1
|
Romanowska-Kocejko M, Braczko A, Jędrzejewska A, Żarczyńska-Buchowiecka M, Kocejko T, Kutryb-Zając B, Hellmann M. Follow-up assessment of the microvascular function in patients with long COVID. Microvasc Res 2025; 157:104748. [PMID: 39293561 DOI: 10.1016/j.mvr.2024.104748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Long COVID is a complex pathophysiological condition. However, accumulating data suggests that COVID-19 is a systemic microvascular endothelial dysfunction with different clinical manifestations. In this study, a microvascular function was assessed in long COVID patients (n = 33) and healthy controls (n = 30) using flow-mediated skin fluorescence technique (FMSF), based on measurements of nicotinamide adenine dinucleotide fluorescence intensity during brachial artery occlusion (ischemic response, IR) and immediately after occlusion (hyperemic response, HR). Microcirculatory function readings were taken twice, 3 months apart. In addition, we quantified biochemical markers such as the serum L-arginine derivatives and hypoxia-inducible factor 1α (HIF1α) to assess their relation with microvascular parameters evaluated in vivo. In patients with long COVID, serum HIF1α was significantly correlated to IRindex (r = -0.375, p < 0.05). Similarly, there was a significant inverse correlation of serum asymmetric dimethyl-L-arginine levels to both HRmax (r = -0.343, p < 0.05) and HRindex (r = -0.335, p < 0.05). The IR parameters were found lower or negative in long COVID patients and recovered in three-month follow-up. Hypoxia sensitivity value was significantly higher in long COVID patients examined after three months of treatment based on the combination of ACE-inhibitors and beta-adrenolytic compared to baseline condition (85.2 ± 73.8 vs. 39.9 ± 51.7 respectively, p = 0.009). This study provides evidence that FMSF is a sensitive, non-invasive technique to track changes in microvascular function that was impaired in long COVID and recovered after 3 months, especially in patients receiving a cardioprotective therapy.
Collapse
Affiliation(s)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Poland
| | | | | | - Tomasz Kocejko
- Department of Biomedical Engineering, Technical University of Gdansk, Poland
| | | | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, Poland.
| |
Collapse
|
2
|
Chen Y, Shi YK, Fu SZ, Li ZD, Yang SY, Zhou XY, Yan Z, Bao CP, Xu XM, Zhang X, Yang LX. Nomogram models for predicting myocardial ischemia under high altitude exposure: a cohort study. Sci Rep 2024; 14:28826. [PMID: 39572623 PMCID: PMC11582316 DOI: 10.1038/s41598-024-79735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Exposure to high altitude increases the risk of myocardial ischemia (MI) and subsequent cardiovascular death. Nomogram is a graphical regression model, but there are no reports on using nomogram to predict myocardial ischemia under high altitude exposure. Our goal was to establish prediction models based on pre-high-altitude physical exposure examination data and identify key risk factors. METHODS We prospectively enrolled a total of 2,855 healthy individuals who underwent physical examination at the 920th Hospital of Joint Logistics Support Force and were scheduled to undergo high-altitude (3000-3500 m) training within six months. These participants were randomly divided into a training cohort (75%) and a validation cohort (25%). In the training set, single-factor analysis of variance and Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis were used to select variables, and two nomograms were established based on clinical features (CF) and clinical features + blood tests (CF + BT), respectively. The performance of the nomograms was evaluated using the area under the receiver operating characteristic curve (ROC), the concordance index (C-index), and calibration curves. RESULTS The C-index for the prediction models CF and CF + BT were 0.652 and 0.804, respectively. In the training cohort, the AUC for prediction models CF and CF + BT were 0.61 and 0.80, respectively. In the validation cohort, the AUC for prediction models CF and CF + BT were 0.61 and 0.81, respectively. CONCLUSION We have successfully established two nomogram models to predict myocardial ischemia under high-altitude exposure and identified some risk factors.
Collapse
Affiliation(s)
- Yu Chen
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Yan-Kun Shi
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Shi-Zhong Fu
- Department of Infectious Diseases, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Zhuo-Dong Li
- Department of Thoracocardiac Surgery, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Sheng-Yu Yang
- Department of Urology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Xiao-Ying Zhou
- Department of pediatrics, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Zhu Yan
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Chun-Ping Bao
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China
| | - Xin-Ming Xu
- Department of Quality Control, 920th Hospital of Joint Logistics Support Force, PLA, No. 212 Daguan Rd, Kunming, 650032, Yunnan, China.
| | - Xin Zhang
- Department of Pulmonary and Critical Care Medicine, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China.
| | - Li-Xia Yang
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, China.
| |
Collapse
|
3
|
Kos M, Nađ T, Stupin A, Drenjančević I, Kolobarić N, Šušnjara P, Mihaljević Z, Damašek M, Pušeljić S, Jukić I. Juvenile primary hypertension is associated with attenuated macro- and microvascular dilator function independently of body weight. J Hypertens 2024; 42:1906-1914. [PMID: 39248093 DOI: 10.1097/hjh.0000000000003812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/23/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE Hypertension has become a global medical and public health issue even in childhood. It is well accepted that hypertension is associated with impaired endothelium-dependent vascular reactivity in adult patients. However, there is a lack of data on hypertension-related endothelial dysfunction in hypertensive children. Thus, present study aimed to evaluate the association of primary hypertension in the pediatric population with macro- and microvascular function, and to assess the potential role of oxidative stress in that connection. METHODS Fifty-two children were enrolled in this study; 26 normotensive (NT) and 26 with primary hypertension (HT), both sexes, 9-17 years old. In addition to anthropometric, hemodynamic and biochemical measurements, peripheral microvascular responses to occlusion (postocclusive reactive hyperemia, PORH), local heating (local thermal hyperemia, LTH), iontophoretically applied acetylcholine (AChID) and sodium nitroprusside (SNPID) were evaluated by laser Doppler flowmetry (LDF). Furthermore, brachial artery flow-mediated dilation (FMD) was measured and biomarker of oxidative stress was determined. RESULTS PORH, AChID and LTH were impaired in hypertensive compared to normotensive children, while SNPID did not differ between groups. FMD was decreased in hypertensive compared to normotensive children. Serum concentration of 8- iso -PGF2α was significantly elevated in hypertensive compared to normotensive children. CONCLUSION Even in childhood, primary hypertension is associated with attenuated endothelial function and reduced endothelium-dependent responses to various physiological stimuli. Juvenile hypertension is related to increased level of vascular oxidative stress. All changes are independent of BMI.
Collapse
Affiliation(s)
- Martina Kos
- Clinic of Pediatrics, University Hospital Centre Osijek
- Department of Pediatrics, Faculty of Medicine Osijek
| | - Tihana Nađ
- Clinic of Pediatrics, University Hospital Centre Osijek
- Department of Pediatrics, Faculty of Medicine Osijek
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek
- Scientific Centre of Excellence for Personalized Healthcare University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek
- Scientific Centre of Excellence for Personalized Healthcare University of Osijek, Osijek, Croatia
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek
- Scientific Centre of Excellence for Personalized Healthcare University of Osijek, Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek
- Scientific Centre of Excellence for Personalized Healthcare University of Osijek, Osijek, Croatia
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek
- Scientific Centre of Excellence for Personalized Healthcare University of Osijek, Osijek, Croatia
| | - Mia Damašek
- Clinic of Pediatrics, University Hospital Centre Osijek
- Department of Pediatrics, Faculty of Medicine Osijek
| | - Silvija Pušeljić
- Clinic of Pediatrics, University Hospital Centre Osijek
- Department of Pediatrics, Faculty of Medicine Osijek
| | - Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek
- Scientific Centre of Excellence for Personalized Healthcare University of Osijek, Osijek, Croatia
| |
Collapse
|
4
|
McIllhatton A, Lanting S, Chuter V. The Effect of Overweight/Obesity on Cutaneous Microvascular Reactivity as Measured by Laser-Doppler Fluxmetry: A Systematic Review. Biomedicines 2024; 12:2488. [PMID: 39595054 PMCID: PMC11591868 DOI: 10.3390/biomedicines12112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
INTRODUCTION We sought to determine by systematic review the independent effect of overweight/obesity on cutaneous microvascular reactivity in adults as measured by laser-Doppler fluxmetry. METHODS CINAHL Complete, SPORTSDiscus, Embase, Medline, and Cochrane Library were searched until March 2024 to identify studies investigating cutaneous microvascular reactivity in an overweight/obese but otherwise healthy group versus a lean/healthy weight. Reporting is consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Quality appraisal of included studies was performed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist. RESULTS Nineteen eligible articles reported on 1847 participants. Most articles reported impaired cutaneous microvascular reactivity in cohorts with overweight/obesity compared to cohorts with lean/healthy weight. Investigating reactivity via post-occlusive reactive hyperaemia (PORH) and iontophoresis of acetylcholine (ACh) has shown significance. No significant differences were reported between groups in response to local heating or to iontophoresis of methacholine or insulin, while findings of the effect of obesity on iontophoresis of sodium nitroprusside (SNP) were mixed. CONCLUSIONS The pathophysiology of impaired cutaneous microvascular reactivity in overweight/obesity requires further investigation; however, impaired function of vasoactive substances, endothelial dysfunction, sensory nerves, and calcium-activated potassium channels may be implicated. Identifying these impaired microvascular responses should inform possible therapy targets in overweight and obesity.activated potassium channels may be implicated. Identifying these impaired microvascular responses should inform possible therapy targets in overweight and obesity.
Collapse
Affiliation(s)
- Ally McIllhatton
- Discipline of Podiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Sean Lanting
- Discipline of Podiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Discipline of Podiatric Medicine, School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Vivienne Chuter
- Discipline of Podiatry, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Discipline of Podiatric Medicine, School of Health Sciences, Western Sydney University, Campbelltown, NSW 2560, Australia
| |
Collapse
|
5
|
Myburgh-Jacobsz CE, Botha-Le Roux S, Kotliar K, Wentzel A, Jacobs A, De Boever P, Goswami N, Strijdom H, Smith W. Retinal Vessel Functional Responses in South Africans Living With and Without HIV: The EndoAfrica-NWU Study. Microcirculation 2024; 31:e12878. [PMID: 39106121 DOI: 10.1111/micc.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
OBJECTIVES The effects of HIV and antiretroviral therapy (ART) on microvascular function are poorly explored. We compared retinal vessel functional responses to flicker light-induced provocation (FLIP) in people living with HIV (PLWH) and people living without HIV (PLWoutH). METHODS We included 115 PLWH and 51 PLWoutH with a median age of 41 years. Treated PLWH received similar first-line fixed-dose combination ART. Clinical characteristics and retinal vessels functional responses to FLIP were compared in (a) PLWH and PLWoutH; and (b) PLWH groups stratified by the median of (i) CD4-count (511 cells/mm3), (ii) viral load (50 copies/mL), and (iii) ART duration (57.6 months). RESULTS PLWH were older, smoked more, and had a lower prevalence of hypertension than PLWoutH (p < 0.05). Almost 64% of PLWH were infected for more than 5 years. Retinal vessel responses to FLIP were similar between PLWH and PLWoutH after taking confounders into account. In addition, PLWH subgroups stratified according to immuno-virological status by CD4-count, viral load, and ART duration showed no differences in retinal vessel responses to FLIP. CONCLUSION Living with HIV and receiving ART were not associated with altered microvascular function as assessed with dynamic retinal vessel analysis in a South African case-control study.
Collapse
Affiliation(s)
| | - Shani Botha-Le Roux
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Juelich, Germany
| | - Annemarie Wentzel
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Adriaan Jacobs
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Center for Space and Aviation Health, College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Hans Strijdom
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Zhao X, Schalkwijk C, Kroon A, Schram MT, Stehouwer C, Houben A. Different Measures of Hyperglycemia Are Negatively Associated With Skin Microvascular Flowmotion: The Maastricht Study. Microcirculation 2024; 31:e12882. [PMID: 39171989 DOI: 10.1111/micc.12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Diabetes can lead to microvascular complications such as diabetic neuropathy, nephropathy, and retinopathy. Hyperglycemia may initiate microvascular function impairment early in the course of diabetes, even prior to its clinical establishment during the pre-diabetes stage. Microvascular vasomotion, that is, the rhythmic arteriolar constriction and dilation, is an important function that regulates oxygen and nutrient delivery within the tissue and regulates peripheral resistance. Using laser Doppler flowmetry (LDF), vasomotion in skin microcirculation can be measured as flowmotion. Changes in flowmotion have been shown in individuals with obesity, and type 1 or type 2 diabetes mellitus. However, no data are available on associations between hyperglycemia and flowmotion in the general population. Our aim was to study whether measures of hyperglycemia were associated with different components of skin microvascular flowmotion (SMF) in a population-based cohort (The Maastricht Study). METHODS Data from 7293 participants of The Maastricht Study were used. SMF was measured using LDF. Endothelial, neurogenic and myogenic component SMF power were used as dependent variables. We investigated the associations of glucose metabolism status (normal glucose metabolism, prediabetes, and type 2 diabetes mellitus), measures of hyperglycemia (fasting plasma glucose [FPG], 2-h post-load glucose [2 h-PG], HbA1c, advanced glycation end-products [AGEs] assessed as skin autofluorescence [SAF]), and indices of glucose variability (incremental glucose peak [IGP] and continuous glucose monitoring [CGM] -assessed as standard deviation [SD]) with each component of SMF power. We used linear regression analyses with adjustments for confounders, and trend analyses. RESULTS We observed consistent negative associations between HbA1c levels and all three (endothelial, neurogenic, and myogenic) skin microvascular flowmotion (SMF) powers in the additionally adjusted model. Similarly, in the conservative model, we found that multiple hyperglycemia metrics such as GMS trend, PreD, T2DM, FPG, 2 h-PG, and HbA1c were consistently negatively associated with all three SMF powers. CONCLUSIONS We showed that skin microvascular flowmotion is reduced in individuals with (pre)diabetes. In addition, different measures of hyperglycemia are negatively associated with skin microvascular flowmotion.
Collapse
Grants
- OP-Zuid, the Province of Limburg, the Dutch Ministry of Economic Affairs (grant 31O.041), Stichting De Weijerhorst (Maastricht, the Netherlands), the Pearl String Initiative Diabetes (Amsterdam, the Netherlands), the Cardiovascular Center (CVC, Maastricht, the Netherlands), CARIM School for Cardiovascular Diseases (Maastricht, the Netherlands), CAPHRI School for Public Health and Primary Care (Maastricht, the Netherlands), NUTRIM School for Nutrition and Translational Research in Metabolism (Maa
- X.Zhao is supported by the Chinese Scholarship Council (202009120014)
Collapse
Affiliation(s)
- X Zhao
- CARIM School for Cardiovascular Diseases, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - C Schalkwijk
- CARIM School for Cardiovascular Diseases, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A Kroon
- CARIM School for Cardiovascular Diseases, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M T Schram
- CARIM School for Cardiovascular Diseases, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Heart and Vascular Center, MUMC+, Maastricht, The Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - C Stehouwer
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - A Houben
- CARIM School for Cardiovascular Diseases, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
7
|
Amir Hamzah NA, Wan Zaki WMD, Wan Abdul Halim WH, Mustafar R, Saad AH. Evaluating the potential of retinal photography in chronic kidney disease detection: a review. PeerJ 2024; 12:e17786. [PMID: 39104365 PMCID: PMC11299532 DOI: 10.7717/peerj.17786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a significant global health concern, emphasizing the necessity of early detection to facilitate prompt clinical intervention. Leveraging the unique ability of the retina to offer insights into systemic vascular health, it emerges as an interesting, non-invasive option for early CKD detection. Integrating this approach with existing invasive methods could provide a comprehensive understanding of patient health, enhancing diagnostic accuracy and treatment effectiveness. Objectives The purpose of this review is to critically assess the potential of retinal imaging to serve as a diagnostic tool for CKD detection based on retinal vascular changes. The review tracks the evolution from conventional manual evaluations to the latest state-of-the-art in deep learning. Survey Methodology A comprehensive examination of the literature was carried out, using targeted database searches and a three-step methodology for article evaluation: identification, screening, and inclusion based on Prisma guidelines. Priority was given to unique and new research concerning the detection of CKD with retinal imaging. A total of 70 publications from 457 that were initially discovered satisfied our inclusion criteria and were thus subjected to analysis. Out of the 70 studies included, 35 investigated the correlation between diabetic retinopathy and CKD, 23 centered on the detection of CKD via retinal imaging, and four attempted to automate the detection through the combination of artificial intelligence and retinal imaging. Results Significant retinal features such as arteriolar narrowing, venular widening, specific retinopathy markers (like microaneurysms, hemorrhages, and exudates), and changes in arteriovenous ratio (AVR) have shown strong correlations with CKD progression. We also found that the combination of deep learning with retinal imaging for CKD detection could provide a very promising pathway. Accordingly, leveraging retinal imaging through this technique is expected to enhance the precision and prognostic capacity of the CKD detection system, offering a non-invasive diagnostic alternative that could transform patient care practices. Conclusion In summary, retinal imaging holds high potential as a diagnostic tool for CKD because it is non-invasive, facilitates early detection through observable microvascular changes, offers predictive insights into renal health, and, when paired with deep learning algorithms, enhances the accuracy and effectiveness of CKD screening.
Collapse
Affiliation(s)
- Nur Asyiqin Amir Hamzah
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
- Faculty of Engineering and Technology, Multimedia University, Ayer Keroh, Melaka, Malaysia
| | - Wan Mimi Diyana Wan Zaki
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | | | - Ruslinda Mustafar
- Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Assyareefah Hudaibah Saad
- Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Zhao N, Pessell AF, Zhu N, Searson PC. Tissue-Engineered Microvessels: A Review of Current Engineering Strategies and Applications. Adv Healthc Mater 2024; 13:e2303419. [PMID: 38686434 PMCID: PMC11338730 DOI: 10.1002/adhm.202303419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Microvessels, including arterioles, capillaries, and venules, play an important role in regulating blood flow, enabling nutrient and waste exchange, and facilitating immune surveillance. Due to their important roles in maintaining normal function in human tissues, a substantial effort has been devoted to developing tissue-engineered models to study endothelium-related biology and pathology. Various engineering strategies have been developed to recapitulate the structural, cellular, and molecular hallmarks of native human microvessels in vitro. In this review, recent progress in engineering approaches, key components, and culture platforms for tissue-engineered human microvessel models is summarized. Then, tissue-specific models, and the major applications of tissue-engineered microvessels in development, disease modeling, drug screening and delivery, and vascularization in tissue engineering, are reviewed. Finally, future research directions for the field are discussed.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ninghao Zhu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
9
|
van Gennip ACE, Gupta MD, Houben AJHM, Berendschot TTJM, Webers CAB, van Greevenbroek MMJ, van der Kallen CJH, Koster A, Wesselius A, Eussen SJPM, Schalkwijk CG, de Galan BE, Köhler S, Schram MT, Stehouwer CDA, van Sloten TT. Retinal microvascular function and incidence and trajectories of clinically relevant depressive symptoms: the Maastricht Study. Psychol Med 2024; 54:2482-2491. [PMID: 38469703 DOI: 10.1017/s0033291724000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
BACKGROUND Cerebral microvascular dysfunction may contribute to depression via disruption of brain structures involved in mood regulation, but evidence is limited. We investigated the association of retinal microvascular function, a proxy for microvascular function in the brain, with incidence and trajectories of clinically relevant depressive symptoms. METHODS Longitudinal data are from The Maastricht Study of 5952 participants (59.9 ± 8.5 years/49.7% women) without clinically relevant depressive symptoms at baseline (2010-2017). Central retinal arteriolar equivalent and central retinal venular equivalent (CRAE and CRVE) and a composite score of flicker light-induced retinal arteriolar and venular dilation were assessed at baseline. We assessed incidence and trajectories of clinically relevant depressive symptoms (9-item Patient Health Questionnaire score ⩾10). Trajectories included continuously low prevalence (low, n = 5225 [87.8%]); early increasing, then chronic high prevalence (early-chronic, n = 157 [2.6%]); low, then increasing prevalence (late-increasing, n = 247 [4.2%]); and remitting prevalence (remitting, n = 323 [5.4%]). RESULTS After a median follow-up of 7.0 years (range 1.0-11.0), 806 (13.5%) individuals had incident clinically relevant depressive symptoms. After full adjustment, a larger CRAE and CRVE were each associated with a lower risk of clinically relevant depressive symptoms (hazard ratios [HRs] per standard deviation [s.d.]: 0.89 [95% confidence interval (CI) 0.83-0.96] and 0.93 [0.86-0.99], respectively), while a lower flicker light-induced retinal dilation was associated with a higher risk of clinically relevant depressive symptoms (HR per s.d.: 1.10 [1.01-1.20]). Compared to the low trajectory, a larger CRAE was associated with lower odds of belonging to the early-chronic trajectory (OR: 0.83 [0.69-0.99]) and a lower flicker light-induced retinal dilation was associated with higher odds of belonging to the remitting trajectory (OR: 1.23 [1.07-1.43]). CONCLUSIONS These findings support the hypothesis that cerebral microvascular dysfunction contributes to the development of depressive symptoms.
Collapse
Affiliation(s)
- April C E van Gennip
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | - Monideepa D Gupta
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | - Alfons J H M Houben
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | - Tos T J M Berendschot
- School for Mental Health and Neuroscience, MHENS, Maastricht University, Maastricht, Netherlands
- Ophthalmology, Maastricht University Medical Centre, Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
| | - Carroll A B Webers
- Ophthalmology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marleen M J van Greevenbroek
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | - Carla J H van der Kallen
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | - Annemarie Koster
- Care and Public Health Research Institute, CAPHRI, Maastricht University, Maastricht, Netherlands
- Social Medicine, Maastricht University, Maastricht, Netherlands
| | - Anke Wesselius
- School of Nutrition and Translational Research in Metabolism, NUTRIM, Maastricht University, Maastricht, Netherlands
- Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Simone J P M Eussen
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
- Care and Public Health Research Institute, CAPHRI, Maastricht University, Maastricht, Netherlands
- Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Casper G Schalkwijk
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | - Bastiaan E de Galan
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
- Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Sebastian Köhler
- School for Mental Health and Neuroscience, MHENS, Maastricht University, Maastricht, Netherlands
- Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Miranda T Schram
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, MHENS, Maastricht University, Maastricht, Netherlands
- Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Coen D A Stehouwer
- Internal Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
- School for Cardiovascular Diseases, CARIM, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
10
|
Nakamura N, Tsunemine H, Ikunari R, Tanaka Y, Arima N. Red blood cell distribution width is a useful biomarker to predict bleeding and thrombosis risks in patients with immune thrombocytopenic purpura. EJHAEM 2024; 5:431-439. [PMID: 38895062 PMCID: PMC11182403 DOI: 10.1002/jha2.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024]
Abstract
Bleeding and thrombosis are common complications during immune thrombocytopenic purpura (ITP) treatment. There is a strong need to predict bleeding and thrombosis risks before ITP treatment to optimize therapy and appropriately manage these complications. We performed a retrospective cohort study of 120 patients with primary ITP to identify a biomarker to predict bleeding and thrombosis. We compared blood test results at diagnosis between patients with and without bleeding or thrombosis episodes. The standard deviation of red blood cell distribution width (RDW-SD) differed significantly between those with and without bleeding and between those with and without thrombosis, leading us to identify it as a variable representative of risk. RDW-SD was significantly associated with patient age and with histories of several vascular diseases. Multivariate regression analyses showed that RDW integrated several variables associated with vascular risks. RDW-SD was significantly associated with difficulty with corticosteroid discontinuation (hazard ratio [HR], 2.22, p = 0.01), incidence of bleeding (HR, 2.75, p< 0.01), incidence of thrombosis (HR, 2.67, p< 0.01) and incidence of infection (HR, 1.78, p = 0.04). The RDW-SD value at the time of ITP diagnosis is a useful biomarker to predict the risks of bleeding, thrombosis, and other complications.
Collapse
Affiliation(s)
- Naokazu Nakamura
- Department of HematologyShinko HospitalKobeJapan
- Department of Hematology and OncologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Ryo Ikunari
- Department of HematologyShinko HospitalKobeJapan
| | | | | |
Collapse
|
11
|
Liu X, Tan H, Wang W, Chen Z. Deep learning based retinal vessel segmentation and hypertensive retinopathy quantification using heterogeneous features cross-attention neural network. Front Med (Lausanne) 2024; 11:1377479. [PMID: 38841586 PMCID: PMC11150614 DOI: 10.3389/fmed.2024.1377479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Retinal vessels play a pivotal role as biomarkers in the detection of retinal diseases, including hypertensive retinopathy. The manual identification of these retinal vessels is both resource-intensive and time-consuming. The fidelity of vessel segmentation in automated methods directly depends on the fundus images' quality. In instances of sub-optimal image quality, applying deep learning-based methodologies emerges as a more effective approach for precise segmentation. We propose a heterogeneous neural network combining the benefit of local semantic information extraction of convolutional neural network and long-range spatial features mining of transformer network structures. Such cross-attention network structure boosts the model's ability to tackle vessel structures in the retinal images. Experiments on four publicly available datasets demonstrate our model's superior performance on vessel segmentation and the big potential of hypertensive retinopathy quantification.
Collapse
Affiliation(s)
- Xinghui Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongwen Tan
- Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wu Wang
- Electrical Engineering College, Guizhou University, Guiyang, China
| | - Zhangrong Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Huang SJY, Wang X, Halvorson BD, Bao Y, Frisbee SJ, Frisbee JC, Goldman D. Laser Doppler Fluximetry in Cutaneous Vasculature: Methods for Data Analyses. J Vasc Res 2024; 61:197-211. [PMID: 38749406 DOI: 10.1159/000538718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Acquisition of a deeper understanding of microvascular function across physiological and pathological conditions can be complicated by poor accessibility of the vascular networks and the necessary sophistication or intrusiveness of the equipment needed to acquire meaningful data. Laser Doppler fluximetry (LDF) provides a mechanism wherein investigators can readily acquire large amounts of data with minor inconvenience for the subject. However, beyond fairly basic analyses of erythrocyte perfusion (fluximetry) data within the cutaneous microcirculation (i.e., perfusion at rest and following imposed challenges), a deeper understanding of microvascular perfusion requires a more sophisticated approach that can be challenging for many investigators. METHODS This manuscript provides investigators with clear guidance for data acquisition from human subjects for full analysis of fluximetry data, including levels of perfusion, single- and multiscale Lempel-Ziv complexity (LZC) and sample entropy (SampEn), and wavelet-based analyses for the major physiological components of the signal. Representative data and responses are presented from a recruited cohort of healthy volunteers, and computer codes for full data analysis (MATLAB) are provided to facilitate efforts by interested investigators. CONCLUSION It is anticipated that these materials can reduce the challenge to investigators integrating these approaches into their research programs and facilitate translational research in cardiovascular science.
Collapse
Affiliation(s)
- Sophie J Y Huang
- Departments of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Xuan Wang
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brayden D Halvorson
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Yuki Bao
- Biomedical Engineering, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Stephanie J Frisbee
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Jefferson C Frisbee
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
- Biomedical Engineering, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Yuan Y, Dong M, Wen S, Yuan X, Zhou L. Retinal microcirculation: A window into systemic circulation and metabolic disease. Exp Eye Res 2024; 242:109885. [PMID: 38574944 DOI: 10.1016/j.exer.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, China.
| |
Collapse
|
14
|
Kislikova M, Gaitán-Valdizán JJ, Parra Blanco JA, García Unzueta MT, Rodríguez Vidriales M, Escagedo Cagigas C, Piñera Haces VC, Valentín Muñoz MDLO, Benito Hernández A, Ruiz San Millan JC, Rodrigo Calabia E. Looking into the Eyes to See the Heart of Chronic Kidney Disease Patients. Life (Basel) 2024; 14:533. [PMID: 38672803 PMCID: PMC11051204 DOI: 10.3390/life14040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
In patients with chronic kidney disease (CKD), the main cause of morbidity and mortality is cardiovascular disease (CVD). Both coronary artery calcium scoring by computed tomography (CT) and optical coherence tomography (OCT) are used to identify patients at increased risk for ischemic heart disease, thereby indicating a higher cardiovascular risk profile. Our study aimed to investigate the utility of these techniques in the CKD population. In patients with CKD, OCT was used to measure the choroidal thickness (CHT) and the thickness of the peripapillary retinal nerve fiber layer (pRNFL). A total of 127 patients were included, including 70 men (55%) with an estimated glomerular filtration rate (eGFR) of 39 ± 30 mL/min/1.73 m2. Lower pRNFL thickness was found to be related to high-sensitivity troponin I (r = -0.362, p < 0.001) and total coronary calcification (r = -0.194, p = 0.032). In a multivariate analysis, pRNFL measurements remained associated with age (β = -0.189; -0.739--0.027; p = 0.035) and high-sensitivity troponin I (β = -0.301; -0.259--0.071; p < 0.001). Severe coronary calcification (Agatston score ≥ 400 HU) was related to a worse eGFR (p = 0.008), a higher grade of CKD (p = 0.036), and a thinner pRNFL (p = 0.011). The ROC curve confirmed that the pRNFL measurement could determine the patients with an Agatston score of ≥400 HU (AUC 0.638; 95% CI 0.525-0.750; p = 0.015). Our study concludes that measurement of pRNFL thickness using OCT is related to the markers associated with ischemic heart disease, such as coronary calcification and high-sensitivity troponin I, in the CKD population.
Collapse
Affiliation(s)
- Maria Kislikova
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | | | | | | | - María Rodríguez Vidriales
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | - Clara Escagedo Cagigas
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | - Vicente Celestino Piñera Haces
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | - María de la Oliva Valentín Muñoz
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | - Adalberto Benito Hernández
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | - Juan Carlos Ruiz San Millan
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| | - Emilio Rodrigo Calabia
- Immunopathology Group, Nephrology Department, Marqués de Valdecilla University Hospital—IDIVAL, 39008 Santander, Spain; (M.R.V.); (C.E.C.); (V.C.P.H.); (M.d.l.O.V.M.); (A.B.H.); (J.C.R.S.M.); (E.R.C.)
| |
Collapse
|
15
|
Dai G, Yu S, Hu S, Luan X, Yan H, Wang X, Song P, Liu X, He X. A Novel Method for the Measurement of Retinal Arteriolar Bifurcation. Ophthalmol Ther 2024; 13:917-933. [PMID: 38294630 PMCID: PMC10912395 DOI: 10.1007/s40123-023-00881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
INTRODUCTION The purpose of this research was to develop protocols for evaluating the bifurcation parameters of retinal arteriole and establish a reference range of normal values. METHODS In this retrospective study, we measured a total of 1314 retinal arteriolar bifurcations from 100 fundus photographs. We selected 200 from these bifurcations for testing inter-measurer and inter-method agreement. Additionally, we calculated the normal reference range for retinal arteriolar bifurcation parameters and analyzed the effects of gender, age, and anatomical features on retinal arteriolar bifurcation. RESULTS The measurement method proposed in this study has demonstrated nearly perfect consistency among different measurers, with interclass correlation coefficient (ICC) for all bifurcation parameters of retinal arteriole exceeding 0.95. Among healthy individuals, the retinal arteriolar caliber was narrowest in young adults and increased in children, teenagers, and the elderly; retinal arteriolar caliber was greater in females than in males; and the diameter of the inferior temporal branch exceeded that of the superior temporal branch. The angle between the two branches of retinal arteriolar bifurcation was also greater in females than in males. When using the center of the optic disc as a reference point, the angle between the two branches of the retinal arteriole at the proximal or distal ends increased. In contrast, the estimated optimum theoretical values of retinal arteriolar bifurcation were not affected by these factors. CONCLUSIONS The method for the measurement of retinal arteriolar bifurcation in this study was highly accurate and reproducible. The diameter and branching angle of the retinal arteriolar bifurcation were more susceptible to the influence of gender, age, and anatomical features. In comparison, the estimated optimum theoretical values of retinal arteriolar bifurcation were relatively stable. Video available for this article.
Collapse
Affiliation(s)
- Guangzheng Dai
- Dragonfleye Healthcare Technology LLC, Shenyang, China
- He Eye Specialist Hospital, Shenyang, China
| | - Sile Yu
- Department of Public Health, He University, Shenyang, 110034, China
| | - Shenming Hu
- Department of Public Health, He University, Shenyang, 110034, China
| | - Xinze Luan
- Department of Public Health, He University, Shenyang, 110034, China
| | - Hairu Yan
- Dragonfleye Healthcare Technology LLC, Shenyang, China
| | - Xiaoting Wang
- Department of Public Health, He University, Shenyang, 110034, China
| | | | - Xinying Liu
- Dragonfleye Healthcare Technology LLC, Shenyang, China
| | - Xingru He
- Department of Public Health, He University, Shenyang, 110034, China.
| |
Collapse
|
16
|
Wu JY, Hu JY, Ge QM, Xu SH, Zou J, Kang M, Ying P, Wei H, Ling Q, He LQ, Chen C, Shao Y. Ocular microvascular alteration in patients with myocardial infarction-a new OCTA study. Sci Rep 2024; 14:4552. [PMID: 38402285 PMCID: PMC10894220 DOI: 10.1038/s41598-023-50283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 02/26/2024] Open
Abstract
Myocardial infarction is defined as a sudden decrease or interruption in blood flow to the coronary arteries, causing ischemic necrosis of the corresponding cardiomyocytes. It is unclear whether systemic macrovascular alterations are associated with retinal microvascular changes. This study utilized optical coherence tomography angiography (OCTA) to compare variations in conjunctival vascular density and fundus retinal vessel density between patients with myocardial infarction (MI) and healthy controls. This study recruited 16 patients (32 eyes) with MI and 16 healthy controls (32 eyes). The superficial retinal layer (SRL), deep retinal layer (DRL) and conjunctival capillary plexus in each eye were evaluated by OCTA. Parameters measured included the density of the temporal conjunctival capillary, retinal microvascular (MIR) and macrovascular (MAR) alterations and total MIR (TMI). The microvascular density of each retinal region was evaluated by the hemisphere segmentation (SR, SL, IL, and IR), annular partition (C1, C2, C3, C4, C5 and C6), and modified early treatment of diabetic retinopathy study (R, S, L, and I) methods. In the macular area, the superficial and deep retinal microvascular densities displayed notable variations. In the superficial layers, the superficial TMI, superficial MIR, and superficial MAR, as well as densities in the SL, IL, S, L, C1, C2, C5 and C6 regions, were significantly lower in MI patients (p < 0.05 each). In the deep layers, the deep MIR and deep TMI), as well as densities in the SL, IL, L, C1, C2 and C6 regions were significantly lower in MI patients (p < 0.05 each). In contrast, the conjunctival microvascular density was significantly higher in MI patients than in healthy controls (p < 0.001). The microvascular densities measured in the deep and superficial retinal layers and in the conjunctiva differ in MI patients and healthy controls. OCTA is effective in detecting changes in the ocular microcirculation.
Collapse
Affiliation(s)
- Jun-Yi Wu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jin-Yu Hu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian-Min Ge
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - San-Hua Xu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jie Zou
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Min Kang
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ping Ying
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong Wei
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian Ling
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Liang-Qi He
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Cheng Chen
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai, 200030, China.
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
17
|
Steegh FMEG, Keijbeck AA, de Hoogt PA, Rademakers T, Houben AJHM, Reesink KD, Stehouwer CDA, Daemen MJAP, Peutz-Kootstra CJ. Capillary rarefaction: a missing link in renal and cardiovascular disease? Angiogenesis 2024; 27:23-35. [PMID: 37326760 DOI: 10.1007/s10456-023-09883-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Patients with chronic kidney disease (CKD) have an increased risk for cardiovascular morbidity and mortality. Capillary rarefaction may be both one of the causes as well as a consequence of CKD and cardiovascular disease. We reviewed the published literature on human biopsy studies and conclude that renal capillary rarefaction occurs independently of the cause of renal function decline. Moreover, glomerular hypertrophy may be an early sign of generalized endothelial dysfunction, while peritubular capillary loss occurs in advanced renal disease. Recent studies with non-invasive measurements show that capillary rarefaction is detected systemically (e.g., in the skin) in individuals with albuminuria, as sign of early CKD and/or generalized endothelial dysfunction. Decreased capillary density is found in omental fat, muscle and heart biopsies of patients with advanced CKD as well as in skin, fat, muscle, brain and heart biopsies of individuals with cardiovascular risk factors. No biopsy studies have yet been performed on capillary rarefaction in individuals with early CKD. At present it is unknown whether individuals with CKD and cardiovascular disease merely share the same risk factors for capillary rarefaction, or whether there is a causal relationship between rarefaction in renal and systemic capillaries. Further studies on renal and systemic capillary rarefaction, including their temporal relationship and underlying mechanisms are needed. This review stresses the importance of preserving and maintaining capillary integrity and homeostasis in the prevention and management of renal and cardiovascular disease.
Collapse
Affiliation(s)
- Floor M E G Steegh
- Department of Pathology, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Anke A Keijbeck
- Department of Pathology, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Patrick A de Hoogt
- Surgery, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Internal Medicine, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Koen D Reesink
- Biomedical Engineering, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Internal Medicine, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, UMC Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Carine J Peutz-Kootstra
- Department of Pathology, Maastricht University Medical Centre+, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
- Department of Pathology, Gelre Ziekenhuizen, Apeldoorn, The Netherlands.
- , Porthoslaan 39, 6213 CN, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Burke J, Pugh D, Farrah T, Hamid C, Godden E, MacGillivray TJ, Dhaun N, Baillie JK, King S, MacCormick IJC. Evaluation of an Automated Choroid Segmentation Algorithm in a Longitudinal Kidney Donor and Recipient Cohort. Transl Vis Sci Technol 2023; 12:19. [PMID: 37975844 PMCID: PMC10668611 DOI: 10.1167/tvst.12.11.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Purpose To evaluate the performance of an automated choroid segmentation algorithm in optical coherence tomography (OCT) data using a longitudinal kidney donor and recipient cohort. Methods We assessed 22 donors and 23 patients requiring renal transplantation over up to 1 year posttransplant. We measured choroidal thickness (CT) and area and compared our automated CT measurements to manual ones at the same locations. We estimated associations between choroidal measurements and markers of renal function (estimated glomerular filtration rate [eGFR], serum creatinine, and urea) using correlation and linear mixed-effects (LME) modeling. Results There was good agreement between manual and automated CT. Automated measures were more precise because of smaller measurement error over time. External adjudication of major discrepancies was in favor of automated measures. Significant differences were observed in the choroid pre- and posttransplant in both cohorts, and LME modeling revealed significant linear associations observed between choroidal measures and renal function in recipients. Significant associations were mostly stronger with automated CT (eGFR, P < 0.001; creatinine, P = 0.004; urea, P = 0.04) compared to manual CT (eGFR, P = 0.002; creatinine, P = 0.01; urea, P = 0.03). Conclusions Our automated approach has greater precision than human-performed manual measurements, which may explain stronger associations with renal function compared to manual measurements. To improve detection of meaningful associations with clinical endpoints in longitudinal studies of OCT, reducing measurement error should be a priority, and automated measurements help achieve this. Translational Relevance We introduce a novel choroid segmentation algorithm that can replace manual grading for studying the choroid in renal disease and other clinical conditions.
Collapse
Affiliation(s)
- Jamie Burke
- School of Mathematics, University of Edinburgh, College of Science and Engineering, Edinburgh, UK
| | - Dan Pugh
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Tariq Farrah
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Charlene Hamid
- Imaging Facility, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Emily Godden
- Emergency Department, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Neeraj Dhaun
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - J. Kenneth Baillie
- Deanery of Clinical Sciences, University of Edinburgh, College of Medicine and Veterinary Medicine, Edinburgh, UK
| | - Stuart King
- School of Mathematics, University of Edinburgh, College of Science and Engineering, Edinburgh, UK
| | - Ian J. C. MacCormick
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Horiuchi M, Stoner L, Poles J. The effect of four weeks blood flow restricted resistance training on macro- and micro-vascular function in healthy, young men. Eur J Appl Physiol 2023; 123:2179-2189. [PMID: 37245196 DOI: 10.1007/s00421-023-05230-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE To determine the macrovascular and microvascular function responses to resistance training with blood flow restriction (BFR) compared to high-load resistance training (HLRT) control group. METHODS Twenty-four young, healthy men were randomly assigned to BFR or HLRT. Participants performed bilateral knee extensions and leg presses 4 days per week, for 4 weeks. For each exercise, BFR completed 3 X 10 repetitions/day at 30% of 1-repetition max (RM). The occlusive pressure was applied at 1.3 times of individual systolic blood pressure. The exercise prescription was identical for HLRT, except the intensity was set at 75% of one repetition maximum. Outcomes were measured pre-, at 2- and 4-weeks during the training period. The primary macrovascular function outcome was heart-ankle pulse wave velocity (haPWV), and the primary microvascular function outcome was tissue oxygen saturation (StO2) area under the curve (AUC) response to reactive hyperemia. RESULTS Knee extension and leg press 1-RM increased by 14% for both groups. There was a significant interaction effect for haPWV, decreasing - 5% (Δ-0.32 m/s, 95% confidential interval [CI] - 0.51 to - 0.12, effect size [ES] = - 0.53) for BFR and increasing 1% (Δ0.03 m/s, 95%CI - 0.17 to 0.23, ES = 0.05) for HLRT. Similarly, there was an interaction effect for StO2 AUC, increasing 5% (Δ47%・s, 95%CI - 3.07 to 98.1, ES = 0.28) for HLRT and 17% (Δ159%・s, 95%CI 108.23-209.37, ES = 0.93) for BFR group. CONCLUSION The current findings suggest that BFR may improve macro- and microvascular function compared to HLRT.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Shiromizu 1, Kanoya, Kagoshima, 8912393, Japan.
- Division of Human Environmental Science, Mount Fuji Research Institute, Kami-Yohida 5597-1, Fuji-Yoshida, Yamanashi, 4030005, Japan.
| | - Lee Stoner
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-8700, USA
- Department of Epidemiology, Gillings School of Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-8700, USA
| | - Jillian Poles
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-8700, USA
| |
Collapse
|
20
|
Caldwell JT, Fenn SA, Bekkedal LM, Dodge C, Muller-Delp J. Preexercise intermittent passive stretching and vascular function after treadmill exercise. J Appl Physiol (1985) 2023; 135:786-794. [PMID: 37589056 DOI: 10.1152/japplphysiol.00427.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute aerobic exercise stress is associated with decreased endothelial function that may increase the likelihood of an acute cardiovascular event. Passive stretch (PS) elicits improvements in vascular function, but whether PS can be performed before exercise to prevent declines in vascular function remains unknown. This strategy could be directly applicable in populations that may not be able to perform dynamic exercise. We hypothesized that preexercise PS would provide better vascular resilience after treadmill exercise. Sixteen healthy college-aged males and females participated in a single laboratory visit and underwent testing to assess micro- and macrovascular function. Participants were randomized into either PS group or sham control group. Intermittent calf PS was performed by having the foot in a splinting device for a 5-min stretch and 5-min relaxation, repeated four times. Then, a staged V̇o2 peak test was performed and 65% V̇o2 peak calculated for subjects to run at for 30 min. Near-infrared spectroscopy-derived microvascular responsiveness was preserved with the PS group [(pre: 0.53 ± 0.009%/s) (post: 0.56 ± 0.012%/s; P = 0.55)]. However, there was a significant reduction in the sham control group [(pre: 0.67 ± 0.010%/s) (post: 0.51 ± 0.007%/s; P = 0.05)] after treadmill exercise. Flow-mediated vasodilation (FMD) of the popliteal artery showed similar responses. In the PS group, FMD [(pre: 7.23 ± 0.74%) (post: 5.86 ± 1.01%; P = 0.27)] did not significantly decline after exercise. In the sham control group, FMD [(pre: 8.69 ± 0.72%) (post: 5.24 ± 1.24%; P < 0.001)] was significantly reduced after treadmill exercise. Vascular function may be more resilient if intermittent PS is performed before moderate-intensity exercise and, importantly, can be performed by most individuals.NEW & NOTEWORTHY We demonstrate for the first time that popliteal artery and gastrocnemius microvascular responsiveness after acute aerobic exercise are reduced. The decline in vascular function was mitigated in those who performed intermittent passive stretching before the exercise bouts. Collectively, these findings suggest that intermittent passive stretching is a novel method to increase vascular resiliency before aerobic activity.
Collapse
Affiliation(s)
- Jacob T Caldwell
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Sarah A Fenn
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Lukas M Bekkedal
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Christopher Dodge
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, Wisconsin, United States
| | - Judy Muller-Delp
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, United States
| |
Collapse
|
21
|
Asiedu K, Krishnan AV, Kwai N, Poynten A, Markoulli M. Conjunctival microcirculation in ocular and systemic microvascular disease. Clin Exp Optom 2023; 106:694-702. [PMID: 36641840 DOI: 10.1080/08164622.2022.2151872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 01/16/2023] Open
Abstract
The conjunctival microcirculation is an accessible complex network of micro vessels whose quantitative assessment can reveal microvascular haemodynamic properties. Currently, algorithms for the measurement of conjunctival haemodynamics use either manual or semi-automated systems, which may provide insight into overall conjunctival health, as well as in ocular and systemic disease. These algorithms include functional slit-lamp biomicroscopy, laser doppler flowmetry, optical coherence tomography angiography, orthogonal polarized spectral imaging, computer-assisted intravitral microscopy, diffuse reflectance spectroscopy and corneal confocal microscopy. Furthermore, several studies have demonstrated a relationship between conjunctival microcirculatory haemodynamics and many diseases such as dry eye disease, Alzheimer's disease, diabetes, hypertension, sepsis, coronary microvascular disease, and sickle cell anaemia. This review aims to describe conjunctival microcirculation, its characteristics, and techniques for its measurement, as well as the association between conjunctival microcirculation and microvascular abnormalities in disease states.
Collapse
Affiliation(s)
- Kofi Asiedu
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- School of Clinical Medicine, University of New South Wales, Sydney, Australia
- Department of Neurology, Prince of Wales Hospital, Sydney, Australia
| | - Natalie Kwai
- School of Medical Sciences, University of sydney, Sydney, Australia
| | - Ann Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - Maria Markoulli
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Phua TJ. Understanding human aging and the fundamental cell signaling link in age-related diseases: the middle-aging hypovascularity hypoxia hypothesis. FRONTIERS IN AGING 2023; 4:1196648. [PMID: 37384143 PMCID: PMC10293850 DOI: 10.3389/fragi.2023.1196648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
Aging-related hypoxia, oxidative stress, and inflammation pathophysiology are closely associated with human age-related carcinogenesis and chronic diseases. However, the connection between hypoxia and hormonal cell signaling pathways is unclear, but such human age-related comorbid diseases do coincide with the middle-aging period of declining sex hormonal signaling. This scoping review evaluates the relevant interdisciplinary evidence to assess the systems biology of function, regulation, and homeostasis in order to discern and decipher the etiology of the connection between hypoxia and hormonal signaling in human age-related comorbid diseases. The hypothesis charts the accumulating evidence to support the development of a hypoxic milieu and oxidative stress-inflammation pathophysiology in middle-aged individuals, as well as the induction of amyloidosis, autophagy, and epithelial-to-mesenchymal transition in aging-related degeneration. Taken together, this new approach and strategy can provide the clarity of concepts and patterns to determine the causes of declining vascularity hemodynamics (blood flow) and physiological oxygenation perfusion (oxygen bioavailability) in relation to oxygen homeostasis and vascularity that cause hypoxia (hypovascularity hypoxia). The middle-aging hypovascularity hypoxia hypothesis could provide the mechanistic interface connecting the endocrine, nitric oxide, and oxygen homeostasis signaling that is closely linked to the progressive conditions of degenerative hypertrophy, atrophy, fibrosis, and neoplasm. An in-depth understanding of these intrinsic biological processes of the developing middle-aged hypoxia could provide potential new strategies for time-dependent therapies in maintaining healthspan for healthy lifestyle aging, medical cost savings, and health system sustainability.
Collapse
Affiliation(s)
- Teow J. Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
23
|
Matheson BT, Osofsky RB, Friedrichsen DM, Brooks BJ, Giacolone J, Khotan M, Shekarriz R, Pankratz VS, Lew EJ, Clark RM, Kanagy NL. A novel, microvascular evaluation method and device for early diagnosis of peripheral artery disease and chronic limb-threatening ischemia in individuals with diabetes. J Vasc Surg Cases Innov Tech 2023; 9:101101. [PMID: 37152916 PMCID: PMC10160786 DOI: 10.1016/j.jvscit.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 05/09/2023] Open
Abstract
Objective A novel transdermal arterial gasotransmitter sensor (TAGS) has been tested as a diagnostic tool for lower limb microvascular disease in individuals with and without diabetes mellitus (DM). Methods The TAGS system noninvasively measures hydrogen sulfide (H2S) emitted from the skin. Measurements were made on the forearm and lower limbs of individuals from three cohorts, including subjects with DM and chronic limb-threatening ischemia, to evaluate skin microvascular integrity. These measurements were compared with diagnosis of peripheral artery disease (PAD) using the standard approach of the toe brachial index. Other measures of vascular health were made in some subjects including fasting blood glucose, hemoglobin A1c, plasma lipids, blood pressure, estimated glomerular filtration, and body mass index. Results The leg:arm ratio of H2S emissions correlated with risk factors for microvascular disease (ie, high-density lipoprotein levels, estimated glomerular filtration rate, systolic blood pressure, and hemoglobin A1c). The ratios were significantly lower in symptomatic DM subjects being treated for chronic limb-threatening ischemia (n = 8, 0.48 ± 0.21) compared with healthy controls (n = 5, 1.08 ± 0.30; P = .0001) and with asymptomatic DM subjects (n = 4, 0.79 ± 0.08; P = .0086). The asymptomatic DM group ratios were also significantly lower than the healthy controls (P = .0194). Using ratios of leg:arm transdermal H2S measurement (17 subjects, 34 ratios), the overall accuracy to identify limbs with severe PAD had an area under the curve of the receiver operating curve of 0.93. Conclusions Ratios of transdermal H2S measurements are lower in legs with impaired microvascular function, and the decrease in ratio precedes clinically apparent severe microvascular disease and diabetic ulcers. The TAGS instrument is a novel, sensitive tool that may aid in the early detection and monitoring of PAD complications and efforts for limb salvage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric J. Lew
- School of Medicine, University of New Mexico, Albuquerque, NM
| | - Ross M. Clark
- School of Medicine, University of New Mexico, Albuquerque, NM
| | - Nancy L. Kanagy
- School of Medicine, University of New Mexico, Albuquerque, NM
| |
Collapse
|
24
|
Jiang C, Wang Y, Dong Y, Liu R, Song L, Wang S, Xu Z, Niu S, Ren Y, Han X, Zhao M, Wang J, Li X, Cong L, Hou T, Zhang Q, Du Y, Qiu C. Associations of Microvascular Dysfunction with Mild Cognitive Impairment and Cognitive Function Among Rural-Dwelling Older Adults in China. J Alzheimers Dis 2023:JAD221242. [PMID: 37182877 DOI: 10.3233/jad-221242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Microvascular dysfunction (MVD) may contribute to cognitive impairment and Alzheimer's disease, but evidence is limited. OBJECTIVE To investigate the association of composite and organ-specific MVD burden with mild cognitive impairment (MCI) and cognition among rural-dwelling Chinese older adults. METHODS In this population-based cross-sectional study, we assessed MVD makers using optical coherence tomographic angiography for retinal microvasculature features, brain magnetic resonance imaging scans for cerebral small vessel disease (CSVD), and serum biomarkers for MVD. A composite MVD score was generated from the aforementioned organ-specific parameters. We used a neuropsychological test battery to assess memory, verbal fluency, attention, executive function, and global cognitive function. MCI, amnestic MCI (aMCI), and non-amnestic MCI (naMCI) were diagnosed following the Petersen's criteria. Data was analyzed with the linear and logistic regression models. RESULTS Of the 274 dementia-free participants (age≥65 years), 56 were diagnosed with MCI, including 47 with aMCI and 9 with naMCI. A composite MVD score was statistically significantly associated with an odds ratio (OR) of 2.70 (95% confidence interval 1.12-6.53) for MCI and β-coefficient of -0.29 (-0.48--0.10) for global cognitive score after adjustment for socio-demographics, lifestyle factors, APOE genotype, the Geriatric Depression Scale score, serum inflammatory biomarkers, and cardiovascular comorbidity. A composite score of retinal microvascular morphology was associated with a multivariable-adjusted OR of 1.72 (1.09-2.73) for MCI and multivariable-adjusted β-coefficient of -0.11 (-0.22--0.01) for global cognitive score. A composite CSVD score was associated with a lower global cognitive score (β= -0.10; -0.17--0.02). CONCLUSION Microvascular dysfunction, especially in the brain and retina, is associated with MCI and poor cognitive function among rural-dwelling older adults.
Collapse
Affiliation(s)
- Chunyan Jiang
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongxiang Wang
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Yi Dong
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Rui Liu
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Lin Song
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Shanshan Wang
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Zhe Xu
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Sijie Niu
- Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Yifei Ren
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaodong Han
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Mingqing Zhao
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Jiafeng Wang
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaohui Li
- Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China
| | - Lin Cong
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Tingting Hou
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Qinghua Zhang
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Yifeng Du
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Chengxuan Qiu
- Department of Neurology, Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurobiology, Aging Research Center and Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
25
|
van der Heide FCT, Eussen SJPM, Houben AJHM, Henry RMA, Kroon AA, van der Kallen CJH, Dagnelie PC, van Dongen MCJM, Berendschot TTJM, Schouten JSAG, Webers CAB, van Greevenbroek MMJ, Wesselius A, Schalkwijk CG, Koster A, Jansen JFA, Backes WH, Beulens JWJ, Stehouwer CDA. Alcohol consumption and microvascular dysfunction: a J-shaped association: The Maastricht Study. Cardiovasc Diabetol 2023; 22:67. [PMID: 36964536 PMCID: PMC10039613 DOI: 10.1186/s12933-023-01783-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Microvascular dysfunction (MVD) is an important contributor to major clinical disease such as stroke, dementia, depression, retinopathy, and chronic kidney disease. Alcohol consumption may be a determinant of MVD. OBJECTIVE Main objectives were (1) to study whether alcohol consumption was associated with MVD as assessed in the brain, retina, skin, kidney and in the blood; and (2) to investigate whether associations differed by history of cardiovascular disease or sex. DESIGN We used cross-sectional data from The Maastricht Study (N = 3,120 participants, 50.9% men, mean age 60 years, and 27.5% with type 2 diabetes [the latter oversampled by design]). We used regression analyses to study the association between total alcohol (per unit and in the categories, i.e. none, light, moderate, high) and MVD, where all measures of MVD were combined into a total MVD composite score (expressed in SD). We adjusted all associations for potential confounders; and tested for interaction by sex, and history of cardiovascular disease. Additionally we tested for interaction with glucose metabolism status. RESULTS The association between total alcohol consumption and MVD was non-linear, i.e. J-shaped. Moderate versus light total alcohol consumption was significantly associated with less MVD, after full adjustment (beta [95% confidence interval], -0.10 [-0.19; -0.01]). The shape of the curve differed with sex (Pinteraction = 0.03), history of cardiovascular disease (Pinteraction < 0.001), and glucose metabolism status (Pinteraction = 0.02). CONCLUSIONS The present cross-sectional, population-based study found evidence that alcohol consumption may have an effect on MVD. Hence, although increasing alcohol consumption cannot be recommended as a policy, this study suggests that prevention of MVD may be possible through dietary interventions.
Collapse
Affiliation(s)
- Frank C T van der Heide
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands.
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands.
| | - Simone J P M Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Epidemiology, UM, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
| | - Alfons J H M Houben
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Ronald M A Henry
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
- Heart and Vascular Center, MUMC+ Maastricht, Maastricht, The Netherlands
| | - Abraham A Kroon
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Carla J H van der Kallen
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Martien C J M van Dongen
- Department of Epidemiology, UM, Maastricht, The Netherlands
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
| | | | - Jan S A G Schouten
- University Eye Clinic Maastricht, MUMC+, Maastricht, The Netherlands
- Department of Ophthalmology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | | | - Marleen M J van Greevenbroek
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Anke Wesselius
- Department of Epidemiology, NUTRIM School for Nutrition and Translational Research in Metabolism, UM, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| | - Annemarie Koster
- CAPHRI Care and Public Health Research Institute, UM, Maastricht, The Netherlands
- Department of Social Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Walter H Backes
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Dept. of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Joline W J Beulens
- Department of Epidemiology and Data Science, Amsterdam University Medical Centres - location VUmc, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Coen D A Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University (UM), Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, P.O. Box 5800, 6202AZ, Maastricht, The Netherlands
| |
Collapse
|
26
|
Sixtus RP, Berry MJ, Gray CL, Dyson RM. A novel whole-body thermal stress test for monitoring cardiovascular responses in Guinea pigs. J Therm Biol 2023; 113:103500. [PMID: 37055107 DOI: 10.1016/j.jtherbio.2023.103500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 03/12/2023]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality worldwide. Stress tests are frequently employed to expose early signs of cardiovascular dysfunction or disease and can be employed, for example, in the context of preterm birth. We aimed to establish a safe and effective thermal stress test to examine cardiovascular function. Guinea pigs were anaesthetized using a 0.8% isoflurane, 70% N2O mix. ECG, non-invasive blood pressure, laser Doppler flowmetry, respiratory rate, and an array of skin and rectal thermistors were applied. A physiologically relevant heating and a cooling thermal stress test was developed. Upper and lower thermal limits for core body temperature were set at 41.5 OC and 34 OC, for the safe recovery of animals. This protocol therefore presents a viable thermal stress test for use in guinea pig models of health and disease that facilitates exploration of whole-system cardiovascular function.
Collapse
Affiliation(s)
- Ryan P Sixtus
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand.
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
27
|
Microvascular reactivity using laser Doppler measurement in type 2 diabetes with subclinical atherosclerosis. Lasers Med Sci 2023; 38:80. [PMID: 36853518 DOI: 10.1007/s10103-023-03737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/18/2023] [Indexed: 03/01/2023]
Abstract
Microangiopathy should be noted in diabetes with subclinical vascular diseases. Little is known about whether various surrogate markers of systemic arterial trees exacerbate simultaneously in preclinical atherosclerosis. To clarify the association of skin microvascular reactivity with arterial stiffness is essential to elucidating early atherosclerotic changes. The post-occlusive reactive hyperemia of skin microcirculation was evaluated in 27 control and 65 type 2 diabetic subjects, including 31 microalbuminuria (MAU) and 34 normoalbuminuria (NAU) patients. The laser Doppler skin perfusion signals were transformed into three frequency intervals for the investigation of endothelial, neurogenic, and myogenic effects on basal and reactive flow motion changes. The analysis of spectral intensity and distribution provided insight into potential significance of microvascular regulation in subclinical atherosclerotic diseases. Systemic arterial stiffness was studied by the brachial ankle pulse wave velocity (baPWV). Following occlusive ischemia, the percent change of endothelial flow motion was lower in MAU than in NAU and control groups. The MAU group revealed a relative increase in myogenic activity and a decrease in endothelial activity in normalized spectra. The baPWV showed more significant associations with reactive endothelial change (r = - 0.48, P < 0.01) and normalized myogenic value (r = - 0.37, P < 0.05) than diabetes duration and HbA1c. By multivariate regression analysis, only endothelial vasomotor changes independently contributed to the decreased baPWV (OR 3.47, 95% CI 1.63-7.42, P < 0.05). Impaired microcirculatory control is associated with increased arterial stiffness in preclinical atherosclerosis. To identify the early manifestations is necessary for at-risk patients to prevent from further vascular damage.
Collapse
|
28
|
Helmy M, Truong TT, Jul E, Ferreira P. Deep learning and computer vision techniques for microcirculation analysis: A review. PATTERNS (NEW YORK, N.Y.) 2023; 4:100641. [PMID: 36699745 PMCID: PMC9868679 DOI: 10.1016/j.patter.2022.100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The analysis of microcirculation images has the potential to reveal early signs of life-threatening diseases such as sepsis. Quantifying the capillary density and the capillary distribution in microcirculation images can be used as a biological marker to assist critically ill patients. The quantification of these biological markers is labor intensive, time consuming, and subject to interobserver variability. Several computer vision techniques with varying performance can be used to automate the analysis of these microcirculation images in light of the stated challenges. In this paper, we present a survey of over 50 research papers and present the most relevant and promising computer vision algorithms to automate the analysis of microcirculation images. Furthermore, we present a survey of the methods currently used by other researchers to automate the analysis of microcirculation images. This survey is of high clinical relevance because it acts as a guidebook of techniques for other researchers to develop their microcirculation analysis systems and algorithms.
Collapse
Affiliation(s)
- Maged Helmy
- Department of Informatics, University of Oslo, Oslo, Norway
| | | | - Eric Jul
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Paulo Ferreira
- Department of Informatics, University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Muacevic A, Adler JR, Breve F, Magnusson PM, Varrassi G. Exploring the Implications of New-Onset Diabetes in COVID-19: A Narrative Review. Cureus 2023; 15:e33319. [PMID: 36741600 PMCID: PMC9894635 DOI: 10.7759/cureus.33319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
Post-viral new-onset diabetes has been an important feature of the COVID-19 pandemic. It is not always clear if new-onset diabetes is the unmasking of a previously undiagnosed condition, the acceleration of prediabetes, or new-onset diabetes that would not have otherwise occurred. Even asymptomatic cases of COVID-19 have been associated with new-onset diabetes. Diabetes that emerges during acute COVID-19 infection tends to have an atypical presentation, characterized by hyperglycemia and potentially life-threatening diabetic ketoacidosis. It is not always clear if new-onset diabetes is type 1 or type 2 diabetes mellitus. Many cases of COVID-associated diabetes appear to be type 1 diabetes, which is actually an autoimmune disorder. The clinical course varies temporally and with respect to outcomes; in some cases, diabetes resolves completely or improves incrementally after recovery from COVID-19. Disruptions in macrophagy caused by COVID-19 infection along with an exaggerated inflammatory response that can occur in COVID-19 also play a role. Those who survive COVID-19 remain at a 40% elevated risk for diabetes in the first year, even if their case of COVID-19 was not particularly severe. A subsequent post-pandemic wave of new diabetes patients may be expected.
Collapse
|
30
|
Muacevic A, Adler JR, Kumar S, Jaisingh K, R. AT, Rao KC, Chhabra K, Saxena S, Manchanda V, Sharma S. Optical Coherence Tomography Angiography Parameters of the Retina in SARS-CoV-2 Recovered Subjects. Cureus 2023; 15:e33548. [PMID: 36779162 PMCID: PMC9907863 DOI: 10.7759/cureus.33548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION This study aims to evaluate retinochoroidal optical coherence tomography angiography (OCTA) parameters in patients recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS This study was an observational study that included 80 subjects being discharged after having negative reports on the reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2 to evaluate OCTA parameters of the retina. The subjects underwent an ophthalmic evaluation that included best-corrected visual acuity (BCVA), intraocular pressure (IOP), color vision (CV), contrast sensitivity (CS), and optical coherence tomography (OCT) parameters. OCTA was done for all patients and was evaluated for foveal avascular zone (FAZ) area, perimeter, and circularity index, and vessel density (VD) in superficial capillary plexus (SCP), deep capillary plexus (DCP), outer retina (OR), outer retina chorio-capillaries (ORCC), chorio-capillaries (CC), and choroid (C) using 3 x 3 mm scans. The OCTA parameters were compared with normative data of the Indian population for various parameters in question. RESULTS The subjects included 54/80 (67.5%) males and 26/80 (32.5%) females having a mean age of 52.40 ± 15.71 (18-60) years. The systemic evaluation revealed 38.75% of subjects had hypertension, 30% had diabetes, 20% had kidney disease, 5% had tuberculosis, and 3.75% had coronary artery disease. The mean distance BCVA was logarithm of the minimum angle of resolution (LogMAR) (1.17 ± 0.22), mean IOP was 17.0 ± 4.0 mmHg, mean CS was 2.13 ± 0.36, 50.62% of subjects had normal CV on Farnsworth test while 47% had tritanopia, and none of the subjects had red-green CV defect on Ishihara plates. The OCT scan was normal in 90% of eyes while the posterior vitreous detachment was seen in 4% of eyes, broad vitreomacular adhesion in 2.5% of eyes, and the globally adherent epiretinal membrane was seen in 2.5% of eyes. The mean central macular thickness (CMT) measured 245.14 ± 28.41 micrometers. The mean FAZ area measured 0.37 ± 0.15 mm2, the perimeter was 3.28 ± 1.08 mm, and the circularity index measured 0.41 ± 0.10. The average VD in SCP measured 16.06 ± 12.29, in DCP measured 9.11 ± 8.75, in OR measured 6.38 ± 7.37, in ORCC measured 42.53 ± 12.46, in CC measured 25.83 ± 16.31, and in C measured 25.52 ± 17.49. The VD in coronavirus disease 2019 (COVID-19) subjects was significantly lesser than that in the healthy Indian population in all layers except ORCC. CONCLUSIONS The SARS-CoV-2 recovered subjects have a reduced VD in retinochoroidal layers from COVID-19, an underlying systemic disease, or both. The CS values fall within normal limits. Several subjects show tritanopia on the Farnsworth test but no red-green CV defect on Ishihara plates.
Collapse
|
31
|
Maasen K, Eussen SJPM, Dagnelie PC, Houben AJHM, Webers CAB, Schram MT, Berendschot TTJM, Stehouwer CDA, Opperhuizen A, van Greevenbroek MMJ, Schalkwijk CG. Habitual intake of dietary methylglyoxal is associated with less low-grade inflammation: the Maastricht Study. Am J Clin Nutr 2022; 116:1715-1728. [PMID: 36055771 PMCID: PMC9761753 DOI: 10.1093/ajcn/nqac195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Dicarbonyls are major reactive precursors of advanced glycation endproducts (AGEs). Dicarbonyls are formed endogenously and also during food processing. Circulating dicarbonyls and AGEs are associated with inflammation and microvascular complications of diabetes, but for dicarbonyls from the diet these associations are currently unknown. OBJECTIVES We sought to examine the associations of dietary dicarbonyl intake with low-grade inflammation and microvascular function. METHODS In 2792 participants (mean ± SD age: 60 ± 8 y; 50% men; 26% type 2 diabetes) of the population-based cohort the Maastricht Study, we estimated the habitual intake of the dicarbonyls methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) by linking FFQ outcome data to our food composition database of the MGO, GO, and 3-DG content of >200 foods. Low-grade inflammation was assessed as six plasma biomarkers, which were compiled in a z score. Microvascular function was assessed as four plasma biomarkers, compiled in a zscore; as diameters and flicker light-induced dilation in retinal microvessels; as heat-induced skin hyperemic response; and as urinary albumin excretion. Cross-sectional associations of dietary dicarbonyls with low-grade inflammation and microvascular function were investigated using linear regression with adjustments for age, sex, potential confounders related to cardiometabolic risk factors, and lifestyle and dietary factors. RESULTS Fully adjusted analyses revealed that higher intake of MGO was associated with a lower z score for inflammation [standardized β coefficient (STD β): -0.05; 95% CI: -0.09 to -0.01, with strongest inverse associations for hsCRP and TNF-α: both -0.05; -0.10 to -0.01]. In contrast, higher dietary MGO intake was associated with impaired retinal venular dilation after full adjustment (STD β: -0.07; 95% CI: -0.12 to -0.01), but not with the other features of microvascular function. GO and 3-DG intakes were not consistently associated with any of the outcomes. CONCLUSION Higher habitual intake of MGO was associated with less low-grade inflammation. This novel, presumably beneficial, association is the first observation of an association between MGO intake and health outcomes in humans and warrants further investigation.
Collapse
Affiliation(s)
- Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Simone J P M Eussen
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter C Dagnelie
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute/CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Miranda T Schram
- Department of Internal Medicine, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
- Office for Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority, Utrecht, The Netherlands
| | - Marleen M J van Greevenbroek
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
32
|
Corro-Hernández R, Aguila-Torres O, Rios A, Escalante B, Santana-Solano J. Computer-assisted image analysis of agonist-mediated microvascular constriction response in mouse cremaster muscle. PLoS One 2022; 17:e0277851. [PMID: 36395282 PMCID: PMC9671433 DOI: 10.1371/journal.pone.0277851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, we implemented an automated method using a correlation coefficient to select a time interval with a minimum movement or rest interval, together with analysis of variance for measurement of blood vessel diameter in the cremaster muscle. Video images binarization using analysis of variance resulted in an enhanced and a clearly defined vessel wall. Histamine (1 mM) induced a marked reduction in vascular diameter (vasoconstriction) in the cremaster muscle from mice fed with standard (SD) and high fat diet (HFD). However, the effect of histamine was reduced in HFD mice compared to SD mice. Thus, the change in vascular diameter was 87.14% ± 7.44% and 52.63% ± 16.27% in SD and HFD mice, respectively. In conclusion, determination of a rest interval with minimal movement and the use of analysis of variance resulted useful to evaluate vascular diameter in small arteries. We suggest this method to streamline experiments facilitating cardiovascular research.
Collapse
Affiliation(s)
- Ricardo Corro-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Oscar Aguila-Torres
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
- * E-mail:
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Jesús Santana-Solano
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
33
|
Vascular Aging and Damage in Patients with Iron Metabolism Disorders. Diagnostics (Basel) 2022; 12:diagnostics12112817. [PMID: 36428877 PMCID: PMC9689457 DOI: 10.3390/diagnostics12112817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Vascular aging is a physiological, multifactorial process that involves every type of vessel, from large arteries to microcirculation. This manifests itself as impaired vasomotor function, altered secretory phenotype, deteriorated intercellular transport function, structural remodeling, and aggravated barrier function between the blood and the vascular smooth muscle layer. Iron disorders, particularly iron overload, may lead to oxidative stress and, among other effects, vascular aging. The elevated transferrin saturation and serum iron levels observed in iron overload lead to the formation of a non-transferrin-bound iron (NTBI) fraction with high pro-oxidant activity. NTBI can induce the production of reactive oxygen species (ROS), which induce lipid peroxidation and mediate iron-related damage as the elements of oxidative stress in many tissues, including heart and vessels' mitochondria. However, the available data make it difficult to precisely determine the impact of iron metabolism disorders on vascular aging; therefore, the relationship requires further investigation. Our study aims to present the current state of knowledge on vascular aging in patients with deteriorated iron metabolism.
Collapse
|
34
|
Harpak N, Borberg E, Raz A, Patolsky F. The "Bloodless" Blood Test: Intradermal Prick Nanoelectronics for the Blood Extraction-Free Multiplex Detection of Protein Biomarkers. ACS NANO 2022; 16:13800-13813. [PMID: 36006419 PMCID: PMC9527802 DOI: 10.1021/acsnano.2c01793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Protein biomarkers' detection is of utmost importance for preventive medicine and early detection of illnesses. Today, their detection relies entirely on clinical tests consisting of painful, invasive extraction of large volumes of venous blood; time-consuming postextraction sample manipulation procedures; and mostly label-based complex detection approaches. Here, we report on a point-of-care (POC) diagnosis paradigm based on the application of intradermal finger prick-based electronic nanosensors arrays for protein biomarkers' direct detection and quantification down to the sub-pM range, without the need for blood extraction and sample manipulation steps. The nanobioelectronic array performs biomarker sensing by a rapid intradermal prick-based sampling of proteins biomarkers directly from the capillary blood pool accumulating at the site of the microneedle puncture, requiring only 2 min and less than one microliter of a blood sample for a complete analysis. A 1 mm long microneedle element was optimal in allowing for pain-free dermal sampling with a 100% success rate of reaching and rupturing dermis capillaries. Current common micromachining processes and top-down fabrication techniques allow the nanobioelectronic sensor arrays to provide accurate and reliable clinical diagnostic results using multiple sensing elements in each microneedle and all-in-one direct and label-free multiplex biomarkers detection. Preliminary successful clinical studies performed on human volunteers demonstrated the ability of our intradermal, in-skin, blood extraction-free detection platform to accurately detect protein biomarkers as a plausible POC detection for future replacement of today's invasive clinical blood tests. This approach can be readily extended in the future to detect other clinically relevant circulating biomarkers, such as miRNAs, free-DNAs, exosomes, and small metabolites.
Collapse
Affiliation(s)
- Nimrod Harpak
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Ella Borberg
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv69978, Israel
| | - Adva Raz
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Fernando Patolsky
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv69978, Israel
- Department
of Materials Science and Engineering, the Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
35
|
Volino-Souza M, Oliveira GVD, Pinheiro VDS, Conte-Junior CA, Alvares TDS. The effect of dietary nitrate on macro- and microvascular function: A systematic review. Crit Rev Food Sci Nutr 2022; 64:1225-1236. [PMID: 36062809 DOI: 10.1080/10408398.2022.2113989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous studies have investigated the impact of dietary nitrate on vascular function due to the association between dietary nitrate ingestion and improvement in nitric oxide (NO) bioavailability. Considering that NO can present different effects through vascular beds (macro- vs. microvasculature) due to the specific characteristic (function and morphology) that each vessel exhibits, it is crucial to investigate the effect of dietary nitrate ingestion on the macro- and microvascular function to understand the effect of nitrate on vascular function. For this reason, this review aimed to evaluate the impact of dietary nitrate on macro- and microvascular function in humans. A total of 29 studies were included in the systematic review, of which 19 studies evaluated the effect of nitrate supplementation on macrovascular function, eight studies evaluated the effect on microvascular function, and two studies evaluated the impact on both macro- and microvascular function. The literature suggests that dietary nitrate ingestion seems to improve the vascular function in macrovasculature, whereas microvascular function appears to be modest. Future studies investigating the effect of nitrate ingestion on vascular function should focus on measuring macro- and microvascular function whenever possible so that the impact of nitrate-rich foods on vascular segments could be better understood.
Collapse
Affiliation(s)
- Mônica Volino-Souza
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Gustavo Vieira de Oliveira
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Vivian Dos Santos Pinheiro
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Postgraduate Program in Food Science, Chemistry Institute, Federal University of Rio de Janeiro, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, Brazil
| | - Thiago da Silveira Alvares
- Nutrition and Exercise Metabolism Research Group, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Food and Nutrition Institute, Multidisciplinary Center UFRJ-Macaé, Federal University of Rio de Janeiro, Macaé, Brazil
| |
Collapse
|
36
|
Liu L, Xiao S, Wang Y, Wang Y, Liu L, Sun Z, Zhang Q, Yin X, Liao F, You Y, Zhang X. Water-soluble tomato concentrate modulates shear-induced platelet aggregation and blood flow in vitro and in vivo. Front Nutr 2022; 9:961301. [PMID: 36118749 PMCID: PMC9478107 DOI: 10.3389/fnut.2022.961301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Water-soluble tomato concentrate (WSTC), extracted from mature tomatoes, is the first health product in Europe that has been approved “to help maintain normal platelet activity to maintain healthy blood flow.” We hypothesized that WSTC might exert an influence on blood flow shear stress-induced platelet aggregation (SIPA) and in turn maintains healthy blood flow. We used a microfluidic system to measure the effects of WSTC on SIPA in vitro. We also used the strenuous exercise rat model and the κ-carrageenan-induced rat tail thrombosis model to demonstrate the effects of WSTC on blood flow. WSTC significantly inhibited platelet aggregation at pathological high shear rate of 4,000 s–1 and 8,000 s–1in vitro (P < 0.05 or P < 0.01). WSTC reduced the platelet adhesion rate and increased the rolling speed of platelets by inhibiting binding to Von Willebrand Factor (vWF) (P < 0.05 or P < 0.01). The oral administration of WSTC for 4 weeks in strenuous exercise rats alleviated hyper-reactivity of the platelets and led to a significant reduction in the plasma levels of catecholamine and IL-6. WSTC treatment also led to a reduction in black tail length, reduced blood flow pulse index (PI) and vascular resistance index (RI), and ameliorated local microcirculation perfusion in a rat model of thrombosis. WSTC exerted obvious inhibitory effects on the platelet aggregation induced by shear flow and alleviated the blood flow and microcirculation abnormities induced by an inflammatory reaction.
Collapse
Affiliation(s)
- Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yilin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yufang Wang
- Byhealth Institute of Nutrition and Health, Guangzhou, China
| | - Lei Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You,
| | - Xuguang Zhang
- Byhealth Institute of Nutrition and Health, Guangzhou, China
- Xuguang Zhang,
| |
Collapse
|
37
|
Lee S, Kim SJ. Effects of Normal Reference Range of Phosphorus and Corresponding PTH on Endothelial Function in CKD Patients. Front Med (Lausanne) 2022; 9:935977. [PMID: 35903313 PMCID: PMC9314747 DOI: 10.3389/fmed.2022.935977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionEndothelial dysfunction commonly occurs in chronic kidney disease (CKD) patients and increases the risk for cardiovascular disease. Among CKD patients, biomarkers involved in the pathogenesis of CKD-mineral bone disorder (CKD-MBD), such as phosphorus, parathyroid hormone, and fibroblast growth factor 23, are associated with endothelial dysfunction. We investigated whether these biomarkers induce endothelial dysfunction in CKD patients with normal phosphorus levels.MethodsThis cross-sectional study examined CKD patients with normal phosphorus levels; patients with an estimated glomerular filtration rate (eGFR) <15 or who were under dialysis were excluded. Iontophoresis with laser doppler flowmetry (ILDF) and peripheral arterial tonometry were performed to assess endothelial function in 85 patients. Pearson's correlation coefficient, multiple regression, and mediation analyses were performed to examine the association between CKD-MBD biomarkers and endothelial dysfunction.ResultsEndothelial dysfunction was observed in all subjects with a low response to ILDF and 27% of subjects according to peripheral arterial tonometry. Acetylcholine (Ach)-induced ILDF was significantly associated with eGFR (r = 0.22, P = 0.04), intact parathyroid hormone (iPTH; r = −0.46, P < 0.01), and VCAM-1 (r = −0.36, P < 0.01). The reactive hyperemia index (RHI) was significantly related to phosphorus levels (r = 0.32, P < 0.01) and iPTH (r = −0.39, P = 0.02). After adjusting for eGFR, iPTH and VCAM-1 remained independent factors for predicting endothelial dysfunction measured using Ach-induced ILDF. In addition, iPTH and phosphorus levels were independent predictors for endothelial dysfunction measured using RHI in the eGFR-adjusted model. Mediation analyses showed that the individual indirect effects of iPTH were significantly affected ILDF and RHI.ConclusionSerum levels of phosphorus and iPTH are associated with endothelial dysfunction, even in CKD patients with normal phosphorus levels.
Collapse
|
38
|
Angermann S, Günthner R, Hanssen H, Lorenz G, Braunisch MC, Steubl D, Matschkal J, Kemmner S, Hausinger R, Block Z, Haller B, Heemann U, Kotliar K, Grimmer T, Schmaderer C. Cognitive impairment and microvascular function in end-stage renal disease. Int J Methods Psychiatr Res 2022; 31:e1909. [PMID: 35290686 PMCID: PMC9159686 DOI: 10.1002/mpr.1909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Hemodialysis patients show an approximately threefold higher prevalence of cognitive impairment compared to the age-matched general population. Impaired microcirculatory function is one of the assumed causes. Dynamic retinal vessel analysis is a quantitative method for measuring neurovascular coupling and microvascular endothelial function. We hypothesize that cognitive impairment is associated with altered microcirculation of retinal vessels. METHODS 152 chronic hemodialysis patients underwent cognitive testing using the Montreal Cognitive Assessment. Retinal microcirculation was assessed by Dynamic Retinal Vessel Analysis, which carries out an examination recording retinal vessels' reaction to a flicker light stimulus under standardized conditions. RESULTS In unadjusted as well as in adjusted linear regression analyses a significant association between the visuospatial executive function domain score of the Montreal Cognitive Assessment and the maximum arteriolar dilation as response of retinal arterioles to the flicker light stimulation was obtained. CONCLUSION This is the first study determining retinal microvascular function as surrogate for cerebral microvascular function and cognition in hemodialysis patients. The relationship between impairment in executive function and reduced arteriolar reaction to flicker light stimulation supports the involvement of cerebral small vessel disease as contributing factor for the development of cognitive impairment in this patient population and might be a target for noninvasive disease monitoring and therapeutic intervention.
Collapse
Affiliation(s)
- Susanne Angermann
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Roman Günthner
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Henner Hanssen
- Department of Sport, Exercise and HealthUniversity of BaselBaselSwitzerland
| | - Georg Lorenz
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Matthias C. Braunisch
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Dominik Steubl
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Julia Matschkal
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Stephan Kemmner
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
- Transplant CenterUniversity Hospital MunichLudwig‐Maximilians‐University (LMU)MunichGermany
| | - Renate Hausinger
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Zenonas Block
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and EpidemiologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Uwe Heemann
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| | - Konstantin Kotliar
- Department of Medical Engineering and TechnomathematicsFH Aachen University of Applied SciencesCampus JülichJülichGermany
| | - Timo Grimmer
- Department of Psychiatry and PsychotherapyKlinikum rechts der IsarTechnische Universität MünchenMunichGermany
| | - Christoph Schmaderer
- Department of NephrologyTechnical University of MunichSchool of Medicine, Klinikum rechts der IsarMunchenGermany
| |
Collapse
|
39
|
Sena CM, Gonçalves L, Seiça R. Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA J 2022; 13:209-235. [PMID: 35611340 PMCID: PMC9120812 DOI: 10.1007/s13167-022-00280-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/06/2022]
Abstract
Endothelium, the gatekeeper of our blood vessels, is highly heterogeneous and a crucial physical barrier with the ability to produce vasoactive and protective mediators under physiological conditions. It regulates vascular tone, haemostasis, vascular inflammation, remodelling, and angiogenesis. Several cardio-, reno-, and cerebrovascular diseases begin with the dysfunction of endothelial cells, and more recently, COVID-19 was also associated with endothelial disease highlighting the need to monitor its function towards prevention and reduction of vascular dysfunction. Endothelial cells are an important therapeutic target in predictive, preventive, and personalised (3P) medicine with upmost importance in vascular diseases. The development of novel non-invasive techniques to access endothelial dysfunction for use in combination with existing clinical imaging modalities provides a feasible opportunity to reduce the burden of vascular disease. This review summarises recent advances in the principles of endothelial function measurements. This article presents an overview of invasive and non-invasive techniques to determine vascular function and their major advantages and disadvantages. In addition, the article describes mechanisms underlying the regulation of vascular function and dysfunction and potential new biomarkers of endothelial damage. Recognising these biomarkers is fundamental towards a shift from reactive to 3P medicine in the vascular field. Identifying vascular dysfunction earlier with non-invasive or minimally invasive techniques adds value to predictive diagnostics and targeted prevention (primary, secondary, tertiary care). In addition, vascular dysfunction is a potential target for treatments tailored to the person.
Collapse
Affiliation(s)
- Cristina M. Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, Polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Lino Gonçalves
- Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Cardiology, Coimbra’s Hospital and University Centre (CHUC), Coimbra, Portugal
| | - Raquel Seiça
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Subunit 1, Polo 3, Azinhaga de Santa Comba, Celas, 3000-354 Coimbra, Portugal
| |
Collapse
|
40
|
Xu C, Sellke FW, Abid MR. Assessments of microvascular function in organ systems. Am J Physiol Heart Circ Physiol 2022; 322:H891-H905. [PMID: 35333121 PMCID: PMC9037705 DOI: 10.1152/ajpheart.00589.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/23/2023]
Abstract
Microvascular disease plays critical roles in the dysfunction of all organ systems, and there are many methods available to assess the microvasculature. These methods can either assess the target organ directly or assess an easily accessible organ such as the skin or retina so that inferences can be extrapolated to the other systems and/or related diseases. Despite the abundance of exploratory research on some of these modalities and their possible applications, there is a general lack of clinical use. This deficiency is likely due to two main reasons: the need for standardization of protocols to establish a role in clinical practice or the lack of therapies targeted toward microvascular dysfunction. Also, there remain some questions to be answered about the coronary microvasculature, as it is complex, heterogeneous, and difficult to visualize in vivo even with advanced imaging technology. This review will discuss novel approaches that are being used to assess microvasculature health in several key organ systems, and evaluate their clinical utility and scope for further development.
Collapse
Affiliation(s)
- Cynthia Xu
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
41
|
Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients 2022; 14:nu14112200. [PMID: 35683999 PMCID: PMC9182467 DOI: 10.3390/nu14112200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Hypertension is a major cardiovascular risk factor that is responsible for a heavy burden of morbidity and mortality worldwide. A critical aspect of cardiovascular risk estimation in hypertensive patients depends on the assessment of hypertension-mediated organ damage (HMOD), namely the generalized structural and functional changes in major organs induced by persistently elevated blood pressure values. The vasculature of the eye shares several common structural, functional, and embryological features with that of the heart, brain, and kidney. Since retinal microcirculation offers the unique advantage of being directly accessible to non-invasive and relatively simple investigation tools, there has been considerable interest in the development and modernization of techniques that allow the assessment of the retinal vessels’ structural and functional features in health and disease. With the advent of artificial intelligence and the application of sophisticated physics technologies to human sciences, consistent steps forward have been made in the study of the ocular fundus as a privileged site for diagnostic and prognostic assessment of diverse disease conditions. In this narrative review, we will recapitulate the main ocular imaging techniques that are currently relevant from a clinical and/or research standpoint, with reference to their pathophysiological basis and their possible diagnostic and prognostic relevance. A possible non pharmacological approach to prevent the onset and progression of retinopathy in the presence of hypertension and related cardiovascular risk factors and diseases will also be discussed.
Collapse
|
42
|
Helmy Abdou MA, Truong TT, Dykky A, Ferreira P, Jul E. CapillaryNet: An automated system to quantify skin capillary density and red blood cell velocity from handheld vital microscopy. Artif Intell Med 2022; 127:102287. [DOI: 10.1016/j.artmed.2022.102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
|
43
|
Emfietzoglou M, Terentes-Printzios D, Kotronias RA, Marin F, Montalto C, De Maria GL, Banning AP. The spectrum and systemic associations of microvascular dysfunction in the heart and other organs. NATURE CARDIOVASCULAR RESEARCH 2022; 1:298-311. [PMID: 39196132 DOI: 10.1038/s44161-022-00045-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/02/2022] [Indexed: 08/29/2024]
Abstract
Microvascular dysfunction (MVD) contributes to several conditions that increase morbidity and mortality, including ischemic heart disease, heart failure, dementia, chronic kidney disease and hypertension. Consequently, MVD imposes a substantial burden on healthcare systems worldwide. In comparison to macrovascular dysfunction, MVD has been incompletely investigated, and it remains uncertain whether MVD in an organ constitutes a distinct pathology or a manifestation of a systemic disorder. Here, we summarize and appraise the techniques that are used to diagnose MVD. We review the disorders of the heart, brain and kidneys in which the role of MVD has been highlighted and summarize evidence hinting at a systemic or multi-organ nature of MVD. Finally, we discuss the benefits and limitations of implementing MVD testing in clinical practice with a focus on new interventions that are beginning to emerge.
Collapse
Affiliation(s)
| | | | | | - Federico Marin
- Oxford Heart Centre, Oxford University Hospitals, Oxford, UK
| | | | | | | |
Collapse
|
44
|
van Gennip ACE, Sedaghat S, Carnethon MR, Allen NB, Klein BEK, Cotch MF, Chirinos DA, Stehouwer CDA, van Sloten TT. Retinal Microvascular Caliber and Incident Depressive Symptoms: The Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 2022; 191:843-855. [PMID: 34652423 PMCID: PMC9071571 DOI: 10.1093/aje/kwab255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 11/15/2022] Open
Abstract
Cerebral microvascular dysfunction may contribute to depression via disruption of brain structures involved in mood regulation, but evidence is limited. The retina allows for visualization of a microvascular bed that shares similarities with the cerebral microvasculature. We investigated the associations between baseline retinal arteriolar and venular calibers (central retinal arteriolar equivalent (CRAE) and central retinal venular equivalent (CRVE), respectively) and incident depressive symptoms in the Multi-Ethnic Study of Atherosclerosis (MESA). We used longitudinal data on 4,366 participants (mean age = 63.2 years; 48.5% women, 28.4% Black) without baseline depressive symptoms. Depressive symptoms, defined as Center for Epidemiologic Studies Depression Scale score ≥16 and/or use of antidepressant medication, were determined between 2002 and 2004 (baseline; MESA visit 2) and at 3 follow-up examinations conducted every 1.5–2 years thereafter. Fundus photography was performed at baseline. After a mean follow-up period of 6.1 years, 21.9%
(n = 958) had incident depressive symptoms. After adjustment for sociodemographic, lifestyle, and cardiovascular factors, a 1–standard-deviation larger baseline CRVE was associated with a higher risk of depressive symptoms (hazard ratio = 1.10, 95% confidence interval: 1.02, 1.17), and a 1–standard-deviation larger baseline CRAE was not statistically significantly associated with incident
depressive symptoms (hazard ratio = 1.04, 95% confidence interval: 0.97, 1.11). In this study, larger baseline CRVE, but not CRAE, was associated with a higher incidence of depressive symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas T van Sloten
- Correspondence to Dr. Thomas T. van Sloten, Department of Internal Medicine, School for Cardiovascular Diseases (CARIM), Maastricht University Medical Center, P. Debyelaan 25, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands (e-mail: )
| |
Collapse
|
45
|
Weerts J, Mourmans SGJ, Barandiarán Aizpurua A, Schroen BLM, Knackstedt C, Eringa E, Houben AJHM, van Empel VPM. The Role of Systemic Microvascular Dysfunction in Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12020278. [PMID: 35204779 PMCID: PMC8961612 DOI: 10.3390/biom12020278] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a condition with increasing incidence, leading to a health care problem of epidemic proportions for which no curative treatments exist. Consequently, an urge exists to better understand the pathophysiology of HFpEF. Accumulating evidence suggests a key pathophysiological role for coronary microvascular dysfunction (MVD), with an underlying mechanism of low-grade pro-inflammatory state caused by systemic comorbidities. The systemic entity of comorbidities and inflammation in HFpEF imply that patients develop HFpEF due to systemic mechanisms causing coronary MVD, or systemic MVD. The absence or presence of peripheral MVD in HFpEF would reflect HFpEF being predominantly a cardiac or a systemic disease. Here, we will review the current state of the art of cardiac and systemic microvascular dysfunction in HFpEF (Graphical Abstract), resulting in future perspectives on new diagnostic modalities and therapeutic strategies.
Collapse
Affiliation(s)
- Jerremy Weerts
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
- Correspondence: ; Tel.: +31-43-387-7097
| | - Sanne G. J. Mourmans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Arantxa Barandiarán Aizpurua
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Blanche L. M. Schroen
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Christian Knackstedt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| | - Etto Eringa
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Alfons J. H. M. Houben
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands;
| | - Vanessa P. M. van Empel
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (S.G.J.M.); (A.B.A.); (B.L.M.S.); (C.K.); (V.P.M.v.E.)
| |
Collapse
|
46
|
Jellinger KA. Pathomechanisms of Vascular Depression in Older Adults. Int J Mol Sci 2021; 23:ijms23010308. [PMID: 35008732 PMCID: PMC8745290 DOI: 10.3390/ijms23010308] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Depression in older individuals is a common complex mood disorder with high comorbidity of both psychiatric and physical diseases, associated with high disability, cognitive decline, and increased mortality The factors predicting the risk of late-life depression (LLD) are incompletely understood. The reciprocal relationship of depressive disorder and age- and disease-related processes has generated pathogenic hypotheses and provided various treatment options. The heterogeneity of depression complicates research into the underlying pathogenic cascade, and factors involved in LLD considerably differ from those involved in early life depression. Evidence suggests that a variety of vascular mechanisms, in particular cerebral small vessel disease, generalized microvascular, and endothelial dysfunction, as well as metabolic risk factors, including diabetes, and inflammation that may induce subcortical white and gray matter lesions by compromising fronto-limbic and other important neuronal networks, may contribute to the development of LLD. The "vascular depression" hypothesis postulates that cerebrovascular disease or vascular risk factors can predispose, precipitate, and perpetuate geriatric depression syndromes, based on their comorbidity with cerebrovascular lesions and the frequent development of depression after stroke. Vascular burden is associated with cognitive deficits and a specific form of LLD, vascular depression, which is marked by decreased white matter integrity, executive dysfunction, functional disability, and poorer response to antidepressive therapy than major depressive disorder without vascular risk factors. Other pathogenic factors of LLD, such as neurodegeneration or neuroimmune regulatory dysmechanisms, are briefly discussed. Treatment planning should consider a modest response of LLD to antidepressants, while vascular and metabolic factors may provide promising targets for its successful prevention and treatment. However, their effectiveness needs further investigation, and intervention studies are needed to assess which interventions are appropriate and effective in clinical practice.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150 Vienna, Austria
| |
Collapse
|
47
|
Jekell A, Kalani M, Kahan T. Skin microvascular reactivity and subendocardial viability ratio in relation to dyslipidemia and signs of insulin resistance in non-diabetic hypertensive patients. Microcirculation 2021; 29:e12747. [PMID: 34936176 DOI: 10.1111/micc.12747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/11/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of dyslipidemia and insulin resistance for the development of microvascular dysfunction in non-diabetic primary hypertension. METHODS Seventy-one patients with untreated primary hypertension were included. Skin microvascular reactivity was evaluated by laser Doppler fluxmetry with iontophoresis (acetylcholine, ACh and sodium nitroprusside, SNP) and heat-induced hyperemia. Myocardial microvascular function was estimated by the subendocardial viability ratio (SEVR) calculated from pulse wave analysis and applanation tonometry. Triglyceride x glucose (TyG index) and triglyceride/HDL cholesterol ratio were used as measurements of insulin resistance. RESULTS Skin microvascular dysfunction was associated with low HDL cholesterol, where Ach-mediated peak flux (r = .27, p = .025) and heat-induced peak flux (r = .29, p = .017) related to HDL cholesterol levels. ACh peak flux was inversely related to TG/HDL ratio (r = -.29, p = .016), while responses to local heating and SNP did not. SEVR did not relate to HDL and was unrelated to markers of insulin resistance. These findings were confirmed by multivariable analyses, including potential confounders. CONCLUSIONS Early microvascular dysfunction can be detected in non-diabetic hypertensive patients and is related to dyslipidemia and to signs of insulin resistance, thus predicting future cardiovascular risk.
Collapse
Affiliation(s)
- Andreas Jekell
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Majid Kalani
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| | - Thomas Kahan
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
van Dinther M, Schram MT, Jansen JFA, Backes WH, Houben AJHM, Berendschot TTJM, Schalkwijk CG, Stehouwer CDA, van Oostenbrugge RJ, Staals J. Extracerebral microvascular dysfunction is related to brain MRI markers of cerebral small vessel disease: The Maastricht Study. GeroScience 2021; 44:147-157. [PMID: 34816376 PMCID: PMC8811003 DOI: 10.1007/s11357-021-00493-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a late consequence of cerebral microvascular dysfunction (MVD). MVD is hard to measure in the brain due to its limited accessibility. Extracerebral MVD (eMVD) measures can give insights in the etiology of cerebral MVD, as MVD may be a systemic process. We aim to investigate whether a compound score consisting of several eMVD measures is associated with structural cSVD MRI markers. METHODS Cross-sectional data of the population-based Maastricht Study was used (n = 1872, mean age 59 ± 8 years, 49% women). Measures of eMVD included flicker light-induced retinal arteriolar and venular dilation response (retina), albuminuria and glomerular filtration rate (kidney), heat-induced skin hyperemia (skin), and plasma biomarkers of endothelial dysfunction (sICAM-1, sVCAM-1, sE-selectin, and von Willebrand factor). These measures were standardized into z scores and summarized into a compound score. Linear and logistic regression analyses were used to investigate the associations between the compound score and white matter hyperintensity (WMH) volume, and the presence of lacunes and microbleeds, as measured by brain MRI. RESULTS The eMVD compound score was associated with WMH volume independent of age, sex, and cardiovascular risk factors (St β 0.057 [95% CI 0.010-0.081], p value 0.01), but not with the presence of lacunes (OR 1.011 [95% CI 0.803-1.273], p value 0.92) or microbleeds (OR 1.055 [95% CI 0.896-1.242], p value 0.52). CONCLUSION A compound score of eMVD is associated with WMH volume. Further research is needed to expand the knowledge about the role of systemic MVD in the pathophysiology of cSVD.
Collapse
Affiliation(s)
- Maud van Dinther
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands. .,CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| | - Miranda T Schram
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jacobus F A Jansen
- MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Walter H Backes
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Alfons J H M Houben
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tos T J M Berendschot
- MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Ophthalmology, Maastricht University Medical Center, Maastricht, The Netherlands.,NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Coen D A Stehouwer
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert J van Oostenbrugge
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,MHeNs - School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands.,CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
49
|
Jonasson H, Bergstrand S, Fredriksson I, Larsson M, Östgren CJ, Strömberg T. Post-ischemic skin peak oxygen saturation is associated with cardiovascular risk factors: a Swedish cohort study. Microvasc Res 2021; 140:104284. [PMID: 34826433 DOI: 10.1016/j.mvr.2021.104284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 02/08/2023]
Abstract
The objective of this study was to explore the associations between skin microcirculatory function and established cardiovascular risk factors in a large Swedish cohort. As part of the Swedish CArdioPulmonary bioImage Study (SCAPIS), microcirculatory data were acquired at Linköping University hospital, Linköping, Sweden during 2016-2017. The subjects, aged 50-64 years, were randomly selected from the national population register. Microcirculatory reactivity was assessed using a 5-min arterial occlusion-release protocol. Comprehensive skin microcirculatory data were continuously acquired by using a fiberoptic probe placed on the lower right arm. After exclusion of missing data (208), 1557 subjects were remaining. Among the parameters, skin microcirculatory peak oxygen saturation after occlusion release, had the strongest relationship to the cardiovascular risk factors. The linear associations between peak oxygen saturation and cardiovascular risk factors were analyzed adjusted for age and sex. We found a negative association with peak oxygen saturation (standardized regression coefficient) for blood pressure (systolic -0.05 (95% CI: -0.10;-0.003) and diastolic -0.05 (-0.10; -0.003)), BMI -0.18 (-0.23; -0.13), waist circumference (males -0.20 (-0.32; -0.16), females -0.18 (-0.25; -0.11)), prevalent diabetes -0.31 (-0.49; -0.12), hypertension -0.30 (-0.42; -0.18), dyslipidemia -0.24 (-0.40; -0.09), fasting glucose level -0.06 (-0.12; -0.01), HbA1c -0.07 (-0.12; -0.02), triglyceride level -0.09 (-0.14; -0.04), hsCRP -0.12 (-0.17; -0.07), and current smoker versus never smoked -0.50 (-0.67; -0.34). A positive association with peak oxygen saturation was found for cholesterol level 0.05 (0.005; 0.11) and HDL 0.11 (0.06; 0.17). This is the first study showing that post-ischemic skin microvascular peak oxygen saturation is associated with virtually all established cardiovascular risk factors in a population-based middle-aged cohort.
Collapse
Affiliation(s)
- Hanna Jonasson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden.
| | - Sara Bergstrand
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ingemar Fredriksson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Perimed AB, Järfälla, Stockholm, Sweden
| | - Marcus Larsson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Carl Johan Östgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Tomas Strömberg
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
50
|
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int J Mol Sci 2021; 22:ijms222111453. [PMID: 34768884 PMCID: PMC8584056 DOI: 10.3390/ijms222111453] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease can progress to end-stage chronic renal disease (ESRD), which requires the use of replacement therapy (dialysis or kidney transplant) in life-threatening conditions. In ESRD, irreversible changes in the kidneys are associated with systemic changes of proinflammatory nature and dysfunctions of internal organs, skeletal muscles, and integumentary tissues. The common components of ESRD pathogenesis, regardless of the initial nosology, are (1) local (in the kidneys) and systemic chronic low-grade inflammation (ChLGI) as a risk factor for diabetic kidney disease and its progression to ESRD, (2) inflammation of the classical type characteristic of primary and secondary autoimmune glomerulonephritis and infectious recurrent pyelonephritis, as well as immune reactions in kidney allograft rejection, and (3) chronic systemic inflammation (ChSI), pathogenetically characterized by latent microcirculatory disorders and manifestations of paracoagulation. The development of ChSI is closely associated with programmed hemodialysis in ESRD, as well as with the systemic autoimmune process. Consideration of ESRD pathogenesis from the standpoint of the theory of general pathological processes opens up the scope not only for particular but also for universal approaches to conducting pathogenetic therapies and diagnosing and predicting systemic complications in severe nephropathies.
Collapse
|