, Esm1 is expressed in a subset of all renal endothelial cell types and represents a minority of glomerular endothelial cells. In patients, Esm1 (+) cells exhibit a highly conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and profoundly shift expression to reflect chemotaxis pathways. Analysis of these gene sets highlight candidate genes such as Igfbp5 for cross talk between cell types. We also find that diabetes induces correlations in the expression of large clusters of genes, within cell type-enriched transcripts. Esm1 significantly correlates with a majority genes within these clusters, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. In diabetic mice, these gene clusters link Esm1 expression to albuminuria, and over-expression of Esm-1 reverses the expression pattern in many of these genes. Conclusions A comprehensive analysis of single cell and bulk transcriptomes demonstrates that diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1 (+) cells. Esm1 is both a marker for glomerular transcriptional polarization, and a mediator that re-orients the transcriptional program in DKD.
Collapse
|
27
|
Ribatti D, Ligresti G, Nicosia RF. Kidney endothelial cell heterogeneity, angiocrine activity and paracrine regulatory mechanisms. Vascul Pharmacol 2023; 148:107139. [PMID: 36539108 PMCID: PMC10828957 DOI: 10.1016/j.vph.2022.107139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
The blood microvascular endothelium consists of a heterogeneous population of cells with regionally distinct morphologies and transcriptional signatures in different tissues and organs. In addition to providing an anti-thrombogenic surface for blood flow, endothelial cells perform a multitude of additional regulatory tasks involving organogenesis, metabolism, angiogenesis, inflammation, repair and organ homeostasis. To communicate with surrounding cells and accomplish their many functions, endothelial cells secrete angiocrine factors including growth factors, chemokines, cytokines, extracellular matrix components, and proteolytic enzymes. Nonendothelial parenchymal and stromal cells in turn regulate endothelial growth, differentiation and survival during embryonal development and in the adult by paracrine mechanisms. Driven by advances in molecular biology, animal genetics, single cell transcriptomics and microscopic imaging, knowledge of organotypic vasculatures has expanded rapidly in recent years. The kidney vasculature, in particular, has been the focus of intensive investigation and represents a primary example of how endothelial heterogeneity and crosstalk with nonendothelial cells contribute to the development and function of a vital organ. In this paper, we review the morphology, function, and development of the kidney vasculature, with an emphasis on blood microvascular endothelial heterogeneity, and provide examples of endothelial and nonendothelial-derived factors that are critically involved in kidney development, growth, response to injury, and homeostasis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso (SMBNOS), Universita' degli Studi Aldo Moro, Policlinico, Piazza G. Cesare, 11, - Bari, Italy.
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, United States of America
| | - Roberto F Nicosia
- Department of Laboratory Medicine and Pathology, University of Washington, Box 356100, 1959 NE Pacific St, Seattle, WA 98195, United States of America
| |
Collapse
|
28
|
Donnan MD, Deb DK, Onay T, Scott RP, Ni E, Zhou Y, Quaggin SE. Formation of the glomerular microvasculature is regulated by VEGFR-3. Am J Physiol Renal Physiol 2023; 324:F91-F105. [PMID: 36395385 PMCID: PMC9836230 DOI: 10.1152/ajprenal.00066.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
Microvascular dysfunction is a key driver of kidney disease. Pathophysiological changes in the kidney vasculature are regulated by vascular endothelial growth factor receptors (VEGFRs), supporting them as potential therapeutic targets. The tyrosine kinase receptor VEGFR-3, encoded by FLT4 and activated by the ligands VEGF-C and VEGF-D, is best known for its role in lymphangiogenesis. Therapeutically targeting VEGFR-3 to modulate lymphangiogenesis has been proposed as a strategy to treat kidney disease. However, outside the lymphatics, VEGFR-3 is also expressed in blood vascular endothelial cells in several tissues including the kidney. Here, we show that Vegfr-3 is expressed in fenestrated microvascular beds within the developing and adult mouse kidney, which include the glomerular capillary loops. We found that expression levels of VEGFR-3 are dynamic during glomerular capillary loop development, with the highest expression observed during endothelial cell migration into the S-shaped glomerular body. We developed a conditional knockout mouse model for Vegfr-3 and found that loss of Vegfr-3 resulted in a striking glomerular phenotype characterized by aneurysmal dilation of capillary loops, absence of mesangial structure, abnormal interendothelial cell junctions, and poor attachment between glomerular endothelial cells and the basement membrane. In addition, we demonstrated that expression of the VEGFR-3 ligand VEGF-C by podocytes and mesangial cells is dispensable for glomerular development. Instead, VEGFR-3 in glomerular endothelial cells attenuates VEGFR-2 phosphorylation. Together, the results of our study support a VEGF-C-independent functional role for VEGFR-3 in the kidney microvasculature outside of lymphatic vessels, which has implications for clinical therapies that target this receptor.NEW & NOTEWORTHY Targeting VEGFR-3 in kidney lymphatics has been proposed as a method to treat kidney disease. However, expression of VEGFR-3 is not lymphatic-specific. We demonstrated developmental expression of VEGFR-3 in glomerular endothelial cells, with loss of Vegfr-3 leading to malformation of glomerular capillary loops. Furthermore, we showed that VEGFR-3 attenuates VEGFR-2 activity in glomerular endothelial cells independent of paracrine VEGF-C signaling. Together, these data provide valuable information for therapeutic development targeting these pathways.
Collapse
Affiliation(s)
- Michael D Donnan
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Dilip K Deb
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Tuncer Onay
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Rizaldy P Scott
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Eric Ni
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Yalu Zhou
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
| |
Collapse
|
29
|
Shi M, Maique JO, Cleaver O, Moe OW, Hu MC. VEGFR2 insufficiency enhances phosphotoxicity and undermines Klotho's protection against peritubular capillary rarefaction and kidney fibrosis. Am J Physiol Renal Physiol 2023; 324:F106-F123. [PMID: 36395384 PMCID: PMC9799155 DOI: 10.1152/ajprenal.00149.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and its cognate receptor (VEGFR2) system are crucial for cell functions associated with angiogenesis and vasculogenesis. Klotho contributes to vascular health maintenance in the kidney and other organs in mammals, but it is unknown whether renoprotection by Klotho is dependent on VEGF/VEGFR2 signaling. We used heterozygous VEGFR2-haploinsufficient (VEGFR2+/-) mice resulting from heterozygous knockin of green fluorescent protein in the locus of fetal liver kinase 1 encoding VEGFR2 to test the interplay of Klotho, phosphate, and VEGFR2 in kidney function, the vasculature, and fibrosis. VEGFR2+/- mice displayed downregulated VEGF/VEGFR2 signaling in the kidney, lower density of peritubular capillaries, and accelerated kidney fibrosis, all of which were also found in the homozygous Klotho hypomorphic mice. High dietary phosphate induced higher plasma phosphate, greater peritubular capillary rarefaction, and more kidney fibrosis in VEGFR2+/- mice compared with wild-type mice. Genetic overexpression of Klotho significantly attenuated the elevated plasma phosphate, kidney dysfunction, peritubular capillary rarefaction, and kidney fibrosis induced by a high-phosphate diet in wild-type mice but only modestly ameliorated these changes in the VEGFR2+/- background. In cultured endothelial cells, VEGFR2 inhibition reduced free VEGFR2 but enhanced its costaining of an endothelial marker (CD31) and exacerbated phosphotoxicity. Klotho protein maintained VEGFR2 expression and attenuated high phosphate-induced cell injury, which was reduced by VEGFR2 inhibition. In conclusion, normal VEGFR2 function is required for vascular integrity and for Klotho to exert vascular protective and antifibrotic actions in the kidney partially through the regulation of VEGFR2 function.NEW & NOTEWORTHY This research paper studied the interplay of vascular endothelial growth factor receptor type 2 (VEGFR2), high dietary phosphate, and Klotho, an antiaging protein, in peritubular structure and kidney fibrosis. Klotho protein was shown to maintain VEGFR2 expression in the kidney and reduce high phosphate-induced cell injury. However, Klotho cytoprotection was attenuated by VEGFR2 inhibition. Thus, normal VEGFR2 function is required for vascular integrity and Klotho to exert vascular protective and antifibrotic actions in the kidney.
Collapse
Affiliation(s)
- Mingjun Shi
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
| | - Jenny Omega Maique
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Dallas, Texas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
30
|
Karasawa K, Akiyama KI, Akihisa T, Miyabe Y, Nitta K, Hoshino J. A Case of Rapidly Progressive Diabetic Nephropathy Induced by Osimertinib. Case Rep Nephrol Dial 2023; 13:104-112. [PMID: 37900932 PMCID: PMC10601886 DOI: 10.1159/000531015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/04/2023] [Indexed: 10/31/2023] Open
Abstract
The number of patients with diabetic nephropathy is increasing worldwide and it is important to understand the underlying pathological mechanisms of the disease. In early stage diabetic nephropathy, the hyperglycemic environment leads to vascular endothelial cell damage, resulting in overexpression of vascular endothelial growth factor (VEGF) in podocytes and renal pathology of glomerular hypertrophy, glomerular basement membrane thickening, and mesangial hyperplasia. In diabetic nephropathy, renal thrombotic microangiopathy (TMA) develops and the nephropathy progressively worsens in some cases of severe glomerular podocyte damage. Further, receptor tyrosine kinase inhibitors (RTKIs) may suppress VEGF secretion via VEGF receptor-2 tyrosine kinase inhibition in podocytes, which results in renal TMA and rapid deterioration of diabetic nephropathy. Osimertinib, a third-generation irreversible epidermal growth factor receptor (EGFR)-TKI, is approved as a first-line treatment agent for metastatic or locally advanced EGFR mutation-positive non-small cell lung cancer. We encountered a case of a patient with diabetic nephropathy with lung adenocarcinoma treated with osimertinib, whose condition deteriorated from early nephropathy to end-stage renal disease in approximately 4 months. The patient had early diabetic nephropathy, but the use of a RTKI suppressed VEGF expression in podocytes, resulting in the induction of renal TMA and the development of rapidly progressive diabetic nephropathy.
Collapse
Affiliation(s)
- Kazunori Karasawa
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Ken-Ichi Akiyama
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoei Miyabe
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
31
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
32
|
Iwasaki T, Mizusaki K, Masumoto M, Minagawa Y, Azuma K, Furukawa T, Yoshida M, Kuragano T. TAFRO syndrome with renal biopsy successfully treated with steroids and cyclosporine: a case report. BMC Nephrol 2022; 23:262. [PMID: 35870879 PMCID: PMC9308189 DOI: 10.1186/s12882-022-02886-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
TAFRO syndrome is an acute or subacute systemic inflammatory disease with no apparent cause, presenting with fever, generalized edema, thrombocytopenia, renal damage, anemia, and organ enlargement. Interleukin-6, vascular endothelial growth factor, and other cytokines are thought to be the etiologic agents that increase vascular permeability and cause the resulting organ damage. Only few reports of renal biopsy performed in patients with TAFRO syndrome exist.
Case presentation
A 61-year-old woman, with a history of Sjogren’s syndrome, was admitted to our hospital with anasarca and abdominal distension. Based on the clinical course and various laboratory findings, we diagnosed TAFRO syndrome. Renal biopsy revealed thrombotic microangiopathy, including endothelial cell swelling, subendothelial space expansion, and mesangiolysis. She was treated with oral prednisolone and cyclosporine, with consequent resolution of anasarca, pleural effusion, and ascites, and improvement in renal function and urinary findings. The patient’s platelet count also normalized after 2 months of treatment.
Conclusions
Given that only few reports of improvement in the systemic symptoms of TAFRO syndrome using steroids and cyclosporine exist, our study investigating the relationship between the pathogenesis of TAFRO syndrome and renal disorders, as well as treatment methods, provides valuable insights.
Collapse
|
33
|
Da Vitoria Lobo ME, Weir N, Hardowar L, Al Ojaimi Y, Madden R, Gibson A, Bestall SM, Hirashima M, Schaffer CB, Donaldson LF, Bates DO, Hulse RP. Hypoxia-induced carbonic anhydrase mediated dorsal horn neuron activation and induction of neuropathic pain. Pain 2022; 163:2264-2279. [PMID: 35353768 PMCID: PMC9578530 DOI: 10.1097/j.pain.0000000000002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
Abstract
ABSTRACT Neuropathic pain, such as that seen in diabetes mellitus, results in part from central sensitisation in the dorsal horn. However, the mechanisms responsible for such sensitisation remain unclear. There is evidence that disturbances in the integrity of the spinal vascular network can be causative factors in the development of neuropathic pain. Here we show that reduced blood flow and vascularity of the dorsal horn leads to the onset of neuropathic pain. Using rodent models (type 1 diabetes and an inducible endothelial-specific vascular endothelial growth factor receptor 2 knockout mouse) that result in degeneration of the endothelium in the dorsal horn, we show that spinal cord vasculopathy results in nociceptive behavioural hypersensitivity. This also results in increased hypoxia in dorsal horn neurons, depicted by increased expression of hypoxia markers such as hypoxia inducible factor 1α, glucose transporter 3, and carbonic anhydrase 7. Furthermore, inducing hypoxia through intrathecal delivery of dimethyloxalylglycine leads to the activation of dorsal horn neurons as well as mechanical and thermal hypersensitivity. This shows that hypoxic signalling induced by reduced vascularity results in increased hypersensitivity and pain. Inhibition of carbonic anhydrase activity, through intraperitoneal injection of acetazolamide, inhibited hypoxia-induced pain behaviours. This investigation demonstrates that induction of a hypoxic microenvironment in the dorsal horn, as occurs in diabetes, is an integral process by which neurons are activated to initiate neuropathic pain states. This leads to the conjecture that reversing hypoxia by improving spinal cord microvascular blood flow could reverse or prevent neuropathic pain.
Collapse
Affiliation(s)
- Marlene E. Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Nick Weir
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Lydia Hardowar
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Yara Al Ojaimi
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Ryan Madden
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Alex Gibson
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Samuel M. Bestall
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - Masanori Hirashima
- Division of Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Chris B. Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, United States
| | - Lucy F. Donaldson
- Pain Centre Versus Arthritis and School of Life Sciences, The Medical School QMC, University of Nottingham, Nottingham, United Kingdom
| | - David O. Bates
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- Centre of Membrane and Protein and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, United Kingdom
| | - Richard Philip Hulse
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
34
|
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N. Assessing kidney development and disease using kidney organoids and CRISPR engineering. Front Cell Dev Biol 2022; 10:948395. [PMID: 36120564 PMCID: PMC9479189 DOI: 10.3389/fcell.2022.948395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.
Collapse
Affiliation(s)
- Wajima Safi
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Andrés Marco
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Patricia Prado
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| |
Collapse
|
35
|
Koning M, Dumas SJ, Avramut MC, Koning RI, Meta E, Lievers E, Wiersma LE, Borri M, Liang X, Xie L, Liu P, Chen F, Lin L, Luo Y, Mulder J, Spijker HS, Jaffredo T, van den Berg BM, Carmeliet P, van den Berg CW, Rabelink TJ. Vasculogenesis in kidney organoids upon transplantation. NPJ Regen Med 2022; 7:40. [DOI: 10.1038/s41536-022-00237-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractHuman induced pluripotent stem cell-derived kidney organoids have potential for disease modeling and to be developed into clinically transplantable auxiliary tissue. However, they lack a functional vasculature, and the sparse endogenous endothelial cells (ECs) are lost upon prolonged culture in vitro, limiting maturation and applicability. Here, we use intracoelomic transplantation in chicken embryos followed by single-cell RNA sequencing and advanced imaging platforms to induce and study vasculogenesis in kidney organoids. We show expansion of human organoid-derived ECs that reorganize into perfused capillaries and form a chimeric vascular network with host-derived blood vessels. Ligand-receptor analysis infers extensive potential interactions of human ECs with perivascular cells upon transplantation, enabling vessel wall stabilization. Perfused glomeruli display maturation and morphogenesis to capillary loop stage. Our findings demonstrate the beneficial effect of vascularization on not only epithelial cell types, but also the mesenchymal compartment, inducing the expansion of ´on target´ perivascular stromal cells, which in turn are required for further maturation and stabilization of the neo-vasculature. The here described vasculogenic capacity of kidney organoids will have to be deployed to achieve meaningful glomerular maturation and kidney morphogenesis in vitro.
Collapse
|
36
|
Miao C, Zhu X, Wei X, Long M, Jiang L, Li C, Jin D, Du Y. Pro- and anti-fibrotic effects of vascular endothelial growth factor in chronic kidney diseases. Ren Fail 2022; 44:881-892. [PMID: 35618410 PMCID: PMC9154791 DOI: 10.1080/0886022x.2022.2079528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Renal fibrosis is the inevitable common end-point of all progressive chronic kidney diseases. The underlying mechanisms of renal fibrosis are complex, and currently there is no effective therapy against renal fibrosis. Renal microvascular rarefaction contributes to the progression of renal fibrosis; however, an imbalance between proangiogenic and antiangiogenic factors leads to the loss of renal microvasculature. Vascular endothelial growth factor (VEGF) is the most important pro-angiogenic factor. Recent studies have unraveled the involvement of VEGF in the regulation of renal microvascular rarefaction and fibrosis via various mechanisms; however, it is not clear whether it has anti-fibrotic or pro-fibrotic effect. This paper reviews the available evidence pertaining to the function of VEGF in the fibrotic process and explores the associated underlying mechanisms. Our synthesis will help identify the future research priorities for developing specialized treatments for alleviating or preventing renal fibrosis. Abbreviation: VEGF: vascular endothelial growth factor; CKD: chronic kidney disease; ESKD: end-stage kidney disease; ER: endoplasmic reticulum; VEGFR: vascular endothelial growth factor receptor; AKI: acute kidney injury; EMT: epithelial-to-mesenchymal transition; HIF: hypoxia-inducible factor; α-SMA: α smooth muscle actin; UUO: unilateral ureteral obstruction; TGF-β: transforming growth factor-β; PMT: pericyte-myofibroblast transition; NO: nitric oxide; NOS: nitric oxide synthase; nNOS: neuronal nitric oxide synthase; iNOS: inducible nitric oxide synthase; eNOS: endothelial nitric oxide synthase; sGC: soluble guanylate cyclase; PKG: soluble guanylate cyclase dependent protein kinases; UP R: unfolded protein response
Collapse
Affiliation(s)
- Changxiu Miao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chenhao Li
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Die Jin
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
37
|
Jansen J, van den Berge BT, van den Broek M, Maas RJ, Daviran D, Willemsen B, Roverts R, van der Kruit M, Kuppe C, Reimer KC, Di Giovanni G, Mooren F, Nlandu Q, Mudde H, Wetzels R, den Braanker D, Parr N, Nagai JS, Drenic V, Costa IG, Steenbergen E, Nijenhuis T, Dijkman H, Endlich N, van de Kar NCAJ, Schneider RK, Wetzels JFM, Akiva A, van der Vlag J, Kramann R, Schreuder MF, Smeets B. Human pluripotent stem cell-derived kidney organoids for personalized congenital and idiopathic nephrotic syndrome modeling. Development 2022; 149:275031. [PMID: 35417019 PMCID: PMC9148570 DOI: 10.1242/dev.200198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/28/2022] [Indexed: 12/21/2022]
Abstract
Nephrotic syndrome (NS) is characterized by severe proteinuria as a consequence of kidney glomerular injury due to podocyte damage. In vitro models mimicking in vivo podocyte characteristics are a prerequisite to resolve NS pathogenesis. The detailed characterization of organoid podocytes resulting from a hybrid culture protocol showed a podocyte population that resembles adult podocytes and was superior compared with 2D counterparts, based on single-cell RNA sequencing, super-resolution imaging and electron microscopy. In this study, these next-generation podocytes in kidney organoids enabled personalized idiopathic nephrotic syndrome modeling, as shown by activated slit diaphragm signaling and podocyte injury following protamine sulfate, puromycin aminonucleoside treatment and exposure to NS plasma containing pathogenic permeability factors. Organoids cultured from cells of a patient with heterozygous NPHS2 mutations showed poor NPHS2 expression and aberrant NPHS1 localization, which was reversible after genetic correction. Repaired organoids displayed increased VEGFA pathway activity and transcription factor activity known to be essential for podocyte physiology, as shown by RNA sequencing. This study shows that organoids are the preferred model of choice to study idiopathic and congenital podocytopathies. Summary: Kidney organoid podocytes generated from human pluripotent stem cells using a hybrid differentiation protocol allow podocyte pathophysiology modeling that leads to congenital as well as idiopathic nephrotic syndrome in patients.
Collapse
Affiliation(s)
- Jitske Jansen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Bartholomeus T van den Berge
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn van den Broek
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rutger J Maas
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Deniz Daviran
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Brigith Willemsen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rona Roverts
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Marit van der Kruit
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany
| | - Katharina C Reimer
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany
| | - Gianluca Di Giovanni
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Fieke Mooren
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Quincy Nlandu
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Helmer Mudde
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roy Wetzels
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk den Braanker
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Naomi Parr
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - James S Nagai
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | | | - Ivan G Costa
- Institute for Computational Genomics, University Hospital RWTH Aachen, Achen 52062, Germany.,Joint Research Center for Computational Biomedicine, RWTH Aachen University Hospital, Aachen 52062, Germany
| | - Eric Steenbergen
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Henry Dijkman
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicole Endlich
- NIPOKA, 17489 Greifswald, Germany.,Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rebekka K Schneider
- Institute for Biomedical Technologies, Department of Cell Biology, RWTH Aachen University, Aachen 52062, Germany.,Department of Developmental Biology, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands.,Oncode Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jack F M Wetzels
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Anat Akiva
- Department of Biochemistry, Electron Microscopy Center, Radboudumc Technology Center Microscopy, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 29, 6525 GA Nijmegen, The Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Institute of Experimental Medicine and Systems Biology, Medical Faculty RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen 52062, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children's Hospital, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Bart Smeets
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
38
|
Lassen E, Daehn IS. Hypertrophy and glomerular cell adaptation through crosstalk leads to glomerular injury after kidney transplantation. Kidney Int 2022; 101:673-676. [PMID: 35314050 PMCID: PMC9310433 DOI: 10.1016/j.kint.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 10/18/2022]
Abstract
Menon et al. report cell-specific transcriptional changes in podocytes and glomerular endothelial cells that indicate cell stress and increased bidirectional crosstalk among these cells in apparently healthy human allografts. They identified common and independent podocytes and glomerular endothelial cell-specific responses in nondiabetic and diabetic transplant recipients, as well as parallels in genes related to podocyte and glomerular endothelial cell stress in experimental focal segmental glomerular sclerosis. These findings could explain hypertrophy-associated glomerular disease progression associated with podocyte detachment after transplantation.
Collapse
|
39
|
Fu J, Shinjo T, Li Q, St-Louis R, Park K, Yu MG, Yokomizo H, Simao F, Huang Q, Wu IH, King GL. Regenerating glomerular metabolism and function by podocyte pyruvate kinase M2 in diabetic nephropathy. JCI Insight 2022; 7:155260. [PMID: 35133981 PMCID: PMC8983139 DOI: 10.1172/jci.insight.155260] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetic nephropathy (DN) arises from systemic and local changes in glucose metabolism and hemodynamics. We have reported that many glycolytic and mitochondrial enzymes, such as pyruvate kinase M2 (PKM2), were elevated in renal glomeruli of DN-protected type 1 and type 2 diabetic patients. Here, mice with PKM2-specific overexpression in podocytes (PPKM2Tg) were generated to uncover its renal protective function as potential therapeutic target, which prevented elevated albumin-creatinine ratio (ACR), mesangial expansion, basement membrane thickness and podocyte foot process effacement after 7-months of STZ-induced diabetes. Further, diabetes-induced impairment of glycolytic rate and mitochondrial function were normalized in diabetic PPKM2Tg glomeruli, in concordance with elevated Ppargc1a and Vegf expressions. Restored VEGF expression improved glomerular maximal mitochondrial function in diabetic PPKM2Tg and WT mice. Elevated VEGF levels were observed in the glomeruli of DN-protected patients with chronic type 1 diabetes, and clinically correlated with estimated GFR, but not glycemic control. Mechanistically, the preservations of mitochondrial function and VEGF expression were dependent on tetrameric structure and enzymatic activities of PKM2 in podocyte. These findings demonstrated that PKM2 structure and enzymatic activation in podocytes can preserve entire glomerular mitochondrial function against toxicity of hyperglycemia via paracrine factors such as VEGF and prevent DN progression.
Collapse
Affiliation(s)
- Jialin Fu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Takanori Shinjo
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Qian Li
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Ronald St-Louis
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Kyoungmin Park
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Marc G Yu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Hisashi Yokomizo
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Fabricio Simao
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - Qian Huang
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - I-Hsien Wu
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Harvard Medical School, Boston, United States of America
| |
Collapse
|
40
|
Karaman S, Paavonsalo S, Heinolainen K, Lackman MH, Ranta A, Hemanthakumar KA, Kubota Y, Alitalo K. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med 2022; 219:212969. [PMID: 35050301 PMCID: PMC8785977 DOI: 10.1084/jem.20210565] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth. Here we show that vascular regression induced by VEGFR2 deletion in postnatal and adult mice is aggravated by additional deletion of VEGFR1 or VEGFR3 in the intestine, kidney, and pancreas, but not in the liver or kidney glomeruli. In the adult mice, hepatic and intestinal vessels regressed within a few days after gene deletion, whereas vessels in skin and retina remained stable for at least four weeks. Our results show changes in endothelial transcriptomes and organ-specific vessel maintenance mechanisms that are dependent on VEGFR signaling pathways and reveal previously unknown functions of VEGFR1 and VEGFR3 in endothelial cells.
Collapse
Affiliation(s)
- Sinem Karaman
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Paavonsalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Krista Heinolainen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Madeleine H. Lackman
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Amanda Ranta
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Jiang S, Luo M, Bai X, Nie P, Zhu Y, Cai H, Li B, Luo P. Cellular crosstalk of glomerular endothelial cells and podocytes in diabetic kidney disease. J Cell Commun Signal 2022; 16:313-331. [PMID: 35041192 DOI: 10.1007/s12079-021-00664-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes and is the leading cause of end-stage renal disease (ESRD). Persistent proteinuria is an important feature of DKD, which is caused by the destruction of the glomerular filtration barrier (GFB). Glomerular endothelial cells (GECs) and podocytes are important components of the GFB, and their damage can be observed in the early stages of DKD. Recently, studies have found that crosstalk between cells directly affects DKD progression, which has prospective research significance. However, the pathways involved are complex and largely unexplored. Here, we review the literature on cellular crosstalk of GECs and podocytes in the context of DKD, and highlight specific gaps in the field to propose future research directions. Elucidating the intricates of such complex processes will help to further understand the pathogenesis of DKD and develop better prevention and treatment options.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Hangxi Cai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
42
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
43
|
Bevacizumab Increases Endothelin-1 Production via Forkhead Box Protein O1 in Human Glomerular Microvascular Endothelial Cells In Vitro. Int J Nephrol 2021; 2021:8381115. [PMID: 34912580 PMCID: PMC8668358 DOI: 10.1155/2021/8381115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Molecular mechanisms underlying the nephrotoxicity associated with bevacizumab are unclear. Endothelin-1 (ET-1) is involved in podocyte injury and proteinuria, and its level increases in most cases of kidney disorders. Forkhead box protein O1 (FoxO1), a transcription factor, is a major determinant of ET-1 promoter activation and is regulated by protein kinase B (Akt) phosphorylation-dependent nuclear exclusion. We evaluated the effect of bevacizumab on ET-1 production in human glomerular microvascular endothelial cells (hGECs). We analyzed the changes in the mRNA and protein levels of ET-1 in hGECs treated with bevacizumab using real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Changes in the protein levels and phosphorylation status of Akt and FoxO1 in hGECs treated with bevacizumab were analyzed by western blotting. After cell lysis, FoxO1 protein was isolated from the cytoplasmic and nuclear fractions. We also investigated the effects of AS1842856 (a FoxO1 inhibitor) on bevacizumab-induced ET-1 production. Bevacizumab significantly and dose-dependently increased the mRNA and protein levels of ET-1 in hGECs (p < 0.05). Bevacizumab treatment also led to a decrease in phosphorylated Akt protein levels. Inhibition of Akt activity by LY294002 promoted ET-1 production. Bevacizumab also induced an increase in FoxO1 protein levels in the nucleus. Inhibition of FoxO1 activity by AS1842856 resulted in decreased ET-1 levels in bevacizumab-treated hGECs. ET-1 axis activation, Akt inactivation, and FoxO1 nuclear localization are the molecular mechanisms underlying bevacizumab-induced nephrotoxicity. Therefore, inhibition of renal ET-1 production could be a promising approach to protect against or treat bevacizumab-induced nephrotoxicity.
Collapse
|
44
|
Role of Endothelial Glucocorticoid Receptor in the Pathogenesis of Kidney Diseases. Int J Mol Sci 2021; 22:ijms222413295. [PMID: 34948091 PMCID: PMC8706765 DOI: 10.3390/ijms222413295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Glucocorticoids, as multifunctional hormones, are widely used in the treatment of various diseases including nephrological disorders. They are known to affect immunological cells, effectively treating many autoimmune and inflammatory processes. Furthermore, there is a growing body of evidence demonstrating the potent role of glucocorticoids in non-immune cells such as podocytes. Moreover, novel data show additional pathways and processes affected by glucocorticoids, such as the Wnt pathway or autophagy. The endothelium is currently considered as a key organ in the regulation of numerous kidney functions such as glomerular filtration, vascular tone and the regulation of inflammation and coagulation. In this review, we analyse the literature concerning the effects of endothelial glucocorticoid receptor signalling on kidney function in health and disease, with special focus on hypertension, diabetic kidney disease, glomerulopathies and chronic kidney disease. Recent studies demonstrate the potential role of endothelial GR in the prevention of fibrosis of kidney tissue and cell metabolism through Wnt pathways, which could have a protective effect against disease progression. Another important aspect covered in this review is blood pressure regulation though GR and eNOS. We also briefly cover potential therapies that might affect the endothelial glucocorticoid receptor and its possible clinical implications, with special interest in selective or local GR stimulation and potential mitigation of GC treatment side effects.
Collapse
|
45
|
Clou E, Luque Y. [Angiogenesis inhibitors: mechanism of action and nephrotoxicity]. Nephrol Ther 2021; 18:1-6. [PMID: 34838486 DOI: 10.1016/j.nephro.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 10/19/2022]
Abstract
Tumoral angiogenesis is a key mechanism involved in the growth and spread of cancer cells. The development of angiogenesis inhibitors, particularly those targeting the Vascular Endothelial Growth Factor (VEGF) pathway, has improved the prognosis and survival of many cancer patients since they were approved in 2005 in France. Vascular Endothelial Growth Factor inhibitors have different mechanisms of action, targeting either the ligand (e.g. bevacizumab, anti-Vascular Endothelial Growth Factor monoclonal antibody; aflibercept, recombinant anti-Vascular Endothelial Growth Factor fusion protein), or its receptors such as tyrosine kinase inhibitors (e.g. sunitinib or sorafenib). These treatments can be combined with conventional chemotherapy, or other anti-cancer therapies, and are associated with variable tolerance depending on the patient's clinical condition and comorbidities. Additionally, angiogenesis inhibition may be associated with cardiovascular and/or kidney toxicity and therefore special monitoring is needed during the treatment duration. Development of hypertension and proteinuria are the commonest renal side effects; these are generally manageable and reversible when treatment is stopped. However, more severe toxicities have been reported such as acute kidney injury, glomerular and/or vascular insults such as thrombotic microangiopathy, and more rarely tubulointerstitial damage. The prescribing physician should be aware of these potentially serious. This article describes the mechanisms of action of antiangiogenic agents and their potential toxicities, with particular respect to the kidneys.
Collapse
Affiliation(s)
- Emmanuelle Clou
- Soins Intensifs néphrologiques et rein aigu, département de néphrologie, hôpital Tenon, assistance publique, hôpitaux de Paris, Inserm UMR_S1155, Sorbonne université, Paris, France.
| | - Yosu Luque
- Inserm UMR_S1155, Urgences néphrologiques et transplantation rénale, hôpital Tenon, Sorbonne Université, Paris, France.
| |
Collapse
|
46
|
Vartak T, Godson C, Brennan E. Therapeutic potential of pro-resolving mediators in diabetic kidney disease. Adv Drug Deliv Rev 2021; 178:113965. [PMID: 34508793 DOI: 10.1016/j.addr.2021.113965] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/26/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Renal microvascular disease associated with diabetes [Diabetic kidney disease - DKD] is the leading cause of chronic kidney disease. In DKD, glomerular basement membrane thickening, mesangial expansion, endothelial dysfunction, podocyte cell loss and renal tubule injury contribute to progressive glomerulosclerosis and tubulointerstitial fibrosis. Chronic inflammation is recognized as a major pathogenic mechanism for DKD, with resident and circulating immune cells interacting with local kidney cell populations to provoke an inflammatory response. The onset of inflammation is driven by the release of well described proinflammatory mediators, and this is typically followed by a resolution phase. Inflammation resolution is achieved through the bioactions of endogenous specialized pro-resolving lipid mediators (SPMs). As our understanding of SPMs advances 'resolution pharmacology' based approaches using these molecules are being explored in DKD.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
47
|
Du C, Ren Y, Li G, Yang Y, Yan Z, Yao F. Single Cell Transcriptome Helps Better Understanding Crosstalk in Diabetic Kidney Disease. Front Med (Lausanne) 2021; 8:657614. [PMID: 34485320 PMCID: PMC8415842 DOI: 10.3389/fmed.2021.657614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Years of research revealed that crosstalk extensively existed among kidney cells, cell factors and metabolites and played an important role in the development of diabetic kidney disease (DKD). In the last few years, single-cell RNA sequencing (scRNA-seq) technology provided new insight into cellular heterogeneity and genetic susceptibility regarding DKD at cell-specific level. The studies based on scRNA-seq enable a much deeper understanding of cell-specific processes such as interaction between cells. In this paper, we aim to review recent progress in single cell transcriptomic analyses of DKD, particularly highlighting on intra- or extra-glomerular cell crosstalk, cellular targets and potential therapeutic strategies for DKD.
Collapse
Affiliation(s)
- Chunyang Du
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Guixin Li
- Department of Burn, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Yang
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Zhe Yan
- Department of Nephrology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Yao
- Key Laboratory of Kidney Diseases of Hebei Province, Department of Pathology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
48
|
Vogtmann R, Heupel J, Herse F, Matin M, Hagmann H, Bendix I, Kräker K, Dechend R, Winterhager E, Kimmig R, Köninger A, Gellhaus A. Circulating Maternal sFLT1 (Soluble fms-Like Tyrosine Kinase-1) Is Sufficient to Impair Spiral Arterial Remodeling in a Preeclampsia Mouse Model. Hypertension 2021; 78:1067-1079. [PMID: 34397280 PMCID: PMC8415521 DOI: 10.1161/hypertensionaha.121.17567] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. One driving factor for developing preeclampsia—a pregnancy disorder, often associated with poor spiral artery (SpA)-remodeling and fetal growth restriction—is the anti-angiogenic sFLT1 (soluble fms-like tyrosine kinase-1), which is found to be highly upregulated in preeclampsia patients. The sFLT1-mediated endothelial dysfunction is a common theory for the manifestation of maternal preeclampsia symptoms. However, the influence of sFLT1 on SpA-remodeling and the link between placental and maternal preeclampsia symptoms is less understood. To dissect the hsFLT1 (human sFLT1) effects on maternal and/or fetoplacental physiology in preeclampsia, sFLT1-transgenic mice with systemic hsFLT1 overexpression from midgestation onwards were used. SpA-remodeling was analyzed on histological and molecular level in placental/mesometrial triangle tissues. Maternal kidney and aorta morphology was investigated, combined with blood pressure measurements via telemetry. hsFLT1 overexpression resulted in maternal hypertension, aortic wall thickening, and elastin breakdown. Furthermore, maternal kidneys showed glomerular endotheliosis, podocyte damage, and proteinuria. preeclampsia symptoms were combined with fetal growth restriction already at the end of the second trimester and SpA-remodeling was strongly impaired as shown by persisted vascular smooth muscle cells. This phenotype was associated with shallow trophoblast invasion, delayed presence of uterine natural killer cells, and altered lymphatic angiogenesis. Overall, this study showed that circulating maternal hsFLT1 is sufficient to induce typical maternal preeclampsia-like symptoms in mice and impair the SpA-remodeling independent from the fetoplacental compartment, revealing new insights into the interaction between the placental and maternal contribution of preeclampsia.
Collapse
Affiliation(s)
- Rebekka Vogtmann
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany (R.V., J.H., R.K., A.K., A.G.)
| | - Jacqueline Heupel
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany (R.V., J.H., R.K., A.K., A.G.)
| | - Florian Herse
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), Berlin, Germany (F.H., K.K., R.D.).,Max Delbruck Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (F.H., K.K.)
| | - Mahsa Matin
- Department II of Internal Medicine-Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine-University Hospital Cologne, Cologne, Germany and Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, Germany (M.M., H.H.)
| | - Henning Hagmann
- Department II of Internal Medicine-Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine-University Hospital Cologne, Cologne, Germany and Cologne Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases, Germany (M.M., H.H.)
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University of Duisburg-Essen, Germany (I.B.)
| | - Kristin Kräker
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), Berlin, Germany (F.H., K.K., R.D.).,Max Delbruck Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany (F.H., K.K.).,Charité-Universitätsmedizin Berlin and Humboldt-Universität zu Berlin, Berlin, Germany (K.K.)
| | - Ralf Dechend
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), Berlin, Germany (F.H., K.K., R.D.).,HELIOS Klinikum, Berlin, Germany (R.D.)
| | - Elke Winterhager
- Imaging Center Essen, EM Unit, University Hospital Essen, Germany (E.W.)
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany (R.V., J.H., R.K., A.K., A.G.)
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany (R.V., J.H., R.K., A.K., A.G.).,Department of Gynecology and Obstetrics, Clinic of the Order of St. John, St. Hedwigs Clinic, Regensburg, Germany (A.K.)
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, Germany (R.V., J.H., R.K., A.K., A.G.)
| |
Collapse
|
49
|
Ren J, Xu Y, Lu X, Wang L, Ide S, Hall G, Souma T, Privratsky JR, Spurney RF, Crowley SD. Twist1 in podocytes ameliorates podocyte injury and proteinuria by limiting CCL2-dependent macrophage infiltration. JCI Insight 2021; 6:e148109. [PMID: 34369383 PMCID: PMC8410065 DOI: 10.1172/jci.insight.148109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022] Open
Abstract
The transcription factor Twist1 regulates several processes that could impact kidney disease progression, including epithelial cell differentiation and inflammatory cytokine induction. Podocytes are specialized epithelia that exhibit features of immune cells and could therefore mediate unique effects of Twist1 on glomerular disease. To study Twist1 functions in podocytes during proteinuric kidney disease, we employed a conditional mutant mouse in which Twist1 was selectively ablated in podocytes (Twist1-PKO). Deletion of Twist1 in podocytes augmented proteinuria, podocyte injury, and foot process effacement in glomerular injury models. Twist1 in podocytes constrained renal accumulation of monocytes/macrophages and glomerular expression of CCL2 and the macrophage cytokine TNF-α after injury. Deletion of TNF-α selectively from podocytes had no impact on the progression of proteinuric nephropathy. By contrast, the inhibition of CCL2 abrogated the exaggeration in proteinuria and podocyte injury accruing from podocyte Twist1 deletion. Collectively, Twist1 in podocytes mitigated urine albumin excretion and podocyte injury in proteinuric kidney diseases by limiting CCL2 induction that drove monocyte/macrophage infiltration into injured glomeruli. Myeloid cells, rather than podocytes, further promoted podocyte injury and glomerular disease by secreting TNF-α. These data highlight the capacity of Twist1 in the podocyte to mitigate glomerular injury by curtailing the local myeloid immune response.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA.,Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yuemei Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Liming Wang
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Shintaro Ide
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Tomokazu Souma
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Robert F Spurney
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham VA and Duke University Medical Centers, Durham, North Carolina, USA
| |
Collapse
|
50
|
Daehn IS, Duffield JS. The glomerular filtration barrier: a structural target for novel kidney therapies. Nat Rev Drug Discov 2021; 20:770-788. [PMID: 34262140 PMCID: PMC8278373 DOI: 10.1038/s41573-021-00242-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Loss of normal kidney function affects more than 10% of the population and contributes to morbidity and mortality. Kidney diseases are currently treated with immunosuppressive agents, antihypertensives and diuretics with partial but limited success. Most kidney disease is characterized by breakdown of the glomerular filtration barrier (GFB). Specialized podocyte cells maintain the GFB, and structure-function experiments and studies of intercellular communication between the podocytes and other GFB cells, combined with advances from genetics and genomics, have laid the groundwork for a new generation of therapies that directly intervene at the GFB. These include inhibitors of apolipoprotein L1 (APOL1), short transient receptor potential channels (TRPCs), soluble fms-like tyrosine kinase 1 (sFLT1; also known as soluble vascular endothelial growth factor receptor 1), roundabout homologue 2 (ROBO2), endothelin receptor A, soluble urokinase plasminogen activator surface receptor (suPAR) and substrate intermediates for coenzyme Q10 (CoQ10). These molecular targets converge on two key components of GFB biology: mitochondrial function and the actin-myosin contractile machinery. This Review discusses therapies and developments focused on maintaining GFB integrity, and the emerging questions in this evolving field.
Collapse
Affiliation(s)
- Ilse S Daehn
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jeremy S Duffield
- Research and Development, Prime Medicine, Cambridge, MA, USA. .,Department of Medicine, University of Washington, Seattle, WA, USA. .,Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|