1
|
Margaria JP, Faienza S, Franco I. Somatic mutations acquired during life: state of the art and implications for the kidney. Kidney Int 2025; 107:825-834. [PMID: 39988271 DOI: 10.1016/j.kint.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 02/25/2025]
Abstract
As a consequence of continuous interaction with mutagens, the genome sequence accumulates changes, which are referred to as somatic mutations. Somatic variants acquired by normal cells during a lifetime are difficult to detect with common sequencing methods. This review provides a basic description of currently available technologies for somatic mutation detection and summarizes the studies that have explored somatic mutation in the kidneys. Given the role of somatic mutations in the formation of kidney cysts, genomic analyses can be used to investigate mechanisms that influence disease progression in inherited cystic kidney disorders. Moreover, genomic analyses are an important method to explore the evolution from a normal cell to cancer, providing insights into mechanisms of tumor initiation. Somatic mutation data can be used to discover endogenous and exogenous mutagens that harness the kidneys, including tobacco and aristolochic acid. In addition, genomic analyses have highlighted a link between kidney damage and mutation. This information is going to be key for understanding lifestyle factors that influence kidney cancer risk, overall impacting clinical decisions and public health strategies.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Università Vita-Salute San Raffaele, Milan, Italy; Somatic Mutation Mechanisms Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sipontina Faienza
- Università Vita-Salute San Raffaele, Milan, Italy; Somatic Mutation Mechanisms Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Irene Franco
- Università Vita-Salute San Raffaele, Milan, Italy; Somatic Mutation Mechanisms Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
2
|
Devuyst O, Ahn C, Barten TR, Brosnahan G, Cadnapaphornchai MA, Chapman AB, Cornec-Le Gall E, Drenth JP, Gansevoort RT, Harris PC, Harris T, Horie S, Liebau MC, Liew M, Mallett AJ, Mei C, Mekahli D, Odland D, Ong AC, Onuchic LF, P-C Pei Y, Perrone RD, Rangan GK, Rayner B, Torra R, Mustafa R, Torres VE. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD). Kidney Int 2025; 107:S1-S239. [PMID: 39848759 DOI: 10.1016/j.kint.2024.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 01/25/2025]
|
3
|
Parsons AM, Byrne S, Kooistra J, Dewey J, Zebolsky AL, Alvarado G, Bouma GJ, Vanden Heuvel GB, Larson ED. G-quadruplex stabilization provokes DNA breaks in human PKD1, revealing a second hit mechanism for ADPKD. Nat Commun 2025; 16:121. [PMID: 39747084 PMCID: PMC11696556 DOI: 10.1038/s41467-024-55684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease. Since human PKD1 follows second hit and mouse Pkd1 heterozygotes do not, we reasoned that there is likely a molecular difference that explains the elevated mutagenesis of the human gene. Here we demonstrate that guanine quadruplex DNA structures are abundant throughout human, but not mouse, PKD1 where they activate the DNA damage response. Our results suggest that guanine quadruplex DNAs provoke DNA breaks in PKD1, providing a potential mechanism for cystogenesis in autosomal dominant polycystic kidney disease specifically and for the inactivation of guanine quadruplex-rich tumor suppressors generally.
Collapse
Affiliation(s)
- Agata M Parsons
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Seth Byrne
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Jesse Kooistra
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - John Dewey
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Aaron L Zebolsky
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Gloria Alvarado
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Gerrit J Bouma
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Gregory B Vanden Heuvel
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA
| | - Erik D Larson
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA.
| |
Collapse
|
4
|
Mallawaarachchi AC, Hort Y, Wedd L, Lo K, Senum S, Toumari M, Chen W, Utsiwegota M, Mawson J, Leslie S, Laurence J, Anderson L, Snelling P, Salomon R, Rangan GK, Furlong T, Shine J, Cowley MJ. Somatic mutation in autosomal dominant polycystic kidney disease revealed by deep sequencing human kidney cysts. NPJ Genom Med 2024; 9:69. [PMID: 39702469 DOI: 10.1038/s41525-024-00452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) results in progressive cysts that lead to kidney failure, and is caused by heterozygous germline variants in PKD1 or PKD2. Cyst pathogenesis is not definitively understood. Somatic second-hit mutations have been implicated in cyst pathogenesis, though technical sequencing challenges have limited investigation. We used unique molecular identifiers, high-depth massively parallel sequencing and custom analysis techniques to identify somatic second-hit mutations in 24 whole cysts from disparate regions of six human ADPKD kidneys, utilising replicate samples and orthogonal confirmation. Average depth of coverage of 1166 error-corrected reads for PKD1 and 539 reads for PKD2 was obtained. 58% (14/24) of cysts had a detectable PKD1 somatic variant, with 5/6 participants having at least one cyst with a somatic variant. We demonstrate that low-frequency somatic mutations are detectable in a proportion of cysts from end-stage ADPKD human kidneys. Further studies are required to understand the drivers of this somatic mutation.
Collapse
Affiliation(s)
- Amali C Mallawaarachchi
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- Clinical Genetics Service, Institute of Precision Medicine and Bioinformatics, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| | - Yvonne Hort
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Laura Wedd
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kitty Lo
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Sarah Senum
- Department of Artificial Intelligence & Informatics, Mayo Clinic, Rochester, MN, USA
| | - Mojgan Toumari
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Wenhan Chen
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Mike Utsiwegota
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jane Mawson
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Scott Leslie
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- RPA Institute of Academic Surgery, University of Sydney, Sydney, NSW, Australia
- Chris O'Brien Lifehouse, Sydney, NSW, Australia
| | - Jerome Laurence
- RPA Institute of Academic Surgery, University of Sydney, Sydney, NSW, Australia
| | - Lyndal Anderson
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- New South Wales Health Pathology, Sydney, NSW, Australia
| | - Paul Snelling
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Robert Salomon
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Gopala K Rangan
- Department of Renal Medicine, Westmead Hospital, Sydney, NSW, Australia
- Michael Stern Laboratory for Polycystic Kidney Disease, Centre for Transplant and Renal Research, Westmead Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Timothy Furlong
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - John Shine
- Molecular Genetics of Inherited Kidney Disorders Laboratory, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Sydney, NSW, Australia
| | - Mark J Cowley
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, Sydney, NSW, Australia.
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
5
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
6
|
Long HY, Qian ZP, Lan Q, Xu YJ, Da JJ, Yu FX, Zha Y. Human pluripotent stem cell-derived kidney organoids: Current progress and challenges. World J Stem Cells 2024; 16:114-125. [PMID: 38455108 PMCID: PMC10915962 DOI: 10.4252/wjsc.v16.i2.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.
Collapse
Affiliation(s)
- Hong-Yan Long
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Zu-Ping Qian
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Qin Lan
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Yong-Jie Xu
- Department of Laboratory Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Jing-Jing Da
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Fu-Xun Yu
- Key Laboratory of Diagnosis and Treatment of Pulmonary Immune Diseases, National Health Commission, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China
| | - Yan Zha
- Graduate School, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang 550002, Guizhou Province, China.
| |
Collapse
|
7
|
Pellegrini H, Sharpe EH, Liu G, Nishiuchi E, Doerr N, Kipp KR, Chin T, Schimmel MF, Weimbs T. Cleavage fragments of the C-terminal tail of polycystin-1 are regulated by oxidative stress and induce mitochondrial dysfunction. J Biol Chem 2023; 299:105158. [PMID: 37579949 PMCID: PMC10502374 DOI: 10.1016/j.jbc.2023.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.
Collapse
Affiliation(s)
- Hannah Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Elizabeth H Sharpe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Guangyi Liu
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA; Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Eiko Nishiuchi
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Nicholas Doerr
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Kevin R Kipp
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Tiffany Chin
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Margaret F Schimmel
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA.
| |
Collapse
|
8
|
Ghosh Roy S, Li Z, Guo Z, Long KT, Rehrl S, Tian X, Dong K, Besse W. Dnajb11-Kidney Disease Develops from Reduced Polycystin-1 Dosage but not Unfolded Protein Response in Mice. J Am Soc Nephrol 2023; 34:1521-1534. [PMID: 37332102 PMCID: PMC10482070 DOI: 10.1681/asn.0000000000000164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
SIGNIFICANCE STATEMENT Heterozygous DNAJB11 mutation carriers manifest with small cystic kidneys and renal failure in adulthood. Recessive cases with prenatal cystic kidney dysplasia were recently described. Our in vitro and mouse model studies investigate the proposed disease mechanism as an overlap of autosomal-dominant polycystic kidney disease and autosomal-dominant tubulointerstitial kidney disease pathogenesis. We find that DNAJB11 loss impairs cleavage and maturation of the autosomal-dominant polycystic kidney disease protein polycystin-1 (PC1) and results in dosage-dependent cyst formation in mice. We find that Dnajb11 loss does not activate the unfolded protein response, drawing a fundamental contrast with the pathogenesis of autosomal-dominant tubulointerstitial kidney disease. We instead propose that fibrosis in DNAJB11 -kidney disease may represent an exaggerated response to polycystin-dependent cysts. BACKGROUND Patients with heterozygous inactivating mutations in DNAJB11 manifest with cystic but not enlarged kidneys and renal failure in adulthood. Pathogenesis is proposed to resemble an overlap of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-dominant tubulointerstitial kidney disease (ADTKD), but this phenotype has never been modeled in vivo . DNAJB11 encodes an Hsp40 cochaperone in the endoplasmic reticulum: the site of maturation of the ADPKD polycystin-1 (PC1) protein and of unfolded protein response (UPR) activation in ADTKD. We hypothesized that investigation of DNAJB11 would shed light on mechanisms for both diseases. METHODS We used germline and conditional alleles to model Dnajb11 -kidney disease in mice. In complementary experiments, we generated two novel Dnajb11-/- cell lines that allow assessment of PC1 C-terminal fragment and its ratio to the immature full-length protein. RESULTS Dnajb11 loss results in a profound defect in PC1 cleavage but with no effect on other cystoproteins assayed. Dnajb11-/- mice are live-born at below the expected Mendelian ratio and die at a weaning age with cystic kidneys. Conditional loss of Dnajb11 in renal tubular epithelium results in PC1 dosage-dependent kidney cysts, thus defining a shared mechanism with ADPKD. Dnajb11 mouse models show no evidence of UPR activation or cyst-independent fibrosis, which is a fundamental distinction from typical ADTKD pathogenesis. CONCLUSIONS DNAJB11 -kidney disease is on the spectrum of ADPKD phenotypes with a PC1-dependent pathomechanism. The absence of UPR across multiple models suggests that alternative mechanisms, which may be cyst-dependent, explain the renal failure in the absence of kidney enlargement.
Collapse
Affiliation(s)
- Sounak Ghosh Roy
- Section of Nephrology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Della Corte M, Viggiano D. Wall Tension and Tubular Resistance in Kidney Cystic Conditions. Biomedicines 2023; 11:1750. [PMID: 37371845 DOI: 10.3390/biomedicines11061750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The progressive formation of single or multiple cysts accompanies several renal diseases. Specifically, (i) genetic forms, such as adult dominant polycystic kidney disease (ADPKD), and (ii) acquired cystic kidney disease (ACKD) are probably the most frequent forms of cystic diseases. Adult dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by multiple kidney cysts and systemic alterations. The genes responsible for the condition are known, and a large amount of literature focuses on the molecular description of the mechanism. The present manuscript shows that a multiscale approach that considers supramolecular physical phenomena captures the characteristics of both ADPKD and acquired cystic kidney disease (ACKD) from the pathogenetic and therapeutical point of view, potentially suggesting future treatments. We first review the hypothesis of cystogenesis in ADPKD and then focus on ACKD, showing that they share essential pathogenetic features, which can be explained by a localized obstruction of a tubule and/or an alteration of the tubular wall tension. The consequent tubular aneurysms (cysts) follow Laplace's law. Reviewing the public databases, we show that ADPKD genes are widely expressed in various organs, and these proteins interact with the extracellular matrix, thus potentially modifying wall tension. At the kidney and liver level, the authors suggest that altered cell polarity/secretion/proliferation produce tubular regions of high resistance to the urine/bile flow. The increased intratubular pressure upstream increases the difference between the inside (Pi) and the outside (Pe) of the tubules (∆P) and is counterbalanced by lower wall tension by a factor depending on the radius. The latter is a function of tubule length. In adult dominant polycystic kidney disease (ADPKD), a minimal reduction in the wall tension may lead to a dilatation in the tubular segments along the nephron over the years. The initial increase in the tubule radius would then facilitate the progressive expansion of the cysts. In this regard, tubular cell proliferation may be, at least partially, a consequence of the progressive cysts' expansion. This theory is discussed in view of other diseases with reduced wall tension and with cysts and the therapeutic effects of vaptans, somatostatin, SGLT2 inhibitors, and potentially other therapeutic targets.
Collapse
Affiliation(s)
- Michele Della Corte
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
10
|
Qiu J, Germino GG, Menezes LF. Mechanisms of Cyst Development in Polycystic Kidney Disease. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:209-219. [PMID: 37088523 PMCID: PMC10289784 DOI: 10.1053/j.akdh.2023.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common inherited cause of end-stage kidney disease worldwide. Most cases result from mutation of either of 2 genes, PKD1 and PKD2, which encode proteins that form a probable receptor/channel complex. Studies suggest that a loss of function of the complex below an indeterminate threshold triggers cyst initiation, which ultimately results in dysregulation of multiple metabolic processes and downstream pathways and subsequent cyst growth. Noncell autonomous factors may also promote cyst growth. In this report, we focus primarily on the process of early cyst formation and factors that contribute to its variability with brief consideration of how new studies suggest this process may be reversible.
Collapse
Affiliation(s)
- Jiahe Qiu
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Gregory G Germino
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| | - Luis F Menezes
- Polycystic Kidney Disease Section, Kidney Disease Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD.
| |
Collapse
|
11
|
Mirza H, Besse W, Somlo S, Weinreb J, Kenney B, Jain D. An update on ductal plate malformations and fibropolycystic diseases of the liver. Hum Pathol 2023; 132:102-113. [PMID: 35777701 DOI: 10.1016/j.humpath.2022.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023]
Abstract
A variety of cystic and fibrocystic lesions can occur in the liver, which may be single or multiple and etiologically can be acquired or have genetic underpinnings. Although the morphology of ductal plate development and various associated malformations has been well described, the genetic etiologies of many of these disorders are still poorly understood. Multiple clinical phenotypes in the liver are proposed to originate from ductal plate malformations: congenital hepatic fibrosis, Caroli's disease, Von Meyenburg complex, and the liver cysts of autosomal dominant polycystic kidney and liver diseases. Although many of the patients with these disorders, particularly with isolated liver involvement remain asymptomatic, some develop portal hypertension or symptoms from cyst enlargement. Development of hepatocellular malignancy is a risk in a small subset. Recent advances have made it now possible for some of these phenotypes to be genetically defined, and intriguingly animal models of adult polycystic liver disease suggest that abnormal organ development is not required. This review describes the current understanding, genetic underpinning, and key clinicopathologic and imaging features of these fibropolycystic liver diseases.
Collapse
Affiliation(s)
- Haris Mirza
- Department of Pathology, Yale School of Medicine, New Haven CT 06520, USA
| | - Whitney Besse
- Department of Internal Medicine (Section of Nephrology), Yale School of Medicine, New Haven CT 06520, USA
| | - Stefan Somlo
- Department of Internal Medicine (Section of Nephrology), Yale School of Medicine, New Haven CT 06520, USA; Department of Genetics, Yale School of Medicine, New Haven CT 06520, USA
| | - Jeffrey Weinreb
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven CT 06520, USA
| | - Barton Kenney
- Department of Pathology, Middlesex Health, Middletown CT 06457, USA
| | - Dhanpat Jain
- Department of Pathology, Yale School of Medicine, New Haven CT 06520, USA.
| |
Collapse
|
12
|
Abstract
Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.
Collapse
Affiliation(s)
- Mark D Elliott
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hila Milo Rasouly
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ali G Gharavi
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA;
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Institute for Genomic Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
13
|
Glucose absorption drives cystogenesis in a human organoid-on-chip model of polycystic kidney disease. Nat Commun 2022; 13:7918. [PMID: 36564419 PMCID: PMC9789147 DOI: 10.1038/s41467-022-35537-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
In polycystic kidney disease (PKD), fluid-filled cysts arise from tubules in kidneys and other organs. Human kidney organoids can reconstitute PKD cystogenesis in a genetically specific way, but the mechanisms underlying cystogenesis remain elusive. Here we show that subjecting organoids to fluid shear stress in a PKD-on-a-chip microphysiological system promotes cyst expansion via an absorptive rather than a secretory pathway. A diffusive static condition partially substitutes for fluid flow, implicating volume and solute concentration as key mediators of this effect. Surprisingly, cyst-lining epithelia in organoids polarize outwards towards the media, arguing against a secretory mechanism. Rather, cyst formation is driven by glucose transport into lumens of outwards-facing epithelia, which can be blocked pharmacologically. In PKD mice, glucose is imported through cysts into the renal interstitium, which detaches from tubules to license expansion. Thus, absorption can mediate PKD cyst growth in human organoids, with implications for disease mechanism and potential for therapy development.
Collapse
|
14
|
Zhang Z, Blumenfeld J, Ramnauth A, Barash I, Zhou P, Levine D, Parker T, Rennert H. A common intronic single nucleotide variant modifies PKD1 expression level. Clin Genet 2022; 102:483-493. [PMID: 36029107 PMCID: PMC10947153 DOI: 10.1111/cge.14214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in PKD1 and PKD2 (PKD1/2), has unexplained phenotypic variability likely affected by environmental and other genetic factors. Approximately 10% of individuals with ADPKD phenotype have no causal mutation detected, possibly due to unrecognized risk variants of PKD1/2. This study was designed to identify risk variants of PKD genes through population genetic analyses. We used Wright's F-statistics (Fst) to evaluate common single nucleotide variants (SNVs) potentially favored by positive natural selection in PKD1 from 1000 Genomes Project (1KG) and genotyped 388 subjects from the Rogosin Institute ADPKD Data Repository. The variants with >90th percentile Fst scores underwent further investigation by in silico analysis and molecular genetics analyses. We identified a deep intronic SNV, rs3874648G> A, located in a conserved binding site of the splicing regulator Tra2-β in PKD1 intron 30. Reverse-transcription PCR (RT-PCR) of peripheral blood leukocytes (PBL) from an ADPKD patient homozygous for rs3874648-A identified an atypical PKD1 splice form. Functional analyses demonstrated that rs3874648-A allele increased Tra2-β binding affinity and activated a cryptic acceptor splice-site, causing a frameshift that introduced a premature stop codon in mRNA, thereby decreasing PKD1 full-length transcript level. PKD1 transcript levels were lower in PBL from rs3874648-G/A carriers than in rs3874648-G/G homozygotes in a small cohort of normal individuals and patients with PKD2 inactivating mutations. Our findings indicate that rs3874648G > A is a PKD1 expression modifier attenuating PKD1 expression through Tra2-β, while the derived G allele advantageously maintains PKD1 expression and is predominant in all subpopulations.
Collapse
Affiliation(s)
- Zhengmao Zhang
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Jon Blumenfeld
- Department of Medicine, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Andrew Ramnauth
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Irina Barash
- Department of Medicine, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Pengbo Zhou
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Daniel Levine
- Department of Biochemistry, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Thomas Parker
- Department of Biochemistry, Weill Cornell Medicine, New York, NY
- The Rogosin Institute, New York, NY
| | - Hanna Rennert
- Departments of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
15
|
Lemoine H, Raud L, Foulquier F, Sayer JA, Lambert B, Olinger E, Lefèvre S, Knebelmann B, Harris PC, Trouvé P, Desprès A, Duneau G, Matignon M, Poyet A, Jourde-Chiche N, Guerrot D, Lemoine S, Seret G, Barroso-Gil M, Bingham C, Gilbert R, Le Meur Y, Audrézet MP, Cornec-Le Gall E. Monoallelic pathogenic ALG5 variants cause atypical polycystic kidney disease and interstitial fibrosis. Am J Hum Genet 2022; 109:1484-1499. [PMID: 35896117 PMCID: PMC9388391 DOI: 10.1016/j.ajhg.2022.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families. We performed whole-exome sequencing in a large multiplex genetically unresolved (GUR) family affected by ADPKD-like symptoms and identified a monoallelic frameshift variant (c.703_704delCA) in ALG5. ALG5 encodes an endoplasmic-reticulum-resident enzyme required for addition of glucose molecules to the assembling N-glycan precursors. To identify additional families, we screened a cohort of 1,213 families with ADPKD-like and/or autosomal-dominant tubulointerstitial kidney diseases (ADTKD), GUR (n = 137) or naive to genetic testing (n = 1,076), by targeted massively parallel sequencing, and we accessed Genomics England 100,000 Genomes Project data. Four additional families with pathogenic variants in ALG5 were identified. Clinical presentation was consistent in the 23 affected members, with non-enlarged cystic kidneys and few or no liver cysts; 8 subjects reached end-stage kidney disease from 62 to 91 years of age. We demonstrate that ALG5 haploinsufficiency is sufficient to alter the synthesis of the N-glycan chain in renal epithelial cells. We also show that ALG5 is required for PC1 maturation and membrane and ciliary localization and that heterozygous loss of ALG5 affects PC1 maturation. Overall, our results indicate that monoallelic variants of ALG5 lead to a disorder of the ADPKD-spectrum characterized by multiple small kidney cysts, progressive interstitial fibrosis, and kidney function decline.
Collapse
Affiliation(s)
- Hugo Lemoine
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France
| | - Loann Raud
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Renal Services, Freeman Road, Newcastle Upon Tyne NE7 7DN, UK; NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle Upon Tyne NE4 5PL, UK
| | - Baptiste Lambert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Eric Olinger
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Siriane Lefèvre
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France; Service de Néphrologie, Hôpital de Lorient, 56322 Lorient, France
| | - Bertrand Knebelmann
- Service de Néphrologie et Transplantation rénale, Hôpital Necker, APHP, Université de Paris, Paris, France
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55902, USA
| | - Pascal Trouvé
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France
| | - Aurore Desprès
- Service de Génétique moléculaire, CHRU Brest, 29609 Brest, France
| | | | - Marie Matignon
- University Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Henri Mondor, Service de Néphrologie et Transplantation, Fédération Hospitalo-Universitaire "Innovative Therapy for Immune Disorders", Créteil, France
| | - Anais Poyet
- Association Régionale d'Aide aux Urémiques du Centre Ouest (ARAUCO), Bourges, France
| | - Noémie Jourde-Chiche
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception (APHM), Marseille, France
| | - Dominique Guerrot
- Service de Néphrologie, Dialyse et Transplantation, CHU de Rouen, Rouen, France
| | - Sandrine Lemoine
- Néphrologie, Dialyse, Hypertension artérielle et Exploration Fonctionnelle rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | | | - Miguel Barroso-Gil
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 3BZ, UK
| | - Coralie Bingham
- Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Rodney Gilbert
- Southampton Children's Hospital, University of Southampton, Southampton SO16 6YD, UK
| | - Yannick Le Meur
- Univ Brest, UMR 1227, LBAI, Labex IGO, 29200 Brest, France; Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, 29609 Brest, France
| | - Marie-Pierre Audrézet
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France; Service de Génétique moléculaire, CHRU Brest, 29609 Brest, France
| | - Emilie Cornec-Le Gall
- Univ. Brest, Inserm, UMR 1078, GGB, 29200 Brest, France; Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, 29609 Brest, France.
| |
Collapse
|
16
|
Caplan MJ. AMPK and Polycystic Kidney Disease Drug Development: An Interesting Off-Target Target. Front Med (Lausanne) 2022; 9:753418. [PMID: 35174190 PMCID: PMC8841847 DOI: 10.3389/fmed.2022.753418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease is a genetic disease that causes dramatic perturbations of both renal tissue architecture and of a multitude of cellular signaling pathways. The relationship between the products of the genes whose mutations cause polycystic kidney disease and these signaling pathways remains difficult to determine. It is clear, however, that cellular metabolism is dramatically altered in cells that are affected by polycystic kidney disease mutations. Adenosine monophosphate-stimulated protein kinase is a master regulator of cellular energy use and generation pathways whose activity appears to be perturbed in cells affected by polycystic kidney disease. Furthermore, modulation of this enzyme's activity may constitute a promising approach for the development of new therapeutics for polycystic kidney disease.
Collapse
|
17
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Parker C Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Zhang Z, Bai H, Blumenfeld J, Ramnauth AB, Barash I, Prince M, Tan AY, Michaeel A, Liu G, Chicos I, Rennert L, Giannakopoulos S, Larbi K, Hughes S, Salvatore SP, Robinson BD, Kapur S, Rennert H. Detection of PKD1 and PKD2 Somatic Variants in Autosomal Dominant Polycystic Kidney Cyst Epithelial Cells by Whole-Genome Sequencing. J Am Soc Nephrol 2021; 32:3114-3129. [PMID: 34716216 PMCID: PMC8638386 DOI: 10.1681/asn.2021050690] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a genetic disorder characterized by the development of multiple cysts in the kidneys. It is often caused by pathogenic mutations in PKD1 and PKD2 genes that encode polycystin proteins. Although the molecular mechanisms for cystogenesis are not established, concurrent inactivating germline and somatic mutations in PKD1 and PKD2 have been previously observed in renal tubular epithelium (RTE). METHODS To further investigate the cellular recessive mechanism of cystogenesis in RTE, we conducted whole-genome DNA sequencing analysis to identify germline variants and somatic alterations in RTE of 90 unique kidney cysts obtained during nephrectomy from 24 unrelated participants. RESULTS Kidney cysts were overall genomically stable, with low burdens of somatic short mutations or large-scale structural alterations. Pathogenic somatic "second hit" alterations disrupting PKD1 or PKD2 were identified in 93% of the cysts. Of these, 77% of cysts acquired short mutations in PKD1 or PKD2 ; specifically, 60% resulted in protein truncations (nonsense, frameshift, or splice site) and 17% caused non-truncating mutations (missense, in-frame insertions, or deletions). Another 18% of cysts acquired somatic chromosomal loss of heterozygosity (LOH) events encompassing PKD1 or PKD2 ranging from 2.6 to 81.3 Mb. 14% of these cysts harbored copy number neutral LOH events, while the other 3% had hemizygous chromosomal deletions. LOH events frequently occurred at chromosomal fragile sites, or in regions comprising chromosome microdeletion diseases/syndromes. Almost all somatic "second hit" alterations occurred at the same germline mutated PKD1/2 gene. CONCLUSIONS These findings further support a cellular recessive mechanism for cystogenesis in ADPKD primarily caused by inactivating germline and somatic variants of PKD1 or PKD2 genes in kidney cyst epithelium.
Collapse
Affiliation(s)
- Zhengmao Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Hanwen Bai
- Vertex Pharmaceuticals Inc., Boston, Massachusetts
| | - Jon Blumenfeld
- Department of Medicine, Weill Cornell Medicine, New York, New York
- The Rogosin Institute, New York, New York
| | - Andrew B. Ramnauth
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Irina Barash
- Department of Medicine, Weill Cornell Medicine, New York, New York
- The Rogosin Institute, New York, New York
| | - Martin Prince
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Adrian Y. Tan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Alber Michaeel
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Genyan Liu
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | | | - Lior Rennert
- Department of Public Health Sciences, Clemson University, Clemson, South Carolina
| | | | - Karen Larbi
- Vertex Pharmaceuticals Inc., Oxford, United Kingdom
| | | | - Steven P. Salvatore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Brian D. Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Sandip Kapur
- Department of Surgery, Weill Cornell Medicine, New York, New York
| | - Hanna Rennert
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
20
|
Li Q, Wang Y, Deng W, Liu Y, Geng J, Yan Z, Li F, Chen B, Li Z, Xia R, Zeng W, Liu R, Xu J, Xiong F, Wu CL, Miao Y. Heterogeneity of cell composition and origin identified by single-cell transcriptomics in renal cysts of patients with autosomal dominant polycystic kidney disease. Theranostics 2021; 11:10064-10073. [PMID: 34815804 PMCID: PMC8581434 DOI: 10.7150/thno.57220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Renal cysts in patients with autosomal dominant polycystic kidney disease (ADPKD) can originate from any nephron segments, including proximal tubules (PT), the loop of Henle (LOH), distal tubules (DT), and collecting ducts (CD). Previous studies mostly used limited cell markers and failed to identify cells negative for these markers. Therefore, the cell composition and origin of ADPKD cyst are still unclear, and mechanisms of cystogenesis of different origins await further exploration. Methods: We performed single-cell RNA sequencing for the normal kidney tissue and seven cysts derived from superficial or deep layers of the polycystic kidney from an ADPKD patient. Results: Twelve cell types were identified and analyzed. We found that a renal cyst could be derived either from CD or both PT and LOH. Gene set variation analysis (GSVA) showed that epithelial mesenchymal transition (EMT), TNFA signaling via the NFKB pathways, and xenobiotic metabolism were significantly activated in PT-derived cyst epithelial cells while robust expression of genes involved in G2M Checkpoint, mTORC1 signaling, E2F Targets, MYC Targets V1, MYC Targets V2 were observed in CD-derived cells. Conclusion: Our results revealed that a single cyst could originate from CD or both PT and LOH, suggesting heterogeneity of polycystic composition and origin. Furthermore, cyst epithelial cells with different origins have different gene set activation.
Collapse
|
21
|
Role of DNA-Dependent Protein Kinase in Mediating Cyst Growth in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms221910512. [PMID: 34638853 PMCID: PMC8508757 DOI: 10.3390/ijms221910512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein involved in DNA damage response (DDR) signaling that may mediate kidney cyst growth in autosomal dominant polycystic kidney disease (ADPKD) due to its pleiotropic effects on proliferation and survival. To test this hypothesis, the expression of DNA-PK in human ADPKD and the in vitro effects of DNA-PK inhibition in a three-dimensional model of Madin-Darby Canine Kidney (MDCK) cyst growth and human ADPKD cells were assessed. In human ADPKD, the mRNA expression for all three subunits of the DNA-PK complex was increased, and using immunohistochemistry, the catalytic subunit (DNA-PKcs) was detected in the cyst lining epithelia of human ADPKD, in a focal manner. In vitro, NU7441 (a DNA-PK kinase inhibitor) reduced MDCK cyst growth by up to 52% after long-term treatment over 6–12 days. Although human ADPKD cell lines (WT9-7/WT9-12) did not exhibit synthetic lethality in response to DNA-PK kinase inhibition compared to normal human kidney cells (HK-2), the combination of low-dose NU7441 enhanced the anti-proliferative effects of sirolimus in WT9-7 and WT9-12 cells by 17 ± 10% and 11 ± 7%, respectively. In conclusion, these preliminary data suggest that DNA-PK mediates kidney cyst growth in vivo without a synthetically lethal interaction, conferring cell-specificity in human ADPKD cells. NU7441 enhanced the anti-proliferative effects of rapamycin complex 1 inhibitors, but the effect was modest.
Collapse
|
22
|
Lanktree MB, Haghighi A, di Bari I, Song X, Pei Y. Insights into Autosomal Dominant Polycystic Kidney Disease from Genetic Studies. Clin J Am Soc Nephrol 2021; 16:790-799. [PMID: 32690722 PMCID: PMC8259493 DOI: 10.2215/cjn.02320220] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autosomal dominant polycystic kidney disease is the most common monogenic cause of ESKD. Genetic studies from patients and animal models have informed disease pathobiology and strongly support a "threshold model" in which cyst formation is triggered by reduced functional polycystin dosage below a critical threshold within individual tubular epithelial cells due to (1) germline and somatic PKD1 and/or PKD2 mutations, (2) mutations of genes (e.g., SEC63, SEC61B, GANAB, PRKCSH, DNAJB11, ALG8, and ALG9) in the endoplasmic reticulum protein biosynthetic pathway, or (3) somatic mosaicism. Genetic testing has the potential to provide diagnostic and prognostic information in cystic kidney disease. However, mutation screening of PKD1 is challenging due to its large size and complexity, making it both costly and labor intensive. Moreover, conventional Sanger sequencing-based genetic testing is currently limited in elucidating the causes of atypical polycystic kidney disease, such as within-family disease discordance, atypical kidney imaging patterns, and discordant disease severity between total kidney volume and rate of eGFR decline. In addition, environmental factors, genetic modifiers, and somatic mosaicism also contribute to disease variability, further limiting prognostication by mutation class in individual patients. Recent innovations in next-generation sequencing are poised to transform and extend molecular diagnostics at reasonable costs. By comprehensive screening of multiple cystic disease and modifier genes, targeted gene panel, whole-exome, or whole-genome sequencing is expected to improve both diagnostic and prognostic accuracy to advance personalized medicine in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Matthew B. Lanktree
- Division of Nephrology, St. Joseph Healthcare Hamilton and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Amirreza Haghighi
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Ighli di Bari
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Xuewen Song
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - York Pei
- Division of Nephrology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Arroyo J, Escobar-Zarate D, Wells HH, Constans MM, Thao K, Smith JM, Sieben CJ, Martell MR, Kline TL, Irazabal MV, Torres VE, Hopp K, Harris PC. The genetic background significantly impacts the severity of kidney cystic disease in the Pkd1 RC/RC mouse model of autosomal dominant polycystic kidney disease. Kidney Int 2021; 99:1392-1407. [PMID: 33705824 DOI: 10.1016/j.kint.2021.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), primarily due to PKD1 or PKD2 mutations, causes progressive kidney cyst development and kidney failure. There is significant intrafamilial variability likely due to the genetic background and environmental/lifestyle factors; variability that can be modeled in PKD mice. Here, we characterized mice homozygous for the PKD1 hypomorphic allele, p.Arg3277Cys (Pkd1RC/RC), inbred into the BALB/cJ (BC) or the 129S6/SvEvTac (129) strains, plus F1 progeny bred with the previously characterized C57BL/6J (B6) model; F1(BC/B6) or F1(129/B6). By one-month cystic disease in both the BC and 129 Pkd1RC/RC mice was more severe than in B6 and continued with more rapid progression to six to nine months. Thereafter, the expansive disease stage plateaued/declined, coinciding with increased fibrosis and a clear decline in kidney function. Greater severity correlated with more inter-animal and inter-kidney disease variability, especially in the 129-line. Both F1 combinations had intermediate disease severity, more similar to B6 but progressive from one-month of age. Mild biliary dysgenesis, and an early switch from proximal tubule to collecting duct cysts, was seen in all backgrounds. Preclinical testing with a positive control, tolvaptan, employed the F1(129/B6)-Pkd1RC/RC line, which has moderately progressive disease and limited isogenic variability. Magnetic resonance imaging was utilized to randomize animals and provide total kidney volume endpoints; complementing more traditional data. Thus, we show how genetic background can tailor the Pkd1RC/RC model to address different aspects of pathogenesis and disease modification, and describe a possible standardized protocol for preclinical testing.
Collapse
Affiliation(s)
- Jennifer Arroyo
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Harrison H Wells
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan M Constans
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Ka Thao
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica M Smith
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Madeline R Martell
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Timothy L Kline
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria V Irazabal
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
24
|
Nigro EA, Boletta A. Role of the polycystins as mechanosensors of extracellular stiffness. Am J Physiol Renal Physiol 2021; 320:F693-F705. [PMID: 33615892 DOI: 10.1152/ajprenal.00545.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polycystin-1 (PC-1) is a transmembrane protein, encoded by the PKD1 gene, mutated in autosomal dominant polycystic kidney disease (ADPKD). This common genetic disorder, characterized by cyst formation in both kidneys, ultimately leading to renal failure, is still waiting for a definitive treatment. The overall function of PC-1 and the molecular mechanism responsible for cyst formation are slowly coming to light, but they are both still intensively studied. In particular, PC-1 has been proposed to act as a mechanosensor, although the precise signal that activates the mechanical properties of this protein has been long debated and questioned. In this review, we report studies and evidence of PC-1 function as a mechanosensor, starting from the peculiarity of its structure, through the long journey that progressively shed new light on the potential initiating events of cystogenesis, concluding with the description of PC-1 recently shown ability to sense the mechanical stimuli provided by the stiffness of the extracellular environment. These new findings have potentially important implications for the understanding of ADPKD pathophysiology and potentially for designing new therapies.NEW & NOTEWORTHY Polycystin-1 has recently emerged as a possible receptor able to sense extracellular stiffness and to negatively control the cellular actomyosin contraction machinery. Here, we revisit a large body of literature on autosomal dominant polycystic kidney disease providing a new possible mechanistic view on the topic.
Collapse
Affiliation(s)
- Elisa A Nigro
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Boletta
- Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Zhang JQJ, Saravanabavan S, Chandra AN, Munt A, Wong ATY, Harris PC, Harris DCH, McKenzie P, Wang Y, Rangan GK. Up-Regulation of DNA Damage Response Signaling in Autosomal Dominant Polycystic Kidney Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:902-920. [PMID: 33549515 DOI: 10.1016/j.ajpath.2021.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/19/2022]
Abstract
DNA damage and alterations in DNA damage response (DDR) signaling could be one of the molecular mechanisms mediating focal kidney cyst formation in autosomal dominant polycystic kidney disease (ADPKD). The aim of this study was to test the hypothesis that markers of DNA damage and DDR signaling are increased in human and experimental ADPKD. In the human ADPKD transcriptome, the number of up-regulated DDR-related genes was increased by 16.6-fold compared with that in normal kidney, and by 2.5-fold in cystic compared with that in minimally cystic tissue (P < 0.0001). In end-stage human ADPKD tissue, γ-H2A histone family member X (H2AX), phosphorylated ataxia telangiectasia and radiation-sensitive mutant 3 (Rad3)-related (pATR), and phosphorylated ataxia telangiectasia mutated (pATM) localized to cystic kidney epithelial cells. In vitro, pATR and pATM were also constitutively increased in human ADPKD tubular cells (WT 9-7 and 9-12) compared with control (HK-2). In addition, extrinsic oxidative DNA damage by hydrogen peroxide augmented γ-H2AX and cell survival in human ADPKD cells, and exacerbated cyst growth in the three-dimensional Madin-Darby canine kidney cyst model. In contrast, DDR-related gene expression was only transiently increased on postnatal day 0 in Pkd1RC/RC mice, and not altered at later time points up to 12 months of age. In conclusion, DDR signaling is dysregulated in human ADPKD and during the early phases of murine ADPKD. The constitutive expression of the DDR pathway in ADPKD may promote survival of PKD1-mutated cells and contribute to kidney cyst growth.
Collapse
Affiliation(s)
- Jennifer Q J Zhang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Sayanthooran Saravanabavan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ashley N Chandra
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Alexandra Munt
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Annette T Y Wong
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Peter C Harris
- Mayo Translational Polycystic Kidney Disease Center, Mayo Clinic, Rochester, Minnesota
| | - David C H Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Paul McKenzie
- Department of Tissue Pathology, NSW Health Pathology, Royal Prince Alfred Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, New South Wales, Australia.
| |
Collapse
|
26
|
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:41-51. [PMID: 33046531 PMCID: PMC7894654 DOI: 10.1681/asn.2020040511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 and polycystin-2, respectively, cause autosomal dominant polycystic kidney disease (ADPKD). Polycystins are expressed in the primary cilium, and disrupting cilia structure significantly slows ADPKD progression following inactivation of polycystins. The cellular mechanisms of polycystin- and cilia-dependent cyst progression in ADPKD remain incompletely understood. METHODS Unbiased transcriptional profiling in an adult-onset Pkd2 mouse model before cysts formed revealed significant differentially expressed genes (DEGs) in Pkd2 single-knockout kidneys, which were used to identify candidate pathways dysregulated in kidneys destined to form cysts. In vivo studies validated the role of the candidate pathway in the progression of ADPKD. Wild-type and Pkd2/Ift88 double-knockout mice that are protected from cyst growth served as controls. RESULTS The RNASeq data identified cell proliferation as the most dysregulated pathway, with 15 of 241 DEGs related to cell cycle functions. Cdk1 appeared as a central component in this analysis. Cdk1 expression was similarly dysregulated in Pkd1 models of ADPKD, and conditional inactivation of Cdk1 with Pkd1 markedly improved the cystic phenotype and kidney function compared with inactivation of Pkd1 alone. The Pkd1/Cdk1 double knockout blocked cyst cell proliferation that otherwise accompanied Pkd1 inactivation alone. CONCLUSIONS Dysregulation of Cdk1 is an early driver of cyst cell proliferation in ADPKD due to Pkd1 inactivation. Selective targeting of cyst cell proliferation is an effective means of slowing ADPKD progression caused by inactivation of Pkd1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Bruno Balbo
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Ming Ma
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jun Zhao
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Xin Tian
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut,Program in Applied Mathematics, Yale University, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University, New Haven, Connecticut,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
27
|
Dixon EE, Maxim DS, Halperin Kuhns VL, Lane-Harris AC, Outeda P, Ewald AJ, Watnick TJ, Welling PA, Woodward OM. GDNF drives rapid tubule morphogenesis in a novel 3D in vitro model for ADPKD. J Cell Sci 2020; 133:jcs249557. [PMID: 32513820 PMCID: PMC7375472 DOI: 10.1242/jcs.249557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023] Open
Abstract
Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation. Mouse renal tubule fragments were pulsed with a cell differentiation cocktail including glial-derived neurotrophic factor (GDNF) to yield collecting duct-like tubuloid structures with appropriate polarity, primary cilia, and gene expression. Using the 3D tubuloid model with an inducible Pkd2 knockout system allowed the tracking of morphological, protein, and genetic changes during cyst formation. Within hours of inactivation of Pkd2 and loss of polycystin-2, we observed significant progression in tubuloid to cyst morphology that correlated with 35 differentially expressed genes, many related to cell junctions, matrix interactions, and cell morphology previously implicated in cystogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Eryn E Dixon
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Demetrios S Maxim
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | | | - Allison C Lane-Harris
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Patricia Outeda
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Andrew J Ewald
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | - Terry J Watnick
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Paul A Welling
- Johns Hopkins University School of Medicine, Departments of Medicine and Physiology, Baltimore, MD 21205, USA
| | - Owen M Woodward
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| |
Collapse
|
28
|
Pathway identification through transcriptome analysis. Cell Signal 2020; 74:109701. [PMID: 32649993 DOI: 10.1016/j.cellsig.2020.109701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
Abstract
Systems-based, agnostic approaches focusing on transcriptomics data have been employed to understand the pathogenesis of polycystic kidney diseases (PKD). While multiple signaling pathways, including Wnt, mTOR and G-protein-coupled receptors, have been implicated in late stages of disease, there were few insights into the transcriptional cascade immediately downstream of Pkd1 inactivation. One of the consistent findings has been transcriptional evidence of dysregulated metabolic and cytoskeleton remodeling pathways. Recent technical developments, including bulk and single-cell RNA sequencing technologies and spatial transcriptomics, offer new angles to investigate PKD. In this article, we review what has been learned based on transcriptional approaches and consider future opportunities.
Collapse
|
29
|
Little MH, Quinlan C. Advances in our understanding of genetic kidney disease using kidney organoids. Pediatr Nephrol 2020; 35:915-926. [PMID: 31065797 DOI: 10.1007/s00467-019-04259-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 12/16/2022]
Abstract
A significant proportion of kidney disease presenting in childhood is likely genetic in origin with a growing number of genes implicated in its development. However, many children may have changes in previously undescribed or unrecognised genes. The recent development of methods for generating human kidney organoids from human pluripotent stem cells has the potential to substantially change the rate of diagnosis and the development of new treatments for some forms of genetic kidney disease. In this review, we discuss how accurately a kidney organoid models the human kidney, identifying the strengths and weaknesses of these potentially patient-derived models of renal disease.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia. .,Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.
| | - Catherine Quinlan
- Murdoch Children's Research Institute, Flemington Rd., Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Nephrology, Royal Children's Hospital, Flemington Rd., Parkville, VIC, Australia
| |
Collapse
|
30
|
Streets A, Ong A. Post-translational modifications of the polycystin proteins. Cell Signal 2020; 72:109644. [PMID: 32320857 DOI: 10.1016/j.cellsig.2020.109644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and affects up to 12 million people worldwide. Germline mutations in two genes, PKD1 or PKD2, account for almost all patients with ADPKD. The ADPKD proteins, polycystin-1 (PC1) and polycystin-2 (PC2), are regulated by post-translational modifications (PTM), with phosphorylation, glycosylation and proteolytic cleavage being the best described changes. A few PTMs have been shown to regulate polycystin trafficking, signalling, localisation or stability and thus their physiological function. A key challenge for the future will be to elucidate the functional significance of all the individual PTMs reported to date. Finally, it is possible that site-specific mutations that disrupt PTM could contribute to cystogenesis although in the majority of cases, confirmatory evidence is awaited.
Collapse
Affiliation(s)
- Andrew Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK.
| | - Albert Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, UK
| |
Collapse
|
31
|
Viau A, Baaziz M, Aka A, Mazloum M, Nguyen C, Kuehn EW, Terzi F, Bienaimé F. Tubular STAT3 Limits Renal Inflammation in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2020; 31:1035-1049. [PMID: 32238474 DOI: 10.1681/asn.2019090959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The inactivation of the ciliary proteins polycystin 1 or polycystin 2 leads to autosomal dominant polycystic kidney disease (ADPKD). Although signaling by primary cilia and interstitial inflammation both play a critical role in the disease, the reciprocal interactions between immune and tubular cells are not well characterized. The transcription factor STAT3, a component of the cilia proteome that is involved in crosstalk between immune and nonimmune cells in various tissues, has been suggested as a factor fueling ADPKD progression. METHOD To explore how STAT3 intersects with cilia signaling, renal inflammation, and cyst growth, we used conditional murine models involving postdevelopmental ablation of Pkd1, Stat3, and cilia, as well as cultures of cilia-deficient or STAT3-deficient tubular cell lines. RESULTS Our findings indicate that, although primary cilia directly modulate STAT3 activation in vitro, the bulk of STAT3 activation in polycystic kidneys occurs through an indirect mechanism in which primary cilia trigger macrophage recruitment to the kidney, which in turn promotes Stat3 activation. Surprisingly, although inactivating Stat3 in Pkd1-deficient tubules slightly reduced cyst burden, it resulted in a massive infiltration of the cystic kidneys by macrophages and T cells, precluding any improvement of kidney function. We also found that Stat3 inactivation led to increased expression of the inflammatory chemokines CCL5 and CXCL10 in polycystic kidneys and cultured tubular cells. CONCLUSIONS STAT3 appears to repress the expression of proinflammatory cytokines and restrict immune cell infiltration in ADPKD. Our findings suggest that STAT3 is not a critical driver of cyst growth in ADPKD but rather plays a major role in the crosstalk between immune and tubular cells that shapes disease expression.
Collapse
Affiliation(s)
- Amandine Viau
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Maroua Baaziz
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Amandine Aka
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Manal Mazloum
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Clément Nguyen
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Biological Signaling Studies (BIOSS), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Fabiola Terzi
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France.,Paris University, Paris, France
| | - Frank Bienaimé
- Growth and Signaling Department, Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institute Necker Enfants Malades, Paris, France .,Paris University, Paris, France.,Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
32
|
Kenter AT, Rentmeester E, van Riet J, Boers R, Boers J, Ghazvini M, Xavier VJ, van Leenders GJLH, Verhagen PCMS, van Til ME, Eussen B, Losekoot M, de Klein A, Peters DJM, van IJcken WFJ, van de Werken HJG, Zietse R, Hoorn EJ, Jansen G, Gribnau JH. Cystic renal-epithelial derived induced pluripotent stem cells from polycystic kidney disease patients. Stem Cells Transl Med 2020; 9:478-490. [PMID: 32163234 PMCID: PMC7103626 DOI: 10.1002/sctm.18-0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Autosomal‐dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, leading to kidney failure in most patients. In approximately 85% of cases, the disease is caused by mutations in PKD1. How dysregulation of PKD1 leads to cyst formation on a molecular level is unknown. Induced pluripotent stem cells (iPSCs) are a powerful tool for in vitro modeling of genetic disorders. Here, we established ADPKD patient‐specific iPSCs to study the function of PKD1 in kidney development and cyst formation in vitro. Somatic mutations are proposed to be the initiating event of cyst formation, and therefore, iPSCs were derived from cystic renal epithelial cells rather than fibroblasts. Mutation analysis of the ADPKD iPSCs revealed germline mutations in PKD1 but no additional somatic mutations in PKD1/PKD2. Although several somatic mutations in other genes implicated in ADPKD were identified in cystic renal epithelial cells, only few of these mutations were present in iPSCs, indicating a heterogeneous mutational landscape, and possibly in vitro cell selection before and during the reprogramming process. Whole‐genome DNA methylation analysis indicated that iPSCs derived from renal epithelial cells maintain a kidney‐specific DNA methylation memory. In addition, comparison of PKD1+/− and control iPSCs revealed differences in DNA methylation associated with the disease history. In conclusion, we generated and characterized iPSCs derived from cystic and healthy control renal epithelial cells, which can be used for in vitro modeling of kidney development in general and cystogenesis in particular.
Collapse
Affiliation(s)
- Annegien T Kenter
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Ruben Boers
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands.,Delft Diagnostic Laboratories (DDL), Rijswijk, The Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Vanessa J Xavier
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | | | - Paul C M S Verhagen
- Department of Urology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Marjan E van Til
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Joost H Gribnau
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Nobakht N, Hanna RM, Al-Baghdadi M, Ameen KM, Arman F, Nobahkt E, Kamgar M, Rastogi A. Advances in Autosomal Dominant Polycystic Kidney Disease: A Clinical Review. Kidney Med 2020; 2:196-208. [PMID: 32734239 PMCID: PMC7380379 DOI: 10.1016/j.xkme.2019.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Polycystic kidney disease (PKD) is a multiorgan disorder resulting in fluid-filled cyst formation in the kidneys and other systems. The replacement of kidney parenchyma with an ever-increasing volume of cysts eventually leads to kidney failure. Recently, increased understanding of the pathophysiology of PKD and genetic advances have led to new approaches of treatment targeting physiologic pathways, which has been proven to slow the progression of certain types of the disease. We review the pathophysiologic patterns and recent advances in the clinical pharmacotherapy of autosomal dominant PKD. A multipronged approach with pharmacologic and nonpharmacologic treatments can be successfully used to slow down the rate of progression of autosomal dominant PKD to kidney failure.
Collapse
Affiliation(s)
- Niloofar Nobakht
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Ramy M. Hanna
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Division of Nephrology, Department of Medicine, University of California Irvine, Orange, CA
| | - Maha Al-Baghdadi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Medicine, University of Alabama Birmingham Huntsville Regional Campus, Huntsville, AL
| | - Khalid Mohammed Ameen
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Farid Arman
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, PA
| | - Ehsan Nobahkt
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University, Washington, DC
| | - Mohammad Kamgar
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Anjay Rastogi
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
35
|
Tutunea-Fatan E, Lee JC, Denker BM, Gunaratnam L. Heterotrimeric Gα 12/13 proteins in kidney injury and disease. Am J Physiol Renal Physiol 2020; 318:F660-F672. [PMID: 31984793 DOI: 10.1152/ajprenal.00453.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gα12 and Gα13 are ubiquitous members of the heterotrimeric guanine nucleotide-binding protein (G protein) family that play central and integrative roles in the regulation of signal transduction cascades within various cell types in the kidney. Gα12/Gα13 proteins enable the kidney to adapt to an ever-changing environment by transducing stimuli from cell surface receptors and accessory proteins to effector systems. Therefore, perturbations in Gα12/Gα13 levels or their activity can contribute to the pathogenesis of various renal diseases, including renal cancer. This review will highlight and discuss the complex and expanding roles of Gα12/Gα13 proteins on distinct renal pathologies, with emphasis on more recently reported findings. Deciphering how the different Gα12/Gα13 interaction networks participate in the onset and development of renal diseases may lead to the discovery of new therapeutic strategies.
Collapse
Affiliation(s)
- Elena Tutunea-Fatan
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada
| | - Jasper C Lee
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Bradley M Denker
- Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplant Studies, Lawson Health Research Institute, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada.,Division of Nephrology, Department of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
36
|
|
37
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|
38
|
Margaria JP, Campa CC, De Santis MC, Hirsch E, Franco I. The PI3K/Akt/mTOR pathway in polycystic kidney disease: A complex interaction with polycystins and primary cilium. Cell Signal 2019; 66:109468. [PMID: 31715259 DOI: 10.1016/j.cellsig.2019.109468] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Over-activation of the PI3K/Akt/mTOR network is a well-known pathogenic event that leads to hyper-proliferation. Pharmacological targeting of this pathway has been developed for the treatment of multiple diseases, including cancer. In polycystic kidney disease (PKD), the mTOR cascade promotes cyst growth by boosting proliferation, size and metabolism of kidney tubule epithelial cells. Therefore, mTOR inhibition has been tested in pre-clinical and clinical studies, but only the former showed positive results. This review reports recent discoveries describing the activity and molecular mechanisms of mTOR activation in tubule epithelial cells and cyst formation and discusses the evidence of an upstream regulation of mTOR by the PI3K/Akt axis. In particular, the complex interconnections of the PI3K/Akt/mTOR network with the principal signaling routes involved in the suppression of cyst formation are dissected. These interactions include the antagonism and the reciprocal negative regulation between mTOR complex 1 and the proteins whose deletion causes Autosomal Dominant PKD, the polycystins. In addition, the emerging role of phopshoinositides, membrane components modulated by PI3K, will be presented in the context of primary cilium signaling, cell polarization and protection from cyst formation. Overall, studies demonstrate that the activity of various members of the PI3K/Akt/mTOR network goes beyond the classical transduction of mitogenic signals and can impact several aspects of kidney tubule homeostasis and morphogenesis. These properties might be useful to guide the establishment of more effective treatment protocols to be tested in clinical trials.
Collapse
Affiliation(s)
- Jean Piero Margaria
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Carlo Cosimo Campa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Maria Chiara De Santis
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Irene Franco
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, 14157 Huddinge, Sweden.
| |
Collapse
|
39
|
Hopp K, Cornec-Le Gall E, Senum SR, Te Paske IBAW, Raj S, Lavu S, Baheti S, Edwards ME, Madsen CD, Heyer CM, Ong ACM, Bae KT, Fatica R, Steinman TI, Chapman AB, Gitomer B, Perrone RD, Rahbari-Oskoui FF, Torres VE, Harris PC. Detection and characterization of mosaicism in autosomal dominant polycystic kidney disease. Kidney Int 2019; 97:370-382. [PMID: 31874800 DOI: 10.1016/j.kint.2019.08.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/29/2019] [Indexed: 11/30/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited, progressive nephropathy accounting for 4-10% of end stage renal disease worldwide. PKD1 and PKD2 are the most common disease loci, but even accounting for other genetic causes, about 7% of families remain unresolved. Typically, these unsolved cases have relatively mild kidney disease and often have a negative family history. Mosaicism, due to de novo mutation in the early embryo, has rarely been identified by conventional genetic analysis of ADPKD families. Here we screened for mosaicism by employing two next generation sequencing screens, specific analysis of PKD1 and PKD2 employing long-range polymerase chain reaction, or targeted capture of cystogenes. We characterized mosaicism in 20 ADPKD families; the pathogenic variant was transmitted to the next generation in five families and sporadic in 15. The mosaic pathogenic variant was newly discovered by next generation sequencing in 13 families, and these methods precisely quantified the level of mosaicism in all. All of the mosaic cases had PKD1 mutations, 14 were deletions or insertions, and 16 occurred in females. Analysis of kidney size and function showed the mosaic cases had milder disease than a control PKD1 population, but only a few had clearly asymmetric disease. Thus, in a typical ADPKD population, readily detectable mosaicism by next generation sequencing accounts for about 1% of cases, and about 10% of genetically unresolved cases with an uncertain family history. Hence, identification of mosaicism is important to fully characterize ADPKD populations and provides informed prognostic information.
Collapse
Affiliation(s)
- Katharina Hopp
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Emilie Cornec-Le Gall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Nephrology, Centre Hospitalier Universitaire de Brest, Université de Brest, Brest, France; National Institute of Health and Medical Sciences, INSERM U1078, Brest, France
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Iris B A W Te Paske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sonam Raj
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sravanthi Lavu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Marie E Edwards
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Charles D Madsen
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Christina M Heyer
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield, Sheffield, UK
| | - Kyongtae T Bae
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Richard Fatica
- Department of Nephrology and Hypertension, Cleveland Clinic, Cleveland, Ohio, USA
| | - Theodore I Steinman
- Renal Division, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Arlene B Chapman
- Division of Nephrology, University of Chicago School of Medicine, Chicago, Illinois, USA; Department of Internal Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ronald D Perrone
- Division of Nephrology, Tufts University Medical Center, Boston, Massachusetts, USA
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
40
|
Besse W, Chang AR, Luo JZ, Triffo WJ, Moore BS, Gulati A, Hartzel DN, Mane S, Torres VE, Somlo S, Mirshahi T. ALG9 Mutation Carriers Develop Kidney and Liver Cysts. J Am Soc Nephrol 2019; 30:2091-2102. [PMID: 31395617 DOI: 10.1681/asn.2019030298] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/26/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Mutations in PKD1 or PKD2 cause typical autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic kidney disease. Dominantly inherited polycystic kidney and liver diseases on the ADPKD spectrum are also caused by mutations in at least six other genes required for protein biogenesis in the endoplasmic reticulum, the loss of which results in defective production of the PKD1 gene product, the membrane protein polycystin-1 (PC1). METHODS We used whole-exome sequencing in a cohort of 122 patients with genetically unresolved clinical diagnosis of ADPKD or polycystic liver disease to identify a candidate gene, ALG9, and in vitro cell-based assays of PC1 protein maturation to functionally validate it. For further validation, we identified carriers of ALG9 loss-of-function mutations and noncarrier matched controls in a large exome-sequenced population-based cohort and evaluated the occurrence of polycystic phenotypes in both groups. RESULTS Two patients in the clinically defined cohort had rare loss-of-function variants in ALG9, which encodes a protein required for addition of specific mannose molecules to the assembling N-glycan precursors in the endoplasmic reticulum lumen. In vitro assays showed that inactivation of Alg9 results in impaired maturation and defective glycosylation of PC1. Seven of the eight (88%) cases selected from the population-based cohort based on ALG9 mutation carrier state who had abdominal imaging after age 50; seven (88%) had at least four kidney cysts, compared with none in matched controls without ALG9 mutations. CONCLUSIONS ALG9 is a novel disease gene in the genetically heterogeneous ADPKD spectrum. This study supports the utility of phenotype characterization in genetically-defined cohorts to validate novel disease genes, and provide much-needed genotype-phenotype correlations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dustin N Hartzel
- Biomedical and Translational Informatics, Geisinger Clinic, Danville, Pennsylvania; and
| | - Shrikant Mane
- Genetics, Yale University School of Medicine, New Haven, Connecticut
| | | | - Vicente E Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Stefan Somlo
- Departments of Internal Medicine (Nephrology) and .,Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Tooraj Mirshahi
- Biomedical and Translational Informatics, Geisinger Clinic, Danville, Pennsylvania; and
| |
Collapse
|
41
|
Arora V, Bijarnia-Mahay S, Tiwari V, Bansal S, Gupta P, Setia N, Puri RD, Verma IC. Co-inheritance of pathogenic variants in PKD1 and PKD2 genes presenting as severe antenatal phenotype of autosomal dominant polycystic kidney disease. Eur J Med Genet 2019; 63:103734. [PMID: 31349084 DOI: 10.1016/j.ejmg.2019.103734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 11/27/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by pathogenic variants in either PKD1 or PKD2 genes. Disease severity is dependent on various factors including the presence of modifier genes. We describe a family with recurrent foetal presentation of ADPKD due to co-inheritance of pathogenic variants in both PKD1 [c.3860T > C; p.(Leu1287Pro)] and PKD2 [(c.1000C > A; p.(Pro334Thr)] genes. Familial segregation studies revealed the mother and the father to be heterozygous for the same variants in the PKD1 and PKD2 genes, respectively, as found in the foetus. Renal ultrasonography detected evidence of cystic disease in the mother and two of her family members. No cysts were detected in the father, however the paternal grandfather died of renal cystic disease. The absence of disease in the father can be explained by the phenomenon of incomplete penetrance, or Knudson's two-hit hypothesis of cystogenesis in the grandfather. This case underscores the importance of sequencing PKD2 gene even in the presence of a familial PKD1 variant, as well as genetic testing of the cysts for evidence of the second hit.
Collapse
Affiliation(s)
- Veronica Arora
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| | - Vaibhav Tiwari
- Department of Nephrology, Sir Ganga Ram Hospital, New Delhi, India
| | - Savita Bansal
- Department of Obstetrics and Gynaecology and Fetal Medicine, Fortis Escorts Hospital, Jaipur, Rajasthan, India
| | - Pallav Gupta
- Department of Pathology, Sir Ganga Ram Hospital, New Delhi, India
| | - Nitika Setia
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna D Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
42
|
Saez-Rodriguez J, Rinschen MM, Floege J, Kramann R. Big science and big data in nephrology. Kidney Int 2019; 95:1326-1337. [PMID: 30982672 DOI: 10.1016/j.kint.2018.11.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/11/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
There have been tremendous advances during the last decade in methods for large-scale, high-throughput data generation and in novel computational approaches to analyze these datasets. These advances have had a profound impact on biomedical research and clinical medicine. The field of genomics is rapidly developing toward single-cell analysis, and major advances in proteomics and metabolomics have been made in recent years. The developments on wearables and electronic health records are poised to change clinical trial design. This rise of 'big data' holds the promise to transform not only research progress, but also clinical decision making towards precision medicine. To have a true impact, it requires integrative and multi-disciplinary approaches that blend experimental, clinical and computational expertise across multiple institutions. Cancer research has been at the forefront of the progress in such large-scale initiatives, so-called 'big science,' with an emphasis on precision medicine, and various other areas are quickly catching up. Nephrology is arguably lagging behind, and hence these are exciting times to start (or redirect) a research career to leverage these developments in nephrology. In this review, we summarize advances in big data generation, computational analysis, and big science initiatives, with a special focus on applications to nephrology.
Collapse
Affiliation(s)
- Julio Saez-Rodriguez
- RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany; Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany.
| | - Markus M Rinschen
- Department II of Internal Medicine, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute, La Jolla, California, USA
| | - Jürgen Floege
- RWTH Aachen, Department of Nephrology and Clinical Immunology, Aachen, Germany
| | - Rafael Kramann
- RWTH Aachen, Department of Nephrology and Clinical Immunology, Aachen, Germany; Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Woodward OM, Watnick T. Molecular Structure of the PKD Protein Complex Finally Solved. Am J Kidney Dis 2019; 73:620-623. [PMID: 30704879 DOI: 10.1053/j.ajkd.2018.12.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD.
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
44
|
Abstract
Cystic kidneys are common causes of end-stage renal disease, both in children and in adults. Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are cilia-related disorders and the two main forms of monogenic cystic kidney diseases. ADPKD is a common disease that mostly presents in adults, whereas ARPKD is a rarer and often more severe form of polycystic kidney disease (PKD) that usually presents perinatally or in early childhood. Cell biological and clinical research approaches have expanded our knowledge of the pathogenesis of ADPKD and ARPKD and revealed some mechanistic overlap between them. A reduced 'dosage' of PKD proteins is thought to disturb cell homeostasis and converging signalling pathways, such as Ca2+, cAMP, mechanistic target of rapamycin, WNT, vascular endothelial growth factor and Hippo signalling, and could explain the more severe clinical course in some patients with PKD. Genetic diagnosis might benefit families and improve the clinical management of patients, which might be enhanced even further with emerging therapeutic options. However, many important questions about the pathogenesis of PKD remain. In this Primer, we provide an overview of the current knowledge of PKD and its treatment.
Collapse
Affiliation(s)
- Carsten Bergmann
- Department of Medicine, University Hospital Freiburg, Freiburg, Germany.
| | - Lisa M. Guay-Woodford
- Center for Translational Science, Children’s National Health System, Washington, DC, USA
| | - Peter C. Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Shigeo Horie
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Dorien J. M. Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Vicente E. Torres
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|