1
|
Pawluczyk IZA, Bhachu JS, Brown JR, Lacey M, Mbadugha C, Straatman K, Wimbury D, Selvaskandan H, Barratt J. B cell-derived exosomal miR-483-5p and its potential role in promoting kidney function loss in IgA nephropathy. Kidney Int 2025:S0085-2538(25)00324-2. [PMID: 40268167 DOI: 10.1016/j.kint.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
INTRODUCTION While mesangial IgA deposition is the pathognomonic feature of IgA nephropathy (IgAN), the extent of mesangial IgA accumulation does not correlate with the future risk of kidney failure. This has led to the search for other serum factors that may influence clinical outcome. The emergence of microRNAs (miRs) as negative regulators of gene expression and the increasingly recognized role of extracellular miRs in intercellular communication has prompted study of the influence of miRs on inflammatory and scarring pathways in the kidneys. METHODS Here, next generation sequencing and subsequent qPCR validation identified a significant increase in the serum levels of miR-483-5p, largely packaged within exosomes. RESULTS Levels of miR-483-5p in serum exosomes were greatest in those IgAN patients with higher levels of proteinuria who subsequently developed kidney failure. Exosomal miR-483-5p content significantly correlated with numerous soluble isoforms of the tumor necrosis factor (TNF) receptor super family suggesting lymphocytes as a source of the miR-enriched exosomes. In PBMC miR-483-5p expression was almost exclusively seen in CD19+ lymphocytes. Activation of a human IgA secreting B-cell line with soluble TNFR1 induced miR-483-5p synthesis and enrichment within exosomes. Exposure to miR-483-5p-enriched B cell exosomes resulted in a proinflammatory phenotypic change in cultured human collecting duct epithelial cells, likely mediated through suppression of the transcription factor SOCS3. miR-483-5p-enriched exosomes were also present in the urine of patients with IgAN. CONCLUSIONS Interaction of B lymphocyte-derived miR-enriched exosomes with tubular epithelial cells may provide an explanation for the progressive tubulointerstitial scarring and loss of kidney function seen in IgAN.
Collapse
Affiliation(s)
- Izabella Z A Pawluczyk
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | - Jasraj S Bhachu
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jeremy R Brown
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Michael Lacey
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chidimma Mbadugha
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Kees Straatman
- Advanced Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - David Wimbury
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Haresh Selvaskandan
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Mayer IgA Nephropathy Laboratories, Department Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Sakuma H, Maruyama K, Aonuma T, Kobayashi Y, Hayasaka T, Kano K, Kawaguchi S, Nakajima KI, Kawabe JI, Hasebe N, Nakagawa N. Inducible deletion of microRNA activity in kidney mesenchymal cells exacerbates renal fibrosis. Sci Rep 2024; 14:10963. [PMID: 38745066 PMCID: PMC11094108 DOI: 10.1038/s41598-024-61560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
MicroRNAs (miRNAs) are sequence-specific inhibitors of post-transcriptional gene expression. However, the physiological functions of these non-coding RNAs in renal interstitial mesenchymal cells remain unclear. To conclusively evaluate the role of miRNAs, we generated conditional knockout (cKO) mice with platelet-derived growth factor receptor-β (PDGFR-β)-specific inactivation of the key miRNA pathway gene Dicer. The cKO mice were subjected to unilateral ureteral ligation, and renal interstitial fibrosis was quantitatively evaluated using real-time polymerase chain reaction and immunofluorescence staining. Compared with control mice, cKO mice had exacerbated interstitial fibrosis exhibited by immunofluorescence staining and mRNA expression of PDGFR-β. A microarray analysis showed decreased expressions of miR-9-5p, miR-344g-3p, and miR-7074-3p in cKO mice compared with those in control mice, suggesting an association with the increased expression of PDGFR-β. An analysis of the signaling pathways showed that the major transcriptional changes in cKO mice were related to smooth muscle cell differentiation, regulation of DNA metabolic processes and the actin cytoskeleton, positive regulation of fibroblast proliferation and Ras protein signal transduction, and focal adhesion-PI3K/Akt/mTOR signaling pathways. Depletion of Dicer in mesenchymal cells may downregulate the signaling pathway related to miR-9-5p, miR-344g-3p, and miR-7074-3p, which can lead to the progression of chronic kidney disease. These findings highlight the possibility for future diagnostic or therapeutic developments for renal fibrosis using miR-9-5p, miR-344g-3p, and miR-7074-3p.
Collapse
Affiliation(s)
- Hirofumi Sakuma
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Keisuke Maruyama
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Tatsuya Aonuma
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Yuya Kobayashi
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Taiki Hayasaka
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Kohei Kano
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Satoshi Kawaguchi
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kei-Ichi Nakajima
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Jun-Ichi Kawabe
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Hasebe
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan
| | - Naoki Nakagawa
- Division of Cardiology and Nephrology, Department of Internal Medicine, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, Japan.
| |
Collapse
|
3
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. CD44 expression in renal tubular epithelial cells in the kidneys of rats with cyclosporine-induced chronic kidney disease. J Toxicol Pathol 2024; 37:55-67. [PMID: 38584969 PMCID: PMC10995437 DOI: 10.1293/tox.2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024] Open
Abstract
Renal tubular epithelial cell (TEC) injury is the most common cause of drug-induced kidney injury (DIKI). Although TEC regeneration facilitates renal function and structural recovery following DIKI, maladaptive repair of TECs leads to irreversible fibrosis, resulting in chronic kidney disease (CKD). CD44 is specifically expressed in TECs during maladaptive repair in several types of rat CKD models. In this study, we investigated CD44 expression and its role in renal fibrogenesis in a cyclosporine (CyA) rat model of CKD. Seven-week-old male Sprague-Dawley rats fed a low-salt diet were subcutaneously administered CyA (0, 15, or 30 mg/kg) for 28 days. CD44 was expressed in atrophic, dilated, and hypertrophic TECs in the fibrotic lesions of the CyA groups. These TECs were collected by laser microdissection and evaluated by microarray analysis. Gene ontology analysis suggested that these TECs have a mesenchymal phenotype, and pathway analysis identified CD44 as an upstream regulator of fibrosis-related genes, including fibronectin 1 (Fn1). Immunohistochemistry revealed that epithelial and mesenchymal markers of TECs of fibrotic lesions were downregulated and upregulated, respectively, and that these TECs were surrounded by a thickened basement membrane. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of TECs of fibrotic lesions, whereas fibronectin protein was localized in the stroma surrounding these tubules. Enzyme-linked immunosorbent assay revealed increased serum CD44 levels in CyA-treated rats. Collectively, these findings suggest that CD44 contributes to renal fibrosis by inducing fibronectin secretion in TECs exhibiting partial epithelial-mesenchymal transition and highlight the potential of CD44 as a biomarker of renal fibrosis.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| |
Collapse
|
4
|
Xu Z, Zhang S, Han T, Cai L, Zhong S, Yang X, Zhang S, Li Y, Liu K, Zhou B, Tian X. Continuous genetic monitoring of transient mesenchymal gene activities in distal tubule and collecting duct epithelial cells during renal fibrosis. J Cell Biochem 2024; 125:e30541. [PMID: 38372186 DOI: 10.1002/jcb.30541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Epithelial cells (ECs) have been proposed to contribute to myofibroblasts or fibroblasts through epithelial-mesenchymal transition (EMT) during renal fibrosis. However, since EMT may occur dynamically, transiently, and reversibly during kidney fibrosis, conventional lineage tracing based on Cre-loxP recombination in renal ECs could hardly capture the transient EMT activity, yielding inconsistent results. Moreover, previous EMT research has primarily focused on renal proximal tubule ECs, with few reports of distal tubules and collecting ducts. Here, we generated dual recombinases-mediated genetic lineage tracing systems for continuous monitoring of transient mesenchymal gene expression in E-cadherin+ and EpCAM+ ECs of distal tubules and collecting ducts during renal fibrosis. Activation of key EMT-inducing transcription factor (EMT-TF) Zeb1 and mesenchymal markers αSMA, vimentin, and N-cadherin, were investigated following unilateral ureteral obstruction (UUO). Our data revealed that E-cadherin+ and EpCAM+ ECs did not transdifferentiate into myofibroblasts, nor transiently expressed these mesenchymal genes during renal fibrosis. In contrast, in vitro a large amount of cultured renal ECs upregulated mesenchymal genes in response to TGF-β, a major inducer of EMT.
Collapse
Affiliation(s)
- Zihang Xu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Shaotong Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tingting Han
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Letong Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Simin Zhong
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaojie Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shaohua Zhang
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
| | - Kuo Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- New Cornerstone Science Laboratory, Shenzhen, China
| | - Xueying Tian
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| |
Collapse
|
5
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol 2024; 44:455-469. [PMID: 37876353 DOI: 10.1002/jat.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
6
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 254] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13:1038073. [PMID: 36408221 PMCID: PMC9666367 DOI: 10.3389/fphar.2022.1038073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic nephropathy (DN) is a major cause of morbidity and mortality in diabetes and is the most common cause of end stage renal disease (ESRD). Renal fibrosis is the final pathological change in DN. It is widely believed that cellular phenotypic switching is the cause of renal fibrosis in diabetic nephropathy. Several types of kidney cells undergo activation and differentiation and become reprogrammed to express markers of mesenchymal cells or podocyte-like cells. However, the development of targeted therapy for DN has not yet been identified. Here, we discussed the pathophysiologic changes of DN and delineated the possible origins that contribute to myofibroblasts and podocytes through phenotypic transitions. We also highlight the molecular signaling pathways involved in the phenotypic transition, which would provide valuable information for the activation of phenotypic switching and designing effective therapies for DN.
Collapse
Affiliation(s)
- Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Hong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The current review aims to present the most recent achievements on the role of microRNAs (miRNAs) on the kidney function to stimulate research in the field and to expand new emerging concepts. RECENT FINDINGS The focus is on the role of miRNAs in intercellular communication along the segments of the nephron and on the epi-miRNAs, namely the possibility of some miRNAs to modulate the epigenetic machinery and so gene expression. Indeed, recent evidence showed that miRNAs included in exosomes and released by proximal tubule cells can modulate ENaC activity on cells of collecting duct. These data, although, from in-vitro models open to a novel role for miRNAs to participate in paracrine signaling pathways. In addition, the role of miRNAs as epigenetic modulators is expanding not only in the cancer field, but also in the other kidney diseases. Recent evidence identified three miRNAs able to modulate the AQP2 promoter metilation and showing an additional level of regulation for the AQP2. SUMMARY These evidence can inspire novel area of research both for renal physiology and drug discovery. The diseases involving the collecting duct are still missing disease modifying agents and the expanding miRNAs field could represent an opportunity.
Collapse
|
9
|
Abstract
Mechanical variables such as stiffness, stress, strain, and fluid shear stress are central to tissue functions, thus, must be maintained within the proper range. Mechanics are especially important in the cardiovascular system and lung, the functions of which are essentially mechanical. Mechanical homeostasis is characterized by negative feedback in which deviations from the optimal value or set point activates mechanisms to return the system to the correct range. In chronic diseases, homeostatic mechanisms are generally overcome or replaced with positive feedback loops that promote disease progression. Recent work has shown that microRNAs (miRNAs) are essential to mechanical homeostasis in a number of biological systems and that perturbations to miRNA biogenesis play key roles in cardiovascular and pulmonary diseases. In this review, we integrate current knowledge of miRNAs in mechanical homeostasis and how these mechanisms are altered in disease.
Collapse
Affiliation(s)
- Jeremy A Herrera
- The Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Departments of Internal Medicine (Cardiology), Cell Biology, and Biomedical Engineering, Yale School of Medicine, New Haven 06511, Connecticut, USA
| |
Collapse
|
10
|
LCZ696 (sacubitril/valsartan) protects against cyclophosphamide-induced nephrotoxicity in adult male rats: Up-regulation of Apelin-13/ACE2, miR-200, and down-regulation of TGF-β/SMAD 2/3 and miR-192. Life Sci 2022; 306:120850. [PMID: 35917938 DOI: 10.1016/j.lfs.2022.120850] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
|
11
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial-mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
12
|
Bibel B, Elkayam E, Silletti S, Komives EA, Joshua-Tor L. Target binding triggers hierarchical phosphorylation of human Argonaute-2 to promote target release. eLife 2022; 11:76908. [PMID: 35638597 PMCID: PMC9154749 DOI: 10.7554/elife.76908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Argonaute (Ago) proteins play a central role in post-transcriptional gene regulation through RNA interference (RNAi). Agos bind small RNAs (sRNAs) including small interfering RNAs (siRNAs) and microRNAs (miRNAs) to form the functional core of the RNA-induced silencing complex (RISC). The sRNA is used as a guide to target mRNAs containing either partially or fully complementary sequences, ultimately leading to downregulation of the corresponding proteins. It was previously shown that the kinase CK1α phosphorylates a cluster of residues in the eukaryotic insertion (EI) of Ago, leading to the alleviation of miRNA-mediated repression through an undetermined mechanism. We show that binding of miRNA-loaded human Ago2 to target RNA with complementarity to the seed and 3’ supplementary regions of the miRNA primes the EI for hierarchical phosphorylation by CK1α. The added negative charges electrostatically promote target release, freeing Ago to seek out additional targets once it is dephosphorylated. The high conservation of potential phosphosites in the EI suggests that such a regulatory strategy may be a shared mechanism for regulating miRNA-mediated repression. Proteins are the chemical ‘workhorses’ of the cell: some help maintain a cell’s shape or structure, while others carry out the chemical reactions necessary for life. Organisms therefore need to keep tight control over the production of proteins in their cells, so that the right amount of each protein is made at the right time, in the right place. Instructions for making new proteins are encoded in a type of molecule called messenger RNA. Each messenger RNA contains the instructions for one protein, which are then ‘read’ and carried out by special cellular machinery called ribosomes. The cell can control how much protein it produces by regulating both the levels of different messenger RNA and the amount of protein ribosomes are allowed to make from those instructions. The main way to regulate the levels of messenger RNA is through their transcription from the genome. However, this needs fine tuning. Cells can do this in a highly specific way using molecules called microRNAs. A microRNA works by directing a protein called Argonaute to the messenger RNA that it targets. Once Argonaute arrives, it can call in additional ‘helper proteins’ to shut down, or reduce, protein production from that messenger RNA, or alternatively to break down the messenger RNA altogether. Cells can use an enzyme called CK1α to attach bulky chemical groups onto a specific part of the Argonaute protein, in a reaction termed phosphorylation. The ability to carry out this reaction (and to reverse it) also seems to be important for microRNAs to do their job properly, but why has remained unknown. Bibel et al. wanted to determine what triggers CK1α to phosphorylate Argonaute, and how this affects interactions between microRNAs, Argonaute and their target messenger RNAs. A series of ‘test tube’ experiments looked at the interaction between purified CK1α and Argonaute under different conditions. These demonstrated that CK1α could only carry out its phosphorylation reaction when Argonaute was already interacting with a microRNA and its corresponding messenger RNA. Further measurements revealed that phosphorylation of Argonaute made it detach from the messenger RNA more quickly. This suggests that phosphorylation might be a way to let Argonaute seek out new messenger RNAs after blocking protein production at its first ‘target’. These results shed new light on a fundamental mechanism that cells use to control protein production. Bibel et al. propose that this mechanism may be shared across many different species and could one day help guide the development of new medical therapies based on microRNAs.
Collapse
Affiliation(s)
- Brianna Bibel
- Cold Spring Harbor Laboratory School of Biological Sciences
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory
| | - Elad Elkayam
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory
| | - Steve Silletti
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory School of Biological Sciences
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory
| |
Collapse
|
13
|
Abstract
MicroRNAs (miRNAs) belong to a class of endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, through both translational repression and mRNA destabilization. They are key regulators of kidney morphogenesis, modulating diverse biological processes in different renal cell lineages. Dysregulation of miRNA expression disrupts early kidney development and has been implicated in the pathogenesis of developmental kidney diseases. In this Review, we summarize current knowledge of miRNA biogenesis and function and discuss in detail the role of miRNAs in kidney morphogenesis and developmental kidney diseases, including congenital anomalies of the kidney and urinary tract and Wilms tumor. We conclude by discussing the utility of miRNAs as potentially novel biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Débora Malta Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maliha Tayeb
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- John G. Rangos Sr. Research Center, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Yan MT, Chao CT, Lin SH. Chronic Kidney Disease: Strategies to Retard Progression. Int J Mol Sci 2021; 22:ijms221810084. [PMID: 34576247 PMCID: PMC8470895 DOI: 10.3390/ijms221810084] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD), defined as the presence of irreversible structural or functional kidney damages, increases the risk of poor outcomes due to its association with multiple complications, including altered mineral metabolism, anemia, metabolic acidosis, and increased cardiovascular events. The mainstay of treatments for CKD lies in the prevention of the development and progression of CKD as well as its complications. Due to the heterogeneous origins and the uncertainty in the pathogenesis of CKD, efficacious therapies for CKD remain challenging. In this review, we focus on the following four themes: first, a summary of the known factors that contribute to CKD development and progression, with an emphasis on avoiding acute kidney injury (AKI); second, an etiology-based treatment strategy for retarding CKD, including the approaches for the common and under-recognized ones; and third, the recommended approaches for ameliorating CKD complications, and the final section discusses the novel agents for counteracting CKD progression.
Collapse
Affiliation(s)
- Ming-Tso Yan
- Department of Medicine, Division of Nephrology, Cathay General Hospital, School of Medicine, Fu-Jen Catholic University, Taipei 106, Taiwan;
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
| | - Chia-Ter Chao
- Department of Internal Medicine, Nephrology Division, National Taiwan University Hospital, Taipei 104, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 104, Taiwan
- Department of Internal Medicine, Nephrology Division, National Taiwan University College of Medicine, Taipei 104, Taiwan
| | - Shih-Hua Lin
- National Defense Medical Center, Graduate Institute of Medical Sciences, Taipei 114, Taiwan
- Department of Internal Medicine, Nephrology Division, National Defense Medical Center, Taipei 104, Taiwan
- Correspondence: or
| |
Collapse
|
15
|
Kuscu C, Kiran M, Mohammed A, Kuscu C, Satpathy S, Wolen A, Bardhi E, Bajwa A, Eason JD, Maluf D, Mas V, Akalin E. Integrative Analyses of Circulating Small RNAs and Kidney Graft Transcriptome in Transplant Glomerulopathy. Int J Mol Sci 2021; 22:ijms22126218. [PMID: 34207555 PMCID: PMC8226568 DOI: 10.3390/ijms22126218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
Transplant glomerulopathy develops through multiple mechanisms, including donor-specific antibodies, T cells and innate immunity. This study investigates circulating small RNA profiles in serum samples of kidney transplant recipients with biopsy-proven transplant glomerulopathy. Among total small RNA population, miRNAs were the most abundant species in the serum of kidney transplant patients. In addition, fragments arising from mature tRNA and rRNA were detected. Most of the tRNA fragments were generated from 5′ ends of mature tRNA and mainly from two parental tRNAs: tRNA-Gly and tRNA-Glu. Moreover, transplant patients with transplant glomerulopathy displayed a novel tRNA fragments signature. Gene expression analysis from allograft tissues demonstrated changes in canonical pathways related to immune activation such as iCos-iCosL signaling pathway in T helper cells, Th1 and Th2 activation pathway, and dendritic cell maturation. mRNA targets of down-regulated miRNAs such as miR-1224-5p, miR-4508, miR-320, miR-378a from serum were globally upregulated in tissue. Integration of serum miRNA profiles with tissue gene expression showed that changes in serum miRNAs support the role of T-cell mediated mechanisms in ongoing allograft injury.
Collapse
Affiliation(s)
- Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
- Correspondence: ; Tel.: +1-901-448-3162
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (M.K.); (S.S.)
| | - Akram Mohammed
- Center for Biomedical Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - Sarthak Satpathy
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India; (M.K.); (S.S.)
| | - Aaron Wolen
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - Elissa Bardhi
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (E.B.); (D.M.); (V.M.)
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - James D. Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.K.); (A.W.); (A.B.); (J.D.E.)
| | - Daniel Maluf
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (E.B.); (D.M.); (V.M.)
| | - Valeria Mas
- Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (E.B.); (D.M.); (V.M.)
| | - Enver Akalin
- Montefiore Medical Center, Abdominal Transplant Program, Albert Einstein College of Medicine, Bronx, NY 10467, USA;
| |
Collapse
|
16
|
Petrillo F, Iervolino A, Angrisano T, Jelen S, Costanzo V, D’Acierno M, Cheng L, Wu Q, Guerriero I, Mazzarella MC, De Falco A, D’Angelo F, Ceccarelli M, Caraglia M, Capasso G, Fenton RA, Trepiccione F. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2021; 32:1339-1354. [PMID: 33727367 PMCID: PMC8259636 DOI: 10.1681/asn.2020010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/02/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. METHODS Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre+ mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. RESULTS The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre+ mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre+ mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre+ mice, resulting in decreased RNA Pol II association. CONCLUSIONS Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression.
Collapse
Affiliation(s)
- Federica Petrillo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anna Iervolino
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabina Jelen
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilaria Guerriero
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Alfonso De Falco
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Fulvio D’Angelo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Michele Ceccarelli
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Electrical Engineering and Information Technology (DIETI) University of Naples “Federico II”, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovambattista Capasso
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesco Trepiccione
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
17
|
de Sá Pereira BM, Montalvão de Azevedo R, da Silva Guerra JV, Faria PA, Soares-Lima SC, De Camargo B, Maschietto M. Non-coding RNAs in Wilms' tumor: biological function, mechanism, and clinical implications. J Mol Med (Berl) 2021; 99:1043-1055. [PMID: 33950291 DOI: 10.1007/s00109-021-02075-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Non-coding RNAs are involved with maintenance and regulation of physiological mechanisms and are involved in pathological processes, such as cancer. Among the small ncRNAs, miRNAs are the most explored in tumorigenesis, metastasis development, and resistance to chemotherapy. These small molecules of ~ 22 nucleotides are modulated during early renal development, involved in the regulation of gene expression and Wilms' tumor progression. Wilms' tumors are embryonic tumors with few mutations and complex epigenetic dysregulation. In recent years, the small ncRNAs have been explored as potentially related both in physiological development and in the tumorigenesis of several types of cancer. Besides, genes regulated by miRNAs are related to biological pathways as PI3K, Wnt, TGF-β, and Hippo signaling pathways, among others, which may be involved with the underlying mechanisms of resistance to chemotherapy, and in this way, it has emerged as potential targets for cancer therapies, including for Wilms' tumors.
Collapse
Affiliation(s)
| | - Rafaela Montalvão de Azevedo
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil.,Current institution: Molecular Bases of Genetic Risk and Genetic Testing Unit, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - João Victor da Silva Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutic Sciences, University of Campinas, Campinas, SP, Brazil
| | - Paulo A Faria
- Brazilian National Cancer Institute (INCa), Rio de Janeiro, RJ, Brazil
| | | | | | - Mariana Maschietto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil. .,Current: Research Institute, Boldrini Children's Hospital, Rua Dr. Gabriel Porto, 1270 - Cidade Universitária, Campinas, SP, 13083-210, Brazil.
| |
Collapse
|
18
|
Pawluczyk IZA, Soares MSF, Barratt WA, Brown JR, Bhachu JS, Selvaskandan H, Zeng Y, Sarania R, Molyneux K, Roberts ISD, Barratt J. Macrophage interactions with collecting duct epithelial cells are capable of driving tubulointerstitial inflammation and fibrosis in immunoglobulin A nephropathy. Nephrol Dial Transplant 2021; 35:1865-1877. [PMID: 32830258 DOI: 10.1093/ndt/gfaa079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tubulointerstitial fibrosis is a powerful predictor of future progression inimmunoglobulin A (IgA) nephropathy (IgAN). Proximal tubular epithelial cells (PTECs), in concert with infiltrating macrophages, are regarded as the agents provocateurs for driving this fibrotic process. However, evidence is now emerging for a contributory role of the distal nephron. The aim of this study was to examine the potential influence of macrophages on collecting duct epithelial cells (CDECs) and their combined role in the progression of IgAN. METHODS CDECs were cultured with macrophage-conditioned media (MCM) generated from human monocyte cell lines U937 and THP-1 stimulated with or without 100 μg/mL galactose-deficient IgA1. CDECs were analysed for evidence of inflammation and fibrosis. RESULTS Staining of IgAN biopsies for CD68+ macrophages revealed the presence of macrophages juxtaposed to collecting ducts and within their lumina. CDEC exposed to MCM from IgA1-stimulated THP-1 cells (THP-1-IgA-MCM) exhibited markedly increased expression of neutrophil-associated gelatinase (NGAL) and proinflammatory cytokinesinterleukin (IL)-1β, tumour necrosis factor-α, IL-6 and IL-8 compared with MCM from non-IgA-stimulated THP-1 cells (THP-1-MCM). U937-IgA-MCM increased fibronectin levels and reduced E-cadherinmRNA expression. THP-1-IgA-MCM-derived exosomes induced similar increases in NGAL and cytokine expression while in cross-over experiments exosomes extracted from IL-1β-exposed CDEC induced IL-1β and IL-6 mRNA expression in both sets of macrophages. MiRnome analysis revealed that microRNA (miR)-146a, -155 and -200b exhibited a >2-fold increase in expression in CDEC treated with THP-1-IgA-MCM compared with THP-1-MCM. Enforced miR-146a suppression further enhanced NGAL expression, while ectopic miR-146a over-expression downregulated it. NGAL mRNA and miR-146a were upregulated in the biopsies of patients with progressive IgAN compared with non-progressive IgAN. CONCLUSIONS Taken together, these data suggest that CDEC-macrophage interactions potentially contribute to the tubulointerstitial fibrosis characteristic of progressive IgAN.
Collapse
Affiliation(s)
| | - Maria S F Soares
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | | | | | | | | | | | | | - Ian S D Roberts
- John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
19
|
Zhu F, Li H, Long T, Zhou M, Wan J, Tian J, Zhou Z, Hu Z, Nie J. Tubular Numb promotes renal interstitial fibrosis via modulating HIF-1α protein stability. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166081. [PMID: 33486098 DOI: 10.1016/j.bbadis.2021.166081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/28/2022]
Abstract
Tubulointerstitial fibrosis is the ultimate common pathway of all manners of chronic kidney disease. We previously demonstrated that specific deletion of Numb in proximal tubular cells (PTCs) prevented G2/M arrest and attenuated renal fibrosis. However, how Numb modulates cell cycle arrest remains unclear. Here, we showed that Numb overexpression significantly increased the protein level of hypoxia-inducible factor-1α (HIF-1α). Numb overexpression-induced G2/M arrest was blocked by silencing endogenous HIF-1α, subsequently downregulated the expression of cyclin G1 which is an atypical cyclin to promote G2/M arrest of PTCs. Further analysis revealed that Numb-augmented HIF-1α protein was blocked by simultaneously overexpressing MDM2. Moreover, silencing Numb decreased TGF-β1-induceded HIF-1α protein expression. While endogenous MDM2 was knocked down this reduction was reversed, indicating that Numb stabilized HIF-1α protein via interfering MDM2-mediated HIF-1α protein degradation. Interestingly, HIF-1α overexpression significantly upregulated the expression of Numb and silencing endogenous HIF-1α blocked CoCl2 or TGF-β1-induced Numb expression. Chromatin immunoprecipitation (ChIP) assays demonstrated that HIF-1α binded to the promoter region of Numb. This binding was significantly increased by TGF-β1. Collectively, these data indicate that Numb and HIF-1α cooperates to promote G2/M arrest of PTCs, and thus aggravates tubulointerstitial fibrosis. Numb might be a potential target for the therapy of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Hao Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiao Wan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianwei Tian
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
20
|
Li J, Yang Y, Wei S, Chen L, Xue L, Tian H, Tao S. Bixin Protects Against Kidney Interstitial Fibrosis Through Promoting STAT6 Degradation. Front Cell Dev Biol 2020; 8:576988. [PMID: 33313043 PMCID: PMC7704619 DOI: 10.3389/fcell.2020.576988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 01/02/2023] Open
Abstract
Bixin, a natural carotenoid extracted from the seeds of Bixa orellana, has antioxidant and anti-inflammation effects. However, the pharmacological effects and underlying mechanisms of bixin in kidney interstitial fibrosis remain unknown. Partial epithelial-to-mesenchymal transition (EMT) of tubular cells has been linked to renal interstitial fibrosis. Here, we found that in the unilateral ureteral obstruction model, bixin administration could ameliorate kidney interstitial fibrosis. The expression of signal transducer and activator of transcription 6 (STAT6) was dramatically increased in renal tubular cells. Bixin treatment inhibited STAT6 induction. The activation of STAT6 signaling was essential for transforming growth factor β1, fibrotic markers, and EMT-related protein expression in HK2 cells, which was confirmed by using the Stat6-/- mice. Ubiquitination, but not the acetylation level of STAT6, was induced by bixin treatment and promoted the suppression of phosphorylation and stability of STAT6. P62-dependent autophagy might be involved in this process. The study demonstrated that bixin can be exploited therapeutically to alleviate renal interstitial fibrosis by targeting STAT6 signaling deactivation.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shuhui Wei
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ling Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Kidney inflammaging is promoted by CCR2 + macrophages and tissue-derived micro-environmental factors. Cell Mol Life Sci 2020; 78:3485-3501. [PMID: 33313981 PMCID: PMC8038964 DOI: 10.1007/s00018-020-03719-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The incidence of disorders associated with low inflammatory state, such as chronic kidney disease, increases in the elderly. The accumulation of senescent cells during aging and the senescence-associated secretory phenotype, which leads to inflammaging, is known to be deleterious and account for progressive organ dysfunction. To date, the cellular actors implicated in chronic inflammation in the kidney during aging are still not well characterized. Using the DECyt method, based on hierarchical clustering of flow cytometry data, we showed that aging was associated with significant changes in stromal cell diversity in the kidney. In particular, we identified two cell populations up-regulated with aging, the mesenchymal stromal cell subset (kMSC) expressing CD73 and the monocyte-derived Ly6C+ CCR2+ macrophage subset expressing pro-inflammatory cytokines. Aged CD73+ kMSCs depicted senescence associated features with low proliferation rate, increased DNA damage foci and Ccl2 expression. Using co-cultures experiments, we showed that aged CD73+ kMSC promoted monocyte activation and secretion of inflammatory cytokines albeit less efficiently than young CD73+ kMSCs. In the context of ageing, increased frequency of CD73+ kMSC subpopulations could provide additional niche factors to newly recruited monocytes favoring a positive regulatory loop in response to local inflammation. Interfering with such partnership during aging could be a valuable approach to regulate kidney inflammaging and to limit the risk of developing chronic kidney disease in the elderly.
Collapse
|
22
|
Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol 2020; 11:569322. [PMID: 33041867 PMCID: PMC7522479 DOI: 10.3389/fphys.2020.569322] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is described as the process in which injured renal tubular epithelial cells undergo a phenotype change, acquiring mesenchymal characteristics and morphing into fibroblasts. Initially, it was widely thought of as a critical mechanism of fibrogenesis underlying chronic kidney disease. However, evidence that renal tubular epithelial cells can cross the basement membrane and become fibroblasts in the renal interstitium is rare, leading to debate about the existence of EMT. Recent research has demonstrated that after injury, renal tubular epithelial cells acquire mesenchymal characteristics and the ability to produce a variety of profibrotic factors and cytokines, but remain attached to the basement membrane. On this basis, a new concept of “partial epithelial-mesenchymal transition (pEMT)” was proposed to explain the contribution of renal epithelial cells to renal fibrogenesis. In this review, we discuss the concept of pEMT and the most recent findings related to this process, including cell cycle arrest, metabolic alternation of epithelial cells, infiltration of immune cells, epigenetic regulation as well as the novel signaling pathways that mediate this disturbed epithelial-mesenchymal communication. A deeper understanding of the role and the mechanism of pEMT may help in developing novel therapies to prevent and halt fibrosis in kidney disease.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
23
|
Li J, Yang Y, Wei S, Chen L, Xue L, Tian H, Tao S. Bixin Confers Prevention against Ureteral Obstruction-Caused Renal Interstitial Fibrosis through Activation of the Nuclear Factor Erythroid-2-Related Factor2 Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8321-8329. [PMID: 32706966 DOI: 10.1021/acs.jafc.0c03674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bixin is a natural carotenoid isolated from the seeds of Bixa orellana, with numerous important pharmacological activities, including antioxidant and antifibrotic effects. The nuclear factor erythroid-2-related factor2 (Nrf2) signaling pathway induced by bixin is involved in the process. Excessive reactive oxygen species generation in tubular cells contributes to kidney interstitial fibrosis. The potential therapeutic strategy for bixin in alleviating kidney fibrosis remains largely unclear. In this study, we used unilateral ureteral obstruction (UUO) to establish a renal fibrotic model. Dramatic oxidative DNA damage occurs in kidneys, especially in tubular cells after UUO. In cultured tubular cells, bixin could induce Nrf2 signaling activation by suppressing Nrf2 ubiquitination and increasing its protein stability. Transforming growth factor beta 1-induced epithelial-to-mesenchymal transition (EMT) and extracellular matrix production were suppressed by bixin, and blockade of Nrf2 activation by small interfering RNA could largely reverse the protective effect of bixin. In vivo studies showed that administration of bixin induces Nrf2 signaling activation in tubular cells and markedly attenuates partial EMT of tubular cells and kidney interstitial fibrosis after subjecting to UUO. Together, this study implies that bixin may protect against kidney interstitial fibrosis through stimulating Nrf2 activation in renal tubular cells.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Youjing Yang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shuhui Wei
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Ling Chen
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shasha Tao
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
24
|
Li J, Bao H, Zhang K, Yang X, Liu X, Li P, Li Q, Chen W. MiR-542-3p drives renal fibrosis by targeting AGO1 in vivo and in vitro. Life Sci 2020; 255:117845. [PMID: 32470449 DOI: 10.1016/j.lfs.2020.117845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022]
Abstract
AIMS Renal fibrosis is the typical manifestation of progressive kidney disease and causes a severe threat to human health. Surging evidence has illustrated that miRNA plays a core role in the genesis and development of kidney fibrosis. MiR-542-3p has been testified to function as a facilitator in hepatic stellate cell activation and fibrosis. The purpose of study is to investigate the potential of miR-542-3p in renal tubulointerstitial fibrosis. MATERIALS AND METHODS In this study, to establish renal fibrosis model in vivo and in vitro, we first conducted unilateral ureteral obstruction (UUO) on rats and high glucose (HG) treatment on the HK-2 cells. Histological and western blot analyses were utilized for assessment of renal fibrosis model. Luciferase reporter assay was carried out to explore the regulatory mechanism underlying miR-542-3p in renal fibrosis. KEY FINDINGS MiR-542-3p was found to be highly expressed in renal fibrosis. Functional experiments revealed that overexpression of miR-542-3p accelerated the deterioration of kidney fibrosis and inhibition of miR-542-3p led to the opposite result. Through the aid of bioinformatics tool, the speculated miR-542-3p binding sites were uncovered in the 3'UTR of argonaute RISC component 1 (AGO1). Mechanism study elucidated that AGO1 was a direct target of miR-542-3p. Lastly, our findings suggested that miR-542-3p played a promoting role in renal fibrosis via repression of AGO1. SIGNIFICANCE We justified that miR-542-3p induced kidney fibrogenesis both in vivo and in vitro through targeting AGO1, unveiling that miR-542-3p might be a promising option for the treatment of patients with renal fibrosis.
Collapse
Affiliation(s)
- Jue Li
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Haijiao Bao
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Kaiyue Zhang
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Xiaotao Yang
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Xuemei Liu
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Pengfei Li
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Qingli Li
- Department of Renal Medicine, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China
| | - Weiwen Chen
- Department of endocrinology and metabolism, The First People's Hospital of Qujing City, Kunming Medical University, Yunnan Province, China.
| |
Collapse
|
25
|
LeBleu VS, Neilson EG. Origin and functional heterogeneity of fibroblasts. FASEB J 2020; 34:3519-3536. [PMID: 32037627 DOI: 10.1096/fj.201903188r] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
The inherent plasticity and resiliency of fibroblasts make this cell type a conventional tool for basic research. But where do they come from, are all fibroblasts the same, and how do they function in disease? The first fibroblast lineages in mammalian development emerge from the ooze of primary mesenchyme during gastrulation. They are cells that efficiently create and negotiate the extracellular matrix of the mesoderm in order to migrate and meet their developmental fate. Mature fibroblasts in epithelial tissues live in the interstitial spaces between basement membranes that spatially delimit complex organ structures. While the function of resident fibroblasts in healthy tissues is largely conjecture, the accumulation of fibroblasts in pathologic lesions offers insight into biologic mechanisms that control their function; fibroblasts are poised to coordinate fibrogenesis in tissue injury, neoplasia, and aging. Here, we examine the developmental origin and plasticity of fibroblasts, their molecular and functional definitions, the epigenetic control underlying their identity and activation, and the evolution of their immune regulatory functions. These topics are reviewed through the lens of fate mapping using genetically engineered mouse models and from the perspective of single-cell RNA sequencing. Recent observations suggest dynamic and heterogeneous functions for fibroblasts that underscore their complex molecular signatures and utility in injured tissues.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Departments of Medicine and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric G Neilson
- Departments of Medicine and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
26
|
Modulation of polycystic kidney disease by non-coding RNAs. Cell Signal 2020; 71:109548. [PMID: 31982550 DOI: 10.1016/j.cellsig.2020.109548] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW microRNAs (miRNAs) are a class of small, evolutionarily conserved, non-coding RNAs (ncRNAs) that function as inhibitors of post-transcriptional mRNA expression. They are implicated in the pathogenesis of numerous diseases, including many common kidney conditions. In this review, we focus on how miRNAs impact autosomal dominant polycystic kidney disease (ADPKD) progression. We also discuss the feasibility of the emerging novel antisense oligonucleotides (ASOs) drug class, which includes anti-miRNA drugs, for the treatment of ADPKD. RECENT FINDINGS Aberrant miRNA expression is observed in multiple PKD murine models and human ADPKD samples. Gain and loss-of-function studies have directly linked dysregulated miRNA activity to kidney cyst growth. The most comprehensively studied miRNA in PKD is the miR-17 family, which promotes PKD progression through the rewiring of cyst metabolism and by directly inhibiting PKD1 and PKD2 expression. This discovery has led to the development of an anti-miR-17 drug for ADPKD treatment. Other miRNAs such as miR-21, miR-193, and miR-214 are also known to regulate cyst growth by modulating cyst epithelial apoptosis, proliferation, and interstitial inflammation. SUMMARY miRNAs have emerged as novel pathogenic regulators of ADPKD progression. Anti-miR-based drugs represent a new therapeutic modality to treat ADPKD patients.
Collapse
|
27
|
Muñoz JJ, Anauate AC, Amaral AG, Ferreira FM, Meca R, Ormanji MS, Boim MA, Onuchic LF, Heilberg IP. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci Rep 2020; 10:231. [PMID: 31937827 PMCID: PMC6959247 DOI: 10.1038/s41598-019-57112-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Polycystic kidney disease is a complex clinical entity which comprises a group of genetic diseases that leads to renal cyst development. We evaluated the most suitable housekeeping genes for microRNA expression by RT-qPCR analyses of kidney tissues in Pkd1-deficient mouse models from a panel of five candidates genes (miR-20a, miR-25, miR-26a, miR-191 and U6) and 3 target genes (miR-17, miR-21 and let-7a) using samples from kidneys of cystic mice (Pkd1flox/flox:Nestincre, CY), non-cystic controls (Pkd1flox/flox, NC), Pkd1-haploinsufficient (Pkd1+/−, HT), wild-type controls (Pkd1+/+, WT), severely cystic mice (Pkd1V/V, SC), wild-type controls (CO). The stability of the candidate genes was investigated using NormFinder, GeNorm, BestKeeper, DataAssist, and RefFinder software packages and the comparative ΔCt method. The analyses identified miR-26a as the most stable housekeeping gene for all kidney samples, miR-20a for CY and NC, miR-20a and miR-26a for HT and WT, and miR-25 and miR-26a for SC and CO. Expression of miR-21 was upregulated in SC compared to CO and trends of miR-21 upregulation and let-7a downregulation in CY and HT compared to its control kidneys, when normalized by different combinations of miR-20a, miR-25 and miR-26a. Our findings established miR-20a, miR-25, and miR-26a as the best housekeeping genes for miRNA expression analyses by RT-qPCR in kidney tissues of Pkd1-deficient mouse models.
Collapse
Affiliation(s)
- J J Muñoz
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A C Anauate
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - A G Amaral
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - F M Ferreira
- Laboratory of Immunology, Heart Institute, University of São Paulo School of Medicine, São Paulo, Brazil
| | - R Meca
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M S Ormanji
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - M A Boim
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Onuchic
- Divisions of Molecular Medicine and Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - I P Heilberg
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
28
|
Wang W, Jia YJ, Yang YL, Xue M, Zheng ZJ, Wang L, Xue YM. LncRNA GAS5 exacerbates renal tubular epithelial fibrosis by acting as a competing endogenous RNA of miR-96-5p. Biomed Pharmacother 2019; 121:109411. [PMID: 31810140 DOI: 10.1016/j.biopha.2019.109411] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is at the core of various renal diseases, including diabetic kidney disease (DKD). Long noncoding RNAs (lncRNAs) are known players in the regulation of renal fibrosis. However, their expression and function in DKD still need to be elucidated. The purpose of this study was to assess how lncRNA GAS5 regulates fibrosis and its mechanism in TGF-β1-treated renal proximal tubular cell.In this study, the lncRNA GAS5 was upregulated in both TGF-β1-treated HK-2 cells and the kidneys of HDF/STZ mice. Knockdown of GAS5 relieved renal tubular epithelial fibrosis. This effect was mediated by the downregulation and functional inactivation of miR-96-5p. Furthermore, miR-96-5p was downregulated in DKD mice, and this downregulation attenuated the repression of FN1(fibronectin, FN) and led to its upregulation. The decrease in miR-96-5p was partially attributed to the miRNA-sponge action of GAS5.Our research demonstrates that knockdown of lncRNA GAS5 leads to antifibrosis by competitively binding miR-96-5p, which inhibits the expression of FN1. These results indicate that targeting lncRNA GAS5 may be a promising therapeutic strategy for preventing DKD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Endocrinology and Metabolism, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Yi-Jie Jia
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Ling Yang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Endocrinology and Metabolism, Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China; Department of Endocrinology and Metabolism, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Zong-Ji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yao-Ming Xue
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol 2019; 10:904. [PMID: 31474862 PMCID: PMC6707424 DOI: 10.3389/fphar.2019.00904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological processes. Altered microRNA biosynthesis or regulation contributes to pathological processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory cells, altered chemokines, and cytokines as well as activation and accumulation of fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, and from bone marrow-derived monocytes and play a crucial role in fibrotic events. Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl peptidase-4 (DPP-4) and integrin β1 and the associated active transforming growth factor β (TGFβ) and pro-EndMT signaling; however, miR-let-7 targets transforming growth factor β receptors (TGFβRs) to inhibit TGFβ signaling. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk mechanisms, which are crucial for endothelial cell homeostasis. The physiological level of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and M2 phenotype macrophages. The present review highlights recent advancements in the understanding of both the role of microRNAs in the development of kidney disease and their potential as novel therapeutic targets for fibrotic disease states.
Collapse
Affiliation(s)
| | - Ahmad Fahim Hedayat
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
30
|
MiR-21-3p Plays a Crucial Role in Metabolism Alteration of Renal Tubular Epithelial Cells during Sepsis Associated Acute Kidney Injury via AKT/CDK2-FOXO1 Pathway. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2821731. [PMID: 31223614 PMCID: PMC6541977 DOI: 10.1155/2019/2821731] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Objective Sepsis and associated acute kidney injury (SAKI) are determined to be closely related to poor prognosis. Because the metabolic alterations of tubular epithelial cells (TECs) are crucial for the occurrence and development of SAKI, we carried out this present study to identify the metabolism changes of TECs during SAKI and relevant mechanisms. Methods Rat SAKI model and rat tubular epithelial cell line were used in our study. ELISA was used to determine the serum cytokines levels. Protein expressions were examined with Western-Blotting and the transcriptions of RNAs were determined with qRT-PCR. ADP/ATP assay and Oil Red O staining were used to examine the energy and lipid metabolism, respectively. Dual-luciferase reporter assay was carried out to determine the interactions between miRNA and specific proteins. Cell cycle arrest and apoptosis were determined with flow cytometry. Results Sepsis and AKI were induced 12 h after CLP. Energy and lipid metabolism reduced significantly while FOXO1 levels increased remarkably in TECs during SAKI. The expressions of both AKT and CDK2 and the transcriptions of relevant mRNAs reduced significantly in TECs during SAKI while miR-21-3p expression increased remarkably. Both AKT and CDK2 were determined as the direct targets of miR-21-3p. Furthermore, by in vitro experiments, it was demonstrated that FOXO1 levels were regulated by miR-21-3p in TECs via AKT/CDK2 and AKT/CDK2-FOXO1 pathway was crucial in the regulations of miR-21-3p on lipid metabolism, cell cycle arrest, and apoptosis of TECs. Conclusions MiR-21-3p mediates metabolism and cell fate alterations of TECs via manipulating AKT/CDK2-FOXO1 pathway, and that is crucial in the regulation of energy metabolism of TECs during SAKI.
Collapse
|
31
|
Disruption of CUL3-mediated ubiquitination causes proximal tubule injury and kidney fibrosis. Sci Rep 2019; 9:4596. [PMID: 30872636 PMCID: PMC6418206 DOI: 10.1038/s41598-019-40795-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cullin 3 (CUL3) is part of the ubiquitin proteasomal system and controls several cellular processes critical for normal organ function including the cell cycle, and Keap1/Nrf2 signaling. Kidney tubule-specific Cul3 disruption causes tubulointerstitial fibrosis, but little is known about the mechanisms. Therefore, we tested the hypothesis that dysregulation of the cell cycle and Keap1/Nrf2 pathway play a role in initiating the kidney injury upon Cul3 disruption. Cul3 deletion increased expression of cyclin E and p21, associated with uncontrolled proliferation, DNA damage, and apoptosis, all of which preceded proximal tubule injury. The cdk2-cyclin E inhibitor roscovitine did not prevent the effects of Cul3 deletion, but instead exacerbated the kidney injury. Injury occurred despite accumulation and activation of CUL3 substrate Keap1/Nrf2, proposed to be protective in kidney injury. Cul3 disruption led to progressive interstitial inflammation, functionally relevant renal fibrosis and death. Finally, we observed reduced CUL3 expression in several AKI and CKD mouse models and in fibrotic human kidney tissue. These data establish CUL3 knockout mice as a novel genetic CKD model in which dysregulation of the cell cycle may play a primary role in initiating tubule injury, and that CUL3 dysregulation could contribute to acute and fibrotic kidney disease.
Collapse
|
32
|
Weimbs T, Shillingford JM, Torres J, Kruger SL, Bourgeois BC. Emerging targeted strategies for the treatment of autosomal dominant polycystic kidney disease. Clin Kidney J 2018; 11:i27-i38. [PMID: 30581563 PMCID: PMC6295603 DOI: 10.1093/ckj/sfy089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a widespread genetic disease that leads to renal failure in the majority of patients. The very first pharmacological treatment, tolvaptan, received Food and Drug Administration approval in 2018 after previous approval in Europe and other countries. However, tolvaptan is moderately effective and may negatively impact a patient's quality of life due to potentially significant side effects. Additional and improved therapies are still urgently needed, and several clinical trials are underway, which are discussed in the companion paper Müller and Benzing (Management of autosomal-dominant polycystic kidney disease-state-of-the-art) Clin Kidney J 2018; 11: i2-i13. Here, we discuss new therapeutic avenues that are currently being investigated at the preclinical stage. We focus on mammalian target of rapamycin and dual kinase inhibitors, compounds that target inflammation and histone deacetylases, RNA-targeted therapeutic strategies, glucosylceramide synthase inhibitors, compounds that affect the metabolism of renal cysts and dietary restriction. We discuss tissue targeting to renal cysts of small molecules via the folate receptor, and of monoclonal antibodies via the polymeric immunoglobulin receptor. A general problem with potential pharmacological approaches is that the many molecular targets that have been implicated in ADPKD are all widely expressed and carry out important functions in many organs and tissues. Because ADPKD is a slowly progressing, chronic disease, it is likely that any therapy will have to continue over years and decades. Therefore, systemically distributed drugs are likely to lead to potentially prohibitive extra-renal side effects during extended treatment. Tissue targeting to renal cysts of such drugs is one potential way around this problem. The use of dietary, instead of pharmacological, interventions is another.
Collapse
Affiliation(s)
- Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Jonathan M Shillingford
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Torres
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Samantha L Kruger
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Bryan C Bourgeois
- Department of Molecular, Cellular, and Developmental Biology; and Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
33
|
Phua YL, Ho J. Insights into the Regulation of Collecting Duct Homeostasis by Small Noncoding RNAs. J Am Soc Nephrol 2017; 29:349-350. [PMID: 29222396 DOI: 10.1681/asn.2017101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and.,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and .,Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|