1
|
Lin Z, Wang Z, Kim Thuong VP, Zhang X, Liang B, Li M, Li M, Duan T, Li Z, Li P, Wu A, Yang J, Bao K, Liu B. Sanqi Qushi formula ameliorates renal injury in experimental membranous nephropathy rats by inhibiting the MEK/ERK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119813. [PMID: 40239880 DOI: 10.1016/j.jep.2025.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanqi Qushi Formula (SQQS), a clinically validated derivative of the Sanqi oral solution, integrates principles of traditional Chinese medicine (TCM) to treat membranous nephropathy (MN). Its efficacy in reducing proteinuria and preserving renal function has been observed in clinical practice. AIM OF THE STUDY This study aims to elucidate the therapeutic mechanisms, active components, and pathway-specific effects of SQQS in MN, providing a scientific foundation for its clinical use. MATERIALS AND METHODS The components of SQQS were analyzed using UHPLC-MS/MS. A passive Heymann nephritis (PHN) rat model was induced by intravenous injection of anti-Fx1A serum. Rats received oral SQQS for 3 weeks, and urine/serum samples were collected to evaluate renal function and chemokine levels. Renal histopathology was assessed via immunofluorescence, PASM staining, and CD68 immunostaining. Network pharmacology integrated target prediction for SQQS compounds and differentially expressed genes from the Gene Expression Omnibus (GEO) database (MN patient glomeruli). Mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway proteins and epithelial-mesenchymal transition (EMT) markers were analyzed by western blotting (WB). Molecular docking and molecular dynamics simulations evaluated compound-MEK interactions. Human glomerular podocytes were treated with SQQS-derived compounds; viability and migration were assessed using cell counting kit-8 assay and scratch assays. RESULTS UHPLC-MS/MS identified 129 compounds in SQQS. SQQS treatment significantly reduced renal injury markers, glomerular IgG deposition, and basement membrane thickening in PHN rats. GEO database analysis revealed 839 upregulated and 166 downregulated genes in MN glomeruli. Network pharmacology implicated the tumor necrosis factor (TNF) pathway, with 10 upregulated targets (e.g., MAP2K1, MMP3, CXCL10). WB confirmed SQQS suppressed MEK/ERK phosphorylation and decreased MMP3 and α-SMA levels. Renal CD68+ macrophages and associated chemokines (CXCL10, CCL20) were reduced by SQQS. Methylnissolin-3-O-glucoside, a flavonoid from Astragalus mongholicus Bunge, dose-dependently inhibited TNF-α-induced MEK/ERK activation and migration. MEK agonists reversed methylnissolin-3-O-glucoside-mediated MEK/ERK suppression. CONCLUSION SQQS ameliorates MN progression by inhibiting the MEK/ERK pathway, suppressing EMT, and reducing macrophage recruitment, with methylnissolin-3-O-glucoside as a key bioactive component.
Collapse
Affiliation(s)
- Ziyang Lin
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Zhaodi Wang
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Van Pham Kim Thuong
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xianlong Zhang
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Baien Liang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Minyi Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Mengqiu Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Tingting Duan
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Zhenghai Li
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China
| | - Ping Li
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Aihua Wu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Junzheng Yang
- Guangdong Nephrotic Drug Engineering Technology Research Center, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangdong Consun Pharmaceutical Group, Guangzhou, PR China.
| | - Kun Bao
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Bo Liu
- The Second Clinical Medical College, and Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou, PR China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, 510006, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
2
|
Lang H, Zeng J, Wen Y, Xu J, Xiao R, Shi Y, Lu Q, Xia X, Hu G. Oleracein E Rejuvenates Senescent Hippocampal NSCs by Inhibiting the ERK1/2-mTOR Axis to Improve Cognitive Dysfunction in Vascular Dementia. Eur J Neurosci 2025; 61:e70137. [PMID: 40353431 DOI: 10.1111/ejn.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/27/2025] [Indexed: 05/14/2025]
Abstract
Vascular dementia (VD) is one of the most prevalent forms of dementia, yet effective treatments remain limited. Our previous research identified hippocampal neural stem cells (hNSCs) senescence as a key contributor to VD progression and suggested that reducing hNSC senescence could help reverse cognitive impairment. In this study, we investigated whether Oleracein E (OE), a phenolic antioxidant alkaloid, could alleviate hNSC senescence and improve cognitive function in VD. Using a two-vessel occlusion mouse model of VD, we found that OE treatment significantly reduced hNSCs senescence, restored proliferation and neuronal differentiation capacities, and improved cognitive performance. Mechanistically, OE exerted its effects by inhibiting ERK1/2 phosphorylation and suppressing mTOR activation. Furthermore, pharmacological activation of mTOR with MHY1485 partially abolished the antisenescence effects of OE in hNSCs. These findings suggest that OE may counteract senescence-related neurogenesis dysfunction and cognitive decline in VD, highlighting its potential as a therapeutic intervention.
Collapse
Affiliation(s)
- Haili Lang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuqi Wen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiang Xu
- Department of Neurosurgery, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, Jiangxi, China
| | - Renjie Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yichuan Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaobao Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guowen Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Miao F, Luan J, Feng X, Zhang Y, Feng Z, Wang Z, Wang Y, Yang R, Zhang C, Kopp JB, Pi J, Zhou H. Trametinib ameliorated Adriamycin-induced podocyte injury by inhibiting METTL3 modified m 6A RCAN1 RNA methylation. Eur J Pharmacol 2025; 999:177680. [PMID: 40287046 DOI: 10.1016/j.ejphar.2025.177680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
N6-methyladenosine (m6A) plays a crucial role in kidney diseases. Methyltransferase-like 3 (METTL3) as a key m6A writer can be regulated by trametinib. However, the epigenetic regulation of trametinib in focal segmental glomerulosclerosis (FSGS) remains unclear. We investigated whether trametinib protects podocytes by modulating METTL3-methylated target RNAs. Regulator of calcineurin 1 (RCAN1) was predicted as a target binding RNA of METTL3 by THEW database. Immunostaining of METTL3 and RCAN1 with podocyte marker Wilm's tumor-1 (WT-1) confirmed their localization within podocytes in renal biopsy from FSGS patients. Transfection METTL3 to human podocytes reduced WT-1, synaptopodin (SYNPO), and RCAN1 protein levels. Total m6A, m6A methylated RNA of RCAN1 increased and total RCAN1 mRNA decreased. Inhibition of METTL3 using siRNA or trametinib reversed these changes and attenuated the ADR-induced downregulation of WT-1 and SYNPO in vitro. In ADR-induced FSGS mice, trametinib ameliorated proteinuria, hypoalbuminemia, renal dysfunction, glomerulosclerosis and podocyte foot process effacement. Additionally, trametinib preserved podocyte function assessed by WT-1 and SYNPO as well as delayed renal fibrosis assessed by α-smooth muscle actin and fibronectin. Consistent with results in vitro, trametinib also decreased the ADR-induced upregulation of METTL3 and reversed the changed levels of total m6A, m6A methylated Rcan1 and total Rcan1 in FSGS mice. In conclusion, trametinib may serve as a renal protective agent for FSGS by regulating METTL3-dependent RCAN1 methylation levels.
Collapse
Affiliation(s)
- Feifei Miao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaochen Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yonghe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiduo Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuqing Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Yang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Yang L, Ma L, Fu P, Nie J. Update of cellular senescence in kidney fibrosis: from mechanism to potential interventions. Front Med 2025; 19:250-264. [PMID: 40011387 DOI: 10.1007/s11684-024-1117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 02/28/2025]
Abstract
Kidney fibrosis is the final common pathway of virtually all chronic kidney disease (CKD). However, despite great progress in recent years, no targeted antifibrotic therapies have been approved. Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of CKD. Senescent renal tubular cells, fibroblasts, endothelial cells, and podocytes have been detected in the kidneys of patients with CKD and animal models. Nonetheless, although accumulated evidence supports the essential role of cellular senescence in CKD, the mechanisms that promote cell senescence and how senescent cells contribute to CKD remain largely unknown. In this review, we summarize the features of the cellular senescence of the kidney and discuss the possible functions of senescent cells in the pathogenesis of kidney fibrosis. We also address whether pharmacological approaches targeting senescent cells can be used to retard the the progression of kidney fibrosis.
Collapse
Affiliation(s)
- Lina Yang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Liang Ma
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Jing Nie
- Biobank of Peking University First Hospital, Peking University First Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Health Science Center, Peking University, Beijing, 100034, China.
| |
Collapse
|
5
|
Zhou Y, Luan F, Feng X, Yu M, Li L, Guo X, Yin X. TGF-β1 induces ROS to activate ferroptosis via the ERK1/2-WISP1 pathway to promote the progression of renal tubular epithelial cell fibrosis. Cytotechnology 2025; 77:61. [PMID: 39959788 PMCID: PMC11828780 DOI: 10.1007/s10616-025-00719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/27/2025] [Indexed: 02/18/2025] Open
Abstract
Chronic kidney disease (CKD) often progresses to renal fibrosis, which is characterized by excessive extracellular matrix deposition and is also linked to ferroptosis. The present study investigated how TGF-β1 induces ferroptosis and thereby contributes to renal tubular epithelial cell fibrosis. Bioinformatics was employed to identify the differentially expressed genes relevant to renal fibrosis. An in vitro TGF-β1-induced fibrosis model of HK-2 cells was established, and the cell shape index was calculated. Fer-1, NAC, and PD98059 were utilized for targeted intervention, and their mechanisms were verified by transducing cells with WISP1-targeting shRNA lentivirus. Cell morphology was examined under a microscope, and cells were collected to determine the levels of ferroptosis-related factors (Fe2+, MDA, GSH, and LPO). Western blotting was performed to measure the levels of ERK1/2, WISP1, and ferroptosis indicators (GPX4 and hyperoxidized PRDX4). Flow cytometry was performed to determine the ROS levels and the rate of cell ferroptosis. TGF-β1 induced the transformation of HK-2 cells into fibroblast-like cells, leading to increased ROS levels, activation of the ERK1/2-WISP1 signaling pathway, and upregulation of ferroptosis and fibrosis-related factors. However, these effects could be effectively inhibited through pretreatment with Fer-1, NAC, and PD98059 individually, which further validated the involvement of the ERK1/2-WISP1 signaling pathway. In addition, WISP1 knockdown suppressed the cell transformation into fibroblast-like cells as well as the ferroptosis process, thereby reducing the expression levels of ferroptosis and fibrosis-related factors. The present study substantiated the process through which TGF-β1 elicits the production of ROS and triggers ferroptosis via the ERK1/2-WISP1 signaling pathway to facilitate the development of renal tubular epithelial cell fibrosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00719-5.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Fengwu Luan
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaonan Feng
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Min Yu
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Lu Li
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaoyan Guo
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| | - Xiaolong Yin
- Department of Nephrology, General Hospital of Ningxia Medical University, No. 804 South Shengli Street, Xingqing District, Yinchuan, 750004 Ningxia China
| |
Collapse
|
6
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
7
|
Xiong W, Tang J, Yu H, Luo Y, Yu M, Li Y. Emodin inhibits M1 macrophage activation that related to acute and chronic kidney injury through EGFR/MAPK pathway. Funct Integr Genomics 2024; 24:131. [PMID: 39078513 DOI: 10.1007/s10142-024-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Macrophages are the main inflammatory cells involved in kidney injury and play a significant role in the development of acute kidney injury (AKI) and progression of chronic kidney disease (CKD). Emodin is believed to stabilize macrophage homeostasis under pathological conditions. The objective of this study aimed to explore the underlying mechanisms and effects of Emodin on M1 macrophages. METHODS Network pharmacology methods were used to predict target proteins associated with renal injury and identify the pathways affected by emodin. RAW264.7 macrophages were induced into M1 polarization using LPS and then treated with emodin at 20, 40, and 80 µM. The effects of emodin on cell viability, cytokines (IL-1β, IL-6, TNF-α), M1 macrophage markers (F4/80 + CD86+), and the EGFR/MAPK pathway were evaluated. Additionally, we transfected RAW264.7 cells with an EGFR shRNA interference lentivirus to assess its effects on RAW264.7 cells function and MAPK pathway. After RAW264.7 cells were passaged to expanded culture and transfected with EGFR-interfering plasmid, macrophages were induced to polarize towards M1 with LPS and then treated with 80 µM emodin. CKD modeling was performed to test how emodin is regulated during CKD. RESULTS There are 15 common targets between emodin and kidney injury, of which the EGFR/MAPK pathway is the pathway through which emodin affects macrophage function. Emodin significantly reduced the levels of IL-6, IL-1β and TNF-α (p < 0.05) and the ratio of M1 macrophage surface markers F4/80 + CD86+ (p < 0.01) in the supernatant of RAW264.7 cells in a dose-dependent manner. Furthermore, the inhibitory effect of emodin on RAW264.7 cells was achieved by interfering with the EGFR/MAPK pathway. Moreover, emodin also affected the mRNA and protein expression of EGFR and Ras, leading to a decrease in the rate of M1 macrophages, thus inhibiting the pro-inflammatory effect of M1 macrophages. The addition of emodin reduced the rate of M1 macrophages in CKD and inhibited the further polarization of M1 macrophages, thus maintaining the pro-inflammatory and anti-inflammatory homeostasis in CKD, and these effects were achieved by emodin through the control of the EGRF/ERK pathway. CONCLUSION Emodin attenuates M1 macrophage polarization and pro-inflammatory responses via the EGFR/MAPK signalling pathway. And the addition of emodin maintains pro- and anti-inflammatory homeostasis, which is important for maintaining organ function and tissue repair.
Collapse
Affiliation(s)
- Weijian Xiong
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Jing Tang
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Hangxing Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Yan Luo
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Minghuan Yu
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China
| | - Ying Li
- Department of Nephrology, Chongqing Traditional Chinese Medicine Hospital, No.6 Panxi Road, Jiangbei District, Chongqing, 400021, China.
| |
Collapse
|
8
|
Lee JE, Kim JY, Leem J. Efficacy of Trametinib in Alleviating Cisplatin-Induced Acute Kidney Injury: Inhibition of Inflammation, Oxidative Stress, and Tubular Cell Death in a Mouse Model. Molecules 2024; 29:2881. [PMID: 38930946 PMCID: PMC11206428 DOI: 10.3390/molecules29122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cisplatin, a platinum-based chemotherapeutic, is effective against various solid tumors, but its use is often limited by its nephrotoxic effects. This study evaluated the protective effects of trametinib, an FDA-approved selective inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK1/2), against cisplatin-induced acute kidney injury (AKI) in mice. The experimental design included four groups, control, trametinib, cisplatin, and a combination of cisplatin and trametinib, each consisting of eight mice. Cisplatin was administered intraperitoneally at a dose of 20 mg/kg to induce kidney injury, while trametinib was administered via oral gavage at 3 mg/kg daily for three days. Assessments were conducted 72 h after cisplatin administration. Our results demonstrate that trametinib significantly reduces the phosphorylation of MEK1/2 and extracellular signal-regulated kinase 1/2 (ERK1/2), mitigated renal dysfunction, and ameliorated histopathological abnormalities. Additionally, trametinib significantly decreased macrophage infiltration and the expression of pro-inflammatory cytokines in the kidneys. It also lowered lipid peroxidation by-products, restored the reduced glutathione/oxidized glutathione ratio, and downregulated NADPH oxidase 4. Furthermore, trametinib significantly inhibited both apoptosis and necroptosis in the kidneys. In conclusion, our data underscore the potential of trametinib as a therapeutic agent for cisplatin-induced AKI, highlighting its role in reducing inflammation, oxidative stress, and tubular cell death.
Collapse
Affiliation(s)
- Joung Eun Lee
- Department of Emergency Medicine, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jung-Yeon Kim
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Daegu Catholic University, Daegu 42472, Republic of Korea;
| |
Collapse
|
9
|
Feng D, Gui Z, Xu Z, Zhang J, Ni B, Wang Z, Liu J, Fei S, Chen H, Sun L, Gu M, Tan R. Rictor/mTORC2 signalling contributes to renal vascular endothelial-to-mesenchymal transition and renal allograft interstitial fibrosis by regulating BNIP3-mediated mitophagy. Clin Transl Med 2024; 14:e1686. [PMID: 38769658 PMCID: PMC11106512 DOI: 10.1002/ctm2.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms. METHODS The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout. RESULTS Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout. CONCLUSIONS Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.
Collapse
Affiliation(s)
- Dengyuan Feng
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zeping Gui
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Urologythe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhen Xu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of UrologyThe Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhouChina
| | - Jianjian Zhang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bin Ni
- Department of Urologythe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zijie Wang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiawen Liu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuang Fei
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Chen
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Sun
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Gu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Urologythe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ruoyun Tan
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Lee J, Honjo M, Aihara M. A MEK inhibitor arrests the cell cycle of human conjunctival fibroblasts and improves the outcome of glaucoma filtration surgery. Sci Rep 2024; 14:1871. [PMID: 38253821 PMCID: PMC10803501 DOI: 10.1038/s41598-024-52359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Better agents are needed to improve glaucoma filtration surgery outcomes compared to current ones. The purpose of this study is to determine whether mitogen-activated protein kinase kinase (MEK) inhibitors can effectively arrest the cell cycle of human conjunctival fibroblasts (HCFs) and inhibit the formation of fibrosis and scarring following glaucoma filtration surgery. A cell counting kit‑8 assay revealed that the MEK inhibitor PD0325901 exhibited concentration-dependent growth inhibition of HCFs. Quantitative PCR, immunocytochemistry, and western blotting demonstrated decreased expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and increased expression of p27 in HCFs treated with PD0325901. Flow cytometry indicated that PD0325901 arrested the cell cycle of HCFs in the G0/1 phase. The cell-migration assay showed that HCF migration rate was significantly suppressed by PD0325901 exposure. Rabbits were divided into PD0325901-treatment and control groups, and glaucoma filtration surgery was performed. Although intraocular pressure did not differ between PD0325901-treatment and control groups, bleb height was greater in the treatment group. Histopathological evaluation revealed that fibrotic changes were significantly attenuated in the PD0325901-treatment group compared to the control group. In conclusion, the MEK inhibitor impedes HCF proliferation via cell-cycle arrest and may be beneficial for glaucoma filtration surgery by reducing bleb scarring.
Collapse
Affiliation(s)
- Jinhee Lee
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Megumi Honjo
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Makoto Aihara
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
11
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Cep120 is essential for kidney stromal progenitor cell growth and differentiation. EMBO Rep 2024; 25:428-454. [PMID: 38177914 PMCID: PMC10897188 DOI: 10.1038/s44319-023-00019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Mutations in genes that disrupt centrosome structure or function can cause congenital kidney developmental defects and lead to fibrocystic pathologies. Yet, it is unclear how defective centrosome biogenesis impacts renal progenitor cell physiology. Here, we examined the consequences of impaired centrosome duplication on kidney stromal progenitor cell growth, differentiation, and fate. Conditional deletion of the ciliopathy gene Cep120, which is essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of interstitial lineages including pericytes, fibroblasts and mesangial cells. These phenotypes were caused by a combination of delayed mitosis, activation of the mitotic surveillance pathway leading to apoptosis, and changes in both Wnt and Hedgehog signaling that are key for differentiation of stromal cells. Cep120 ablation resulted in small hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, Cep120 and centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis after renal injury via enhanced TGF-β/Smad3-Gli2 signaling. Our study defines the cellular and developmental defects caused by loss of Cep120 and aberrant centrosome biogenesis in the embryonic kidney stroma.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Eirini Kefaloyianni
- Department of Medicine (Rheumatology Division), Washington University, St Louis, MO, USA
| | - Charles Gluck
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA.
| |
Collapse
|
12
|
Andrikopoulos P, Aron-Wisnewsky J, Chakaroun R, Myridakis A, Forslund SK, Nielsen T, Adriouch S, Holmes B, Chilloux J, Vieira-Silva S, Falony G, Salem JE, Andreelli F, Belda E, Kieswich J, Chechi K, Puig-Castellvi F, Chevalier M, Le Chatelier E, Olanipekun MT, Hoyles L, Alves R, Helft G, Isnard R, Køber L, Coelho LP, Rouault C, Gauguier D, Gøtze JP, Prifti E, Froguel P, Zucker JD, Bäckhed F, Vestergaard H, Hansen T, Oppert JM, Blüher M, Nielsen J, Raes J, Bork P, Yaqoob MM, Stumvoll M, Pedersen O, Ehrlich SD, Clément K, Dumas ME. Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide. Nat Commun 2023; 14:5843. [PMID: 37730687 PMCID: PMC10511707 DOI: 10.1038/s41467-023-39824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/30/2023] [Indexed: 09/22/2023] Open
Abstract
The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.
Collapse
Affiliation(s)
- Petros Andrikopoulos
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK.
| | - Judith Aron-Wisnewsky
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Rima Chakaroun
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonis Myridakis
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College London, 86 Wood Lane, London, W12 0BZ, UK
| | - Sofia K Forslund
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin and the Max-Delbrück Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité University Hospital, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Solia Adriouch
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
| | | | - Julien Chilloux
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sara Vieira-Silva
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Gwen Falony
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Joe-Elie Salem
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Fabrizio Andreelli
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Eugeni Belda
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Julius Kieswich
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kanta Chechi
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Francesc Puig-Castellvi
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
| | - Mickael Chevalier
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
| | | | - Michael T Olanipekun
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Renato Alves
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gerard Helft
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
- Institute of Cardiometabolism and Nutrition, ICAN, INSERM, 1166, Paris, France
| | - Richard Isnard
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Lars Køber
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christine Rouault
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
| | - Dominique Gauguier
- INSERM UMR 1124, Université de Paris, 45 rue des Saint-Pères, 75006, Paris, France
- McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Jens Peter Gøtze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Edi Prifti
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Philippe Froguel
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 0NN, UK
| | - Jean-Daniel Zucker
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France
- Sorbonne Université, IRD, Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, F-93143, Bondy, France
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vestergaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Medicine, Bornholms Hospital, Rønne, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-Michel Oppert
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, 03722, South Korea
| | - Muhammad M Yaqoob
- Diabetic Kidney Disease Centre, Renal Unit, Barts Health National Health Service Trust, The Royal London Hospital, London, UK
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Stumvoll
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Clinical Metabolic Research, Gentofte University Hospital, Copenhagen, Denmark
| | - S Dusko Ehrlich
- Department of Clinical and Movement Neurosciences, University College London, London, NW3 2PF, UK
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and obesities; systemic approaches (NutriOmics), Paris, France.
- Assistance Publique Hôpitaux de Paris, Pitie-Salpêtrière Hospital, Paris, France.
| | - Marc-Emmanuel Dumas
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Section of Genomic & Environmental Medicine, National Heart & Lung Institute, Imperial College London, London, UK.
- European Genomics Institute for Diabetes, EGENODIA, INSERM U1283, CNRS UMR8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France.
- McGill Genome Centre, McGill University, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
13
|
Chen M, Zuo S, Chen S, Li X, Zhang T, Yang D, Zou X, Yang Y, Long H, Peng R, Yuan H, Guo B, Liu L. Pharmacological inhibition of SMYD2 protects against cisplatin-induced renal fibrosis and inflammation. J Pharmacol Sci 2023; 153:38-45. [PMID: 37524453 DOI: 10.1016/j.jphs.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
SET and MYND domain protein 2 (SMYD2) can methylate histone H3 at lysine36 (H3K36) and some non-histone substrates to play a role in tumorigenesis. However, It is unclear how SMYD2 contributes to chronic kidney disease (CKD). Here, AZ505 or LLY507, which could inhibit SMYD2, were used in cisplatin-induced CKD to investigate the effects and possible mechanisms by which they might act. We found that high expression of SMYD2 in cisplatin-induced CKD. However, AZ505 or LLY507 can significantly inhibit its expression, improve renal function injury and fibrosis induced by cisplatin, inhibit the transition of epithelial cells to a fibrogenic phenotype and fibrosis-related proteins, inhibit the expression of Inflammatory Cytokines (such as IL-6 and TNF-α), And inhibit the phosphorylation of pro-fibrosis molecule Smad3 and signal transduction and transcription activator-3 (STAT3) and up-regulated the expression of renal protective factor Smad7. In cultured tubular epithelial cells, AZ505 also can inhibit the expression of EMT, fibrosis-related proteins, and inflammatory cytokines in cisplatin-induced tubular epithelial cells. Based on these findings, SMYD2 may be a critical regulator of cisplatin-induced CKD and targeted pharmacological inhibition of SMYD2 may prevent cisplatin-induced CKD through Smad3 or STAT3-related signaling pathways.
Collapse
Affiliation(s)
- Min Chen
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Siyang Zuo
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Siyu Chen
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xia Li
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Center for Clinical Medical Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
| | - Dan Yang
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Center for Clinical Medical Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xue Zou
- Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Center for Clinical Medical Research, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Yuan Yang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Hehua Long
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Rui Peng
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Huixiong Yuan
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China; Laboratory of Pathogenesis Research, Drug Prevention and Treatment of Major Diseases, Guizhou Medical University, Guiyang, 550025, China.
| | - Lirong Liu
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China; Guizhou Precision Medicine Institute, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
14
|
Liu D, Zhang C, Zhang J, Xu GT, Zhang J. Molecular pathogenesis of subretinal fibrosis in neovascular AMD focusing on epithelial-mesenchymal transformation of retinal pigment epithelium. Neurobiol Dis 2023; 185:106250. [PMID: 37536385 DOI: 10.1016/j.nbd.2023.106250] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss among elderly people in developed countries. Neovascular AMD (nAMD) accounts for more than 90% of AMD-related vision loss. At present, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is widely used as the first-line therapy to decrease the choroidal and retinal neovascularizations, and thus to improve or maintain the visual acuity of the patients with nAMD. However, about 1/3 patients still progress to irreversible visual impairment due to subretinal fibrosis even with adequate anti-VEGF treatment. Extensive literatures support the critical role of epithelial-mesenchymal transformation (EMT) of retinal pigment epithelium (RPE) in the pathogenesis of subretinal fibrosis in nAMD, but the underlying mechanisms still remain largely unknown. This review summarized the molecular pathogenesis of subretinal fibrosis in nAMD, especially focusing on the transforming growth factor-β (TGF-β)-induced EMT pathways. It was also discussed how these pathways crosstalk and respond to signals from the microenvironment to mediate EMT and contribute to the progression of nAMD-related subretinal fibrosis. Targeting EMT signaling pathways might provide a promising and effective therapeutic strategy to treat subretinal fibrosis secondary to nAMD.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
15
|
Jiang C, Kumar A, Yu Z, Shipman T, Wang Y, McKay RM, Xing C, Le LQ. Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor. J Clin Invest 2023; 133:e168227. [PMID: 37140985 PMCID: PMC10266775 DOI: 10.1172/jci168227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall downregulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as biomarkers for disease diagnosis and treatment response.
Collapse
Affiliation(s)
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Ze Yu
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Lyda Hill Department of Bioinformatics
| | - Lu Q. Le
- Department of Dermatology
- Simmons Comprehensive Cancer Center
- UTSW Comprehensive Neurofibromatosis Clinic
- Hamon Center for Regenerative Science and Medicine, and
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
16
|
Diao HY, Zhu W, Liu J, Yin S, Wang JH, Li CL. Salvianolic Acid A Improves Rat Kidney Injury by Regulating MAPKs and TGF-β1/Smads Signaling Pathways. Molecules 2023; 28:3630. [PMID: 37110864 PMCID: PMC10144349 DOI: 10.3390/molecules28083630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Salvianolic acid A (SAA) is one of the major components in Salvia miltiorrhiza Bge., with various pharmacological activities, and is likely to be a promising agent for the treatment of kidney diseases. The purpose of this study was to explore the protective effect and mechanisms of SAA on kidney disease. In this study, the improvement effects of SAA (10, 20, 40 mg/kg, i.g.) on kidney injury rats were investigated by detecting the levels of KIM-1, NGAL in serum and UP in the urine of AKI model rats established with gentamicin, as well as the levels of SCr and UREA in serum and IL-6, IL-12, MDA and T-SOD in the kidneys of CKD model rats established with 5/6 nephrectomy. HE and Masson staining were used to observe the histopathological changes in the kidney. Network pharmacology and Western blotting were used to explore the mechanism of SAA in improving kidney injury. The results showed that SAA improved kidney function in kidney injury rats by reducing the kidney index and pathological injury by HE and Masson staining, reducing the levels of KIM-1, NGAL and UP in AKI rats and UREA, SCr and UP in CKD rats, as well as exerting anti-inflammatory and anti-oxidative stress effects by inhibiting the release of IL-6 and IL-12, reducing MDA and increasing T-SOD. Western blotting results showed that SAA significantly reduced the phosphorylation levels of ERK1/2, p38, JNK and smad2/3, and the expression of TLR-4 and smad7. In conclusion, SAA plays a significant role in improving kidney injury in rats and the mechanism may be achieved by regulating the MAPKs and TGF-β1/smads signaling pathways.
Collapse
Affiliation(s)
- Hai-Yang Diao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sheng Yin
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Hui Wang
- Department of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
17
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Impaired centrosome biogenesis in kidney stromal progenitors reduces abundance of interstitial lineages and accelerates injury-induced fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535583. [PMID: 37066241 PMCID: PMC10104024 DOI: 10.1101/2023.04.04.535583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Defective centrosome function can disrupt embryonic kidney development, by causing changes to the renal interstitium that leads to fibrocystic disease pathologies. Yet, it remains unknown how mutations in centrosome genes impact kidney interstitial cells. Here, we examined the consequences of defective centrosome biogenesis on stromal progenitor cell growth, differentiation and fate. Conditional deletion of Cep120 , a ciliopathy gene essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of pericytes, interstitial fibroblasts and mesangial cells. This was due to delayed mitosis, increased apoptosis, and changes in Wnt and Hedgehog signaling essential for differentiation of stromal lineages. Cep120 ablation resulted in hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis via enhanced TGF-β/Smad3-Gli2 signaling after renal injury. Our study defines the cellular and developmental defects caused by centrosome dysfunction in embryonic kidney stroma. Highlights Defective centrosome biogenesis in kidney stroma causes:Reduced abundance of stromal progenitors, interstitial and mesangial cell populationsDefects in cell-autonomous and paracrine signalingAbnormal/delayed nephrogenesis and tubular dilationsAccelerates injury-induced fibrosis via defective TGF-β/Smad3-Gli2 signaling axis.
Collapse
|
18
|
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) drives chronic kidney disease progression in male mice. Nat Commun 2023; 14:1334. [PMID: 36906617 PMCID: PMC10008567 DOI: 10.1038/s41467-023-37043-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2023] [Indexed: 03/13/2023] Open
Abstract
Kidney injury initiates epithelial dedifferentiation and myofibroblast activation during the progression of chronic kidney disease. Herein, we find that the expression of DNA-PKcs is significantly increased in the kidney tissues of both chronic kidney disease patients and male mice induced by unilateral ureteral obstruction and unilateral ischemia-reperfusion injury. In vivo, knockout of DNA-PKcs or treatment with its specific inhibitor NU7441 hampers the development of chronic kidney disease in male mice. In vitro, DNA-PKcs deficiency preserves epithelial cell phenotype and inhibits fibroblast activation induced by transforming growth factor-beta 1. Additionally, our results show that TAF7, as a possible substrate of DNA-PKcs, enhances mTORC1 activation by upregulating RAPTOR expression, which subsequently promotes metabolic reprogramming in injured epithelial cells and myofibroblasts. Taken together, DNA-PKcs can be inhibited to correct metabolic reprogramming via the TAF7/mTORC1 signaling in chronic kidney disease, and serve as a potential target for treating chronic kidney disease.
Collapse
|
19
|
Ahmedy OA, El-Tanbouly DM, Al-Mokaddem AK, El-Said YA. Insights into the role of P2X7R/DUSP6/ERK1/2 and SIRT2/MDM2 signaling in the nephroprotective effect of berberine against cisplatin-induced renal fibrosis in rats. Life Sci 2022; 309:121040. [DOI: 10.1016/j.lfs.2022.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022]
|
20
|
Ruiz-Ortega M, Lamas S, Ortiz A. Antifibrotic Agents for the Management of CKD: A Review. Am J Kidney Dis 2022; 80:251-263. [PMID: 34999158 DOI: 10.1053/j.ajkd.2021.11.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/18/2021] [Indexed: 01/27/2023]
Abstract
Kidney fibrosis is a hallmark of chronic kidney disease (CKD) and a potential therapeutic target. However, there are conceptual and practical challenges to directly targeting kidney fibrosis. Whether fibrosis is mainly a cause or a consequence of CKD progression has been disputed. It is unclear whether specifically targeting fibrosis is feasible in clinical practice because most drugs that decrease fibrosis in preclinical models target additional and often multiple pathogenic pathways (eg, renin-angiotensin-aldosterone system blockade). Moreover, tools to assess whole-kidney fibrosis in routine clinical practice are lacking. Pirfenidone, a drug used for idiopathic pulmonary fibrosis, is undergoing a phase 2 trial for kidney fibrosis. Other drugs in use or being tested for idiopathic pulmonary fibrosis (eg, nintedanib, PRM-151, epigallocatechin gallate) are also potential candidates to treat kidney fibrosis. Novel therapeutic approaches may include antagomirs (eg, lademirsen) or drugs targeting interleukin 11 or NKD2 (WNT signaling pathway inhibitor). Reversing the dysfunctional tubular cell metabolism that leads to kidney fibrosis offers additional therapeutic opportunities. However, any future drug targeting fibrosis of the kidneys should demonstrate added benefit to a standard of care that combines renin-angiotensin system with mineralocorticoid receptor (eg, finerenone) blockade or with sodium/glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid; Red de Investigación Renal, Madrid, Spain
| | - Santiago Lamas
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid; Red de Investigación Renal, Madrid, Spain; Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa", Madrid, Spain
| | - Alberto Ortiz
- Nephrology and Hypertension, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid; Red de Investigación Renal, Madrid, Spain.
| |
Collapse
|
21
|
Nakayama T, Azegami T, Hayashi K, Hishikawa A, Yoshimoto N, Nakamichi R, Sugita E, Itoh H. Vaccination against connective tissue growth factor attenuates the development of renal fibrosis. Sci Rep 2022; 12:10933. [PMID: 35768626 PMCID: PMC9243061 DOI: 10.1038/s41598-022-15118-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
There is a critical need for efficient treatment of chronic kidney disease (CKD). Renal fibrosis is a final common pathway to end-stage renal disease independent of the underlying etiology, and connective tissue growth factor (CTGF) is a well-recognized profibrotic factor in fibrosis of various organ systems. Here, we developed a novel peptide vaccine against CTGF to attenuate the development of renal fibrosis. Three inoculations with this CTGF vaccine at 2-week intervals elicited antibodies specifically binding to human full-length CTGF, and the antigen-specific serum IgG antibody titers were maintained for > 30 weeks. The efficacy of the CTGF vaccine on renal fibrosis was evaluated in adenine-induced CKD and unilateral ureteral obstruction (UUO) murine models. In adenine-induced CKD model, immunization with the CTGF vaccine attenuated renal interstitial fibrosis. Vaccinated mice showed low levels of serum creatinine and urea nitrogen and low urine albumin–creatinine ratio compared with vehicle-treated mice. In UUO model, the CTGF vaccination also suppressed the onset of renal fibrosis. In an in vitro study, CTGF vaccine-elicited IgG antibodies efficiently suppressed CTGF-induced- and transforming growth factor-β-induced α-smooth muscle actin expression in kidney fibroblasts. These results demonstrate that the CTGF vaccine is a promising strategy to attenuate the development of renal fibrosis.
Collapse
Affiliation(s)
- Takashin Nakayama
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuhiko Azegami
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Keio University Health Center, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8521, Japan.
| | - Kaori Hayashi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norifumi Yoshimoto
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ran Nakamichi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Erina Sugita
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
22
|
Shen F, Hou X, Li T, Yu J, Chen H, Liu N, Qiu A, Zhuang S. Pharmacological and Genetic Inhibition of HDAC4 Alleviates Renal Injury and Fibrosis in Mice. Front Pharmacol 2022; 13:929334. [PMID: 35847036 PMCID: PMC9277565 DOI: 10.3389/fphar.2022.929334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Histone deacetylase 4 (HDAC4) has been shown to be involved in cell proliferation, differentiation, and migration and is associated with a variety of cancers. However, the role of HDAC4 in renal fibrogenesis and its mechanisms are unclear. We assessed the role of HDAC4 and possible mechanisms of fibrosis in a murine model of kidney injury induced by unilateral ureteral obstruction (UUO) using tasquinimod, a highly selective HDAC4 inhibitor, and knockout mice with depletion of HDAC4 in renal tubular cells. UUO injury resulted in increased expression of HDAC4 and fibrotic proteins fibronectin and α-smooth muscle actin, while treatment with tasquinimod or knockout of HDAC4 significantly reduced their expression. Pharmacological and genetic inhibition of HDAC4 also decreased tubular epithelial cell arrest in the G2/M phase of the cell cycle, expression of transforming growth factor-β1 and phosphorylation of Smad3, signal transducer and activator of transcription 3, and extracellular signal-regulated kinase 1/2 in the injured kidney. Moreover, tasquinimod treatment or HDAC4 deletion inhibited UUO-induced renal tubular cell injury and apoptosis as indicated by reduced expression of neutrophil gelatinase-associated lipocalin, Bax, and inhibition of caspase-3. Finally, administration of tasquinimod or knockdown of HDAC4 prevented injury-related repression of Klotho, a renoprotective protein. Our results indicate that HDAC4 is critically involved in renal tubular injury and fibrosis and suggest that HDAC4 is a potential therapeutic target for treatment of chronic fibrotic kidney disease.
Collapse
Affiliation(s)
- Fengchen Shen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiying Hou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Yu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huizhen Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
23
|
In Vivo Inhibition of TRPC6 by SH045 Attenuates Renal Fibrosis in a New Zealand Obese (NZO) Mouse Model of Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23126870. [PMID: 35743312 PMCID: PMC9224794 DOI: 10.3390/ijms23126870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome is a significant worldwide public health challenge and is inextricably linked to adverse renal and cardiovascular outcomes. The inhibition of the transient receptor potential cation channel subfamily C member 6 (TRPC6) has been found to ameliorate renal outcomes in the unilateral ureteral obstruction (UUO) of accelerated renal fibrosis. Therefore, the pharmacological inhibition of TPRC6 could be a promising therapeutic intervention in the progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome. In the present study, we hypothesized that the novel selective TRPC6 inhibitor SH045 (larixyl N-methylcarbamate) ameliorates UUO-accelerated renal fibrosis in a New Zealand obese (NZO) mouse model, which is a polygenic model of metabolic syndrome. The in vivo inhibition of TRPC6 by SH045 markedly decreased the mRNA expression of pro-fibrotic markers (Col1α1, Col3α1, Col4α1, Acta2, Ccn2, Fn1) and chemokines (Cxcl1, Ccl5, Ccr2) in UUO kidneys of NZO mice compared to kidneys of vehicle-treated animals. Renal expressions of intercellular adhesion molecule 1 (ICAM-1) and α-smooth muscle actin (α-SMA) were diminished in SH045- versus vehicle-treated UUO mice. Furthermore, renal inflammatory cell infiltration (F4/80+ and CD4+) and tubulointerstitial fibrosis (Sirius red and fibronectin staining) were ameliorated in SH045-treated NZO mice. We conclude that the pharmacological inhibition of TRPC6 might be a promising antifibrotic therapeutic method to treat progressive tubulo-interstitial fibrosis in hypertension and metabolic syndrome.
Collapse
|
24
|
Liu Z, Wang W, Li X, Tang S, Meng D, Xia W, Wang H, Wu Y, Zhou X, Zhang J. Capsaicin ameliorates renal fibrosis by inhibiting TGF-β1-Smad2/3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154067. [PMID: 35349832 DOI: 10.1016/j.phymed.2022.154067] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND PURPOSE Chronic kidney disease (CKD), characterized by renal fibrosis, is a global refractory disease with few effective therapeutic strategies. It has been reported that capsaicin exerts many pharmacological effects including liver and cardiac fibrosis. However, whether capsaicin plays a therapeutic role in renal fibrosis remains unclear. METHODS We investigated antifibrotic effects of capsaicin in two mouse renal fibrosis models as follows: C57BL/6J mice were subjected to unilateral ureteral obstruction (UUO) and fed with an adenine-rich diet. We uncovered and verified the mechanisms of capsaicin in human proximal tubular epithelial cells (HK2). We mainly used histochemistry, immunohistochemistry and immunofluorescence staining, western blot assay, biochemical examination and other tools to examine the effects of capsaicin on renal fibrosis and the underlying mechanisms. RESULTS Capsaicin treatment significantly alleviated fibronectin and collagen depositions in the tubulointerstitium of the injured kidneys from UUO and adenine-fed mice. Meanwhile, capsaicin treatment obviously reduced α-SMA expression. Moreover, capsaicin treatment dramatically protected against the phenotypic alteration of tubular epithelial cells by increasing E-cadherin expression and decreasing vimentin expression during renal fibrosis. Mechanistically, capsaicin treatment effectively suppressed α-SMA and vimentin expressions but promoted E-cadherin expression in HK2 cells mainly through the inhibition of TGF-β1-Smad2/3 signaling. CONCLUSION Capsaicin significantly ameliorated renal fibrosis possibly by retarding the activation of myofibroblasts and protecting against the phenotypic alteration of tubular epithelial cells mainly through the inhibition of TGF-β1-Smad2/3 signaling. Thus, our findings may provide a new insight into the clinical application of capsaicin in renal fibrosis.
Collapse
Affiliation(s)
- Zhenyu Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Weili Wang
- School of Medicine, Chongqing University, Chongqing 400030, PR China; College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Xueqin Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Sha Tang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Dongwei Meng
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Wenli Xia
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Hong Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China
| | - Yuzhang Wu
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Xinyuan Zhou
- Institute of Immunology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| | - Jingbo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, PR China.
| |
Collapse
|
25
|
Zhang C, Tam TW, Chau MK, García Córdoba CA, Yung S, Chan TM. Effect of Combined Mycophenolate and Rapamycin Treatment on Kidney Fibrosis in Murine Lupus Nephritis. Front Pharmacol 2022; 13:866077. [PMID: 35571122 PMCID: PMC9095843 DOI: 10.3389/fphar.2022.866077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background: A significant proportion of lupus nephritis patients develop chronic kidney disease (CKD) and progressive kidney fibrosis, for which there is no specific treatment. We previously reported that mycophenolate or rapamycin monotherapy showed comparable efficacy in suppressing kidney fibrosis in a murine model of lupus nephritis through their direct action on mesangial cells. We extended our study to investigate the effect of combined mycophenolate and rapamycin treatment (MR) on kidney fibrosis in NZBWF1/J mice. Methods: Female NZBWF1/J mice with active nephritis were randomized to receive vehicle or treatment with mycophenolate (50 mg/kg/day) and rapamycin (1.5 mg/kg/day) (MR) for up to 12 weeks, and the effect of treatment on clinical parameters, kidney histology, and fibrotic processes was investigated. Results: Progression of nephritis in untreated mice was accompanied by mesangial proliferation, glomerulosclerosis, tubular atrophy, protein cast formation, increased mTOR and ERK phosphorylation, and induction of TGF-β1, IL-6, α-smooth muscle actin, fibronectin, and collagen expression. Combined MR treatment prolonged survival, improved kidney function, decreased anti-dsDNA antibody level, and ameliorated histopathological changes. The effect of combined MR treatment on kidney histology and function was comparable to that of mycophenolate or rapamycin monotherapy. In vitro studies in human mesangial cells showed that exogenous TGF-β1 and IL-6 both induced mTOR and ERK phosphorylation and downstream fibrotic processes. Both mycophenolic acid and rapamycin inhibited inflammatory and fibrotic processes induced by TGF-β1 or IL-6 by downregulating mTOR and ERK phosphorylation. Conclusions: Our findings indicate that combined mycophenolate and rapamycin, at reduced dose, improves kidney fibrosis in murine lupus nephritis through their distinct effect on mTOR and ERK signaling in mesangial cells.
Collapse
Affiliation(s)
- Chenzhu Zhang
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tsz Wai Tam
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mel Km Chau
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Susan Yung
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Cheng Z, Zhang Y, Wu S, Zhao R, Yu Y, Zhou Y, Zhou Z, Dong Y, Qiu A, Xu H, Liu Y, Zhang W, Tian T, Wu Q, Gu H, Chu M. Peripheral blood circular RNA hsa_circ_0058493 as a potential novel biomarker for silicosis and idiopathic pulmonary fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113451. [PMID: 35378401 DOI: 10.1016/j.ecoenv.2022.113451] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Existing studies reported that some circular RNAs (circRNAs) play vital roles in the development of pulmonary fibrosis. However, few studies explored the biomarker potential of circRNAs for pulmonary fibrosis based on population data. Therefore, we aimed to identify peripheral blood circRNAs as potential biomarkers for diagnosing silicosis and idiopathic pulmonary fibrosis (IPF). In brief, an RNA-seq screening based on 4 silicosis cases and 4 controls was initially performed. Differentially expressed circRNAs were combined with the human serum circRNA dataset to identify overlapping serum-detectable circRNAs, followed by validation using the GEO dataset (3 IPF cases and 3 controls) and subsequent qRT-PCR, including 84 additional individuals. Following the above steps, 243 differentially expressed circRNAs were identified during the screening stage, with fold changes ≥ 1.5 and P < 0.05. Of note, the human serum circRNA dataset encompassed 28 of 243 circRNAs. GEO (GSE102660) validation revealed two highly expressed circRNAs (P < 0.05) in the IPF case group. Furthermore, at the enlarged sample validation stage, hsa_circ_0058493 was highly expressed in both silicosis and IPF cases (silicosis: P = 1.16 × 10-6; IPF: P = 7.46 × 10-5). Additionally, hsa_circ_0058493 expression was significantly increased in MRC-5 cells upon TGF-β1 treatment, while hsa_circ_0058493 knockdown inhibited the expression of fibrotic molecules by affecting the epithelial-mesenchymal transition process. These shreds of evidence indicated that hsa_circ_0058493 might serve as a novel biomarker for diagnosing silicosis and IPF.
Collapse
Affiliation(s)
- Zhounan Cheng
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yingyi Zhang
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Zhao
- Department of Occupational Disease, the Occupational Disease Institute of Wuxi, Wuxi, Jiangsu, China
| | - Yuhui Yu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Zhen Zhou
- Department of Mathematics and Applied Mathematics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Dong
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Anni Qiu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Huiwen Xu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Yiran Liu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Wendi Zhang
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Tian Tian
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Hongyan Gu
- Department of Respiratory, the Sixth People's Hospital of Nantong, Nantong, Jiangsu, China.
| | - Minjie Chu
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
27
|
Dual inhibition of the MEK/ERK and PI3K/AKT pathways prevents pulmonary GVHD suppressing perivenulitis and bronchiolitis. Blood Adv 2022; 7:106-121. [PMID: 35468620 PMCID: PMC9830178 DOI: 10.1182/bloodadvances.2021006678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 01/18/2023] Open
Abstract
Patients with pulmonary graft-versus-host disease (pGVHD) have a poor prognosis after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Furthermore, pGVHD pathogenesis is not fully elucidated in humans, and currently available immunosuppressants are inadequately effective. We performed pathologic evaluation of lung specimens from 45 allo-HSCT recipients with pGVHD who underwent lung transplantation. Patient pathology was characterized by bronchiolitis and subpleural perivascular inflammation, with B-cell, monocyte, and T-cell accumulation around bronchioles. Bronchiolitis, perivascular inflammation, and peribronchial macrophage aggregation were also identified in a murine pGVHD model after transplant of bone marrow cells and splenocytes from C57BL/6 to B10.BR mice. Among mitogen-activated protein kinase kinase (MEK) inhibitors, cobimetinib, but not trametinib, improved survival rates. Cobimetinib attenuated bronchiolitis, improved airway resistance and lung compliance in the mice, and suppressed activation of B cells and tumor necrosis factor α production by monocytes in vitro; these features were not suppressed by trametinib or tacrolimus. Furthermore, cobimetinib suppressed activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling, resulting in B-cell and monocyte suppression. Dual inhibition of the MEK/extracellular signal-regulated kinase (ERK) and PI3K/AKT pathways using a combination of trametinib and the PI3K inhibitor taselisib strongly suppressed B-cell activation in vitro and improved mouse survival rates compared with vehicle or monotherapy with trametinib or taselisib. Imaging mass cytometry of human pGVHD revealed that T cells around bronchioles were positive for phosphorylated ERK, whereas B cells were positive for phosphorylated AKT. Thus, perivascular inflammation and bronchiolitis mediated by activation of the MEK/ERK and PI3K/AKT pathways are essential for pGVHD and represent a potential novel therapeutic target in humans.
Collapse
|
28
|
Sabet N, Soltani Z, Khaksari M. The effects of exercise on kidney injury: the role of SIRT1. Mol Biol Rep 2022; 49:4025-4038. [PMID: 35449317 DOI: 10.1007/s11033-022-07122-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
In patients with kidney injury, muscle mass and strength decrease with altered muscle protein synthesis and degradation along with complications such as inflammation and low physical activity. A treatment strategy to maintain muscle metabolism in kidney injury is important. One of the proposed strategies in this regard is exercise, which in addition to inducing muscle hypertrophy, reducing plasma creatinine and urea and decreasing the severity of tubal injuries, can boost immune function and has anti-inflammatory effects. One of the molecules that have been considered as a target in the treatment of many diseases is silent information regulator 1 (SIRT1). Exercise increases the expression of SIRT1 and improves its activity. Therefore, studies that examined the effect of exercise on kidney injury considering the role of SIRT1 in this effect were reviewed to determine the direction of kidney injury research in future regarding to its prevalence, especially following diabetes, and lack of definitive treatment. In this review, we found that SIRT1 can be one of renoprotective target pathways of exercise. However, further studies are needed to determine the role of SIRT1 in different kidney injuries following exercise according to the type and severity of exercise, and the type of kidney injury.
Collapse
Affiliation(s)
- Nazanin Sabet
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran. .,Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
29
|
Advancements in nanomedicines for the detection and treatment of diabetic kidney disease. BIOMATERIALS AND BIOSYSTEMS 2022; 6:100047. [PMID: 36824160 PMCID: PMC9934479 DOI: 10.1016/j.bbiosy.2022.100047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022] Open
Abstract
In the diabetic kidneys, morbidities such as accelerated ageing, hypertension and hyperglycaemia create a pro-inflammatory microenvironment characterised by extensive fibrogenesis. Radiological techniques are not yet optimised generating inconsistent and non-reproducible data. The gold standard procedure to assess renal fibrosis is kidney biopsy, followed by histopathological assessment. However, this method is risky, invasive, subjective and examines less than 0.01% of kidney tissue resulting in diagnostic errors. As such, less than 10% of patients undergo kidney biopsy, limiting the accuracy of the current diabetic kidney disease (DKD) staging method. Standard treatments suppress the renin-angiotensin system to control hypertension and use of pharmaceuticals aimed at controlling diabetes have shown promise but can cause hypoglycaemia, diuresis and malnutrition as a result of low caloric intake. New approaches to both diagnosis and treatment are required. Nanoparticles (NPs) are an attractive candidate for managing DKD due to their ability to act as theranostic tools that can carry drugs and enhance image contrast. NP-based point-of-care systems can provide physiological information previously considered unattainable and provide control over the rate and location of drug release. Here we discuss the use of nanotechnology in renal disease, its application to both the treatment and diagnosis of DKD. Finally, we propose a new method of NP-based DKD classification that overcomes the current systems limitations.
Collapse
|
30
|
Yang W, Liang C, Zhang X, Tian X, Ren C, Chen S, Wang J, Zhang J. Melamine induced changes in histopathology of the main organs and transcriptional levels of MAPK signaling genes in kidneys of female mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:585-592. [PMID: 34842327 DOI: 10.1002/tox.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Melamine is an important chemical raw material used in industries, which has potential health risks to animals and humans. Current research mainly focuses on the toxic effects of high-dose melamine ingestion. However, there are few reports on whether melamine at the current limited standard dose has adverse effects on various tissues and organs, and whether there are sensitive target genes for risk evaluation. For this, 24 female Kunming mice were fed 0, 1.8-, 3.6-, and 7.2- mg/kg/d melamine via drinking water for consecutive 28 days, respectively. The morphological changes of the ovarian, hepatic, and renal tissues were firstly observed. The results demonstrated that the histopathology of ovary, liver, and especially in kidney had been altered by melamine intake in female. And then, the transcriptional levels of MAPK signaling genes including p38, ERK1, ERK2, JNK1, and JNK2 in kidneys were investigated by real-time PCR. The data showed that ERK1 and p38 mRNAs expressions were up-regulated significantly by melamine, suggesting that ERK1 and p38 transcriptional levels in the kidney might to be considered as candidate targets for lower-dose melamine toxicity. This study not only provides potential targets for the diagnosis and prevention of melamine damage, but also helps to assess the health risks of the current minimum allowable levels of melamine in food and environment.
Collapse
Affiliation(s)
- Wei Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Xiaoyan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Xiaohui Tian
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Chenxia Ren
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Shuming Chen
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, People's Republic of China
| |
Collapse
|
31
|
Li XL, Liu J, Chen XS, Cheng LM, Liu WL, Chen XF, Li YJ, Guan YY, Zeng X, Du YH. Blockade of TMEM16A protects against renal fibrosis by reducing intracellular Cl - concentration. Br J Pharmacol 2021; 179:3043-3060. [PMID: 34961937 DOI: 10.1111/bph.15786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/27/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis is the final common outcome in most forms of CKD. However, the underlying causal mechanisms remain obscure. The present study examined whether TMEM16A, a Ca2+ -activated chloride channel, contributes to the progress of renal fibrosis. EXPERIMENTAL APPROACH Masson staining, western blot and immunohistochemistry were used to measure renal fibrosis and related proteins expression. MQAE was used to evaluate the intracellular Cl- concentration. KEY RESULTS TMEM16A expression was significantly upregulated in fibrotic kidneys of unilateral ureteral obstruction (UUO) and high-fat diet murine models, and in renal samples of IgA nephropathy patients. In vivo knockdown of TMEM16A with adenovirus harboring TMEM16A-shRNA or inhibition of TMEM16A channel activity with its specific inhibitor CaCCinh-A01 or T16Ainh-A01 effectively prevented UUO-induced renal fibrosis and decreased protein expression of fibronectin, α-SMA and collagen in the obstructed kidneys. In cultured HK2 cells, knockdown or inhibition of TMEM16A suppressed TGF-β1-induced epithelial to mesenchymal transition, reduced snail1 expression and phosphorylation of Smad2/3 and ERK1/2, whereas overexpression of TMEM16A showed the opposite effects. TGF-β1 increased [Cl- ]i in HK2 cells, which was inhibited by knockdown or inhibition of TMEM16A. Reducing [Cl- ]i by low Cl- culture medium significantly blunted TGF-β1-induced Smad2/3 phosphorylation and profibrotic factors expression. The profibrotic effects of TGF-β1 were also abrogated by the inhibitor of SGK1, a kinase whose activity was also suppressed by reducing [Cl- ]i. CONCLUSION AND IMPLICATIONS Blockade of TMEM16A prevented the progression of kidney fibrosis, likely by suppressing [Cl- ]i/SGK1/TGF-β1 signaling pathway. TMEM16A may be a potential new therapeutic target against renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Shan Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Min Cheng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei-Ling Liu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xing-Feng Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yue-Jiao Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan-Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Nakano T, Watanabe H, Imafuku T, Tokumaru K, Fujita I, Arimura N, Maeda H, Tanaka M, Matsushita K, Fukagawa M, Maruyama T. Indoxyl Sulfate Contributes to mTORC1-Induced Renal Fibrosis via The OAT/NADPH Oxidase/ROS Pathway. Toxins (Basel) 2021; 13:toxins13120909. [PMID: 34941746 PMCID: PMC8706756 DOI: 10.3390/toxins13120909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial–mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.
Collapse
Affiliation(s)
- Takehiro Nakano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
- Correspondence: ; Tel.: +81-96-371-4855
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Issei Fujita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Nanaka Arimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto 8614112, Japan; (M.T.); (K.M.)
| | - Kazutaka Matsushita
- Department of Nephrology, Akebono Clinic, Kumamoto 8614112, Japan; (M.T.); (K.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa 2591193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| |
Collapse
|
33
|
Mei J, Yang L, Wang D, Wang H. Efficacy and safety of Shenkang injection in the treatment of chronic renal failure: A protocol of a randomized controlled trial. Medicine (Baltimore) 2021; 100:e27748. [PMID: 35049168 PMCID: PMC9191390 DOI: 10.1097/md.0000000000027748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Chronic renal failure (CRF) is the final outcome of the development of multiple kidney diseases, and there is no effective method at home and abroad. Traditional Chinese medicine is found to play a major role in the treatment of the non-replacement stage of CRF. Shenkang injection can not only nourish the kidney, but also promote blood circulation and remove blood stasis, which is suitable for the treatment of CRF. This study aims to explore the efficacy and safety of Shenkang injection for CRF and provide evidence for clinical practice. METHODS This was a prospective randomized controlled trial. One hundred four patients with CRF were randomly divided into treatment groups and control groups according to 1:1, with 52 patients in each group. The control group received basic treatment of western medicine and the treatment group was given Shenkang injection intravenously on the basis of control group. Both groups were given standard treatment for 4 weeks with concurrent follow-up for 1 month. The outcome indicators included: total efficiency, symptom scores, creatinine clearance rate, serum creatinine, blood urea nitrogen, CystatinC, liver function, blood routine, urine routine, incidence of adverse reactions, etc. Data analysis was performed using SPSS 25.0 software. DISCUSSION This study will evaluate the efficacy and safety of Shenkang injection for CRF, and the results of this trial will provide clinical evidence for the treatment of CRF. TRIAL REGISTRATION OSF Registration number: DOI 10.17605/OSF.IO/K9C5T.
Collapse
|
34
|
Sannomiya Y, Kaseda S, Kamura M, Yamamoto H, Yamada H, Inamoto M, Kuwazuru J, Niino S, Shuto T, Suico MA, Kai H. The role of discoidin domain receptor 2 in the renal dysfunction of alport syndrome mouse model. Ren Fail 2021; 43:510-519. [PMID: 33706638 PMCID: PMC7971217 DOI: 10.1080/0886022x.2021.1896548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Alport syndrome (AS) is a hereditary glomerular nephritis caused by mutation in one of the type IV collagen genes α3/α4/α5 that encode the heterotrimer COL4A3/4/5. Failure to form a heterotrimer due to mutation leads to the dysfunction of the glomerular basement membrane, and end-stage renal disease. Previous reports have suggested the involvement of the receptor tyrosine kinase discoidin domain receptor (DDR) 1 in the progression of AS pathology. However, due to the similarity between DDR1 and DDR2, the role of DDR2 in AS pathology is unclear. Here, we investigated the involvement of DDR2 in AS using the X-linked AS mouse model. Mice were treated subcutaneously with saline or antisense oligonucleotide (ASO; 5 mg/kg or 15 mg/kg per week) for 8 weeks. Renal function parameters and renal histology were analyzed, and the gene expressions of inflammatory cytokines were determined in renal tissues. The expression level of DDR2 was highly elevated in kidney tissues of AS mice. Knockdown of Ddr2 using Ddr2-specific ASO decreased the Ddr2 expression. However, the DDR2 ASO treatment did not improve the proteinuria or decrease the BUN level. DDR2 ASO also did not significantly ameliorate the renal injury, inflammation and fibrosis in AS mice. These results showed that Ddr2 knockdown by ASO had no notable effect on the progression of AS indicating that DDR2 may not be critically involved in AS pathology. This finding may provide useful information and further understanding of the role of DDRs in AS.
Collapse
Affiliation(s)
- Yuya Sannomiya
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
| | | | | | | | - Jun Kuwazuru
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Saki Niino
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine Graduate School of Pharmaceutical Sciences, Kumamoto, Japan
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, Kumamoto, Japan
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
35
|
Shigematsu T, Tajima S, Fu R, Zhang M, Itoyama Y, Tsuchimoto A, Egashira N, Ieiri I. The mTOR inhibitor everolimus attenuates tacrolimus-induced renal interstitial fibrosis in rats. Life Sci 2021; 288:120150. [PMID: 34793770 DOI: 10.1016/j.lfs.2021.120150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
AIMS Tacrolimus-a widely used immunosuppressant to prevent allograft rejection after organ transplantation-is nephrotoxic, increasing the risk of kidney injury accompanied by kidney fibrosis. The mammalian target of rapamycin (mTOR) inhibitor, everolimus, is an immunosuppressant used together with tacrolimus. Although mTOR signaling inhibition has been demonstrated to exhibit antifibrotic effects, the efficacy of everolimus against tacrolimus-induced kidney fibrosis has not been explored. Therefore, we evaluated the protective effects of everolimus against tacrolimus-induced kidney fibrosis. MAIN METHODS To assess antifibrotic effect of everolimus against tacrolimus-induced kidney fibrosis, male Wistar rats were subcutaneously administered vehicle or tacrolimus (5 mg/kg per day) and/or everolimus (0.2 mg/kg per day) for 2 weeks after bilateral renal ischemia for 45 min. The antifibrotic effect of everolimus was also assessed using rat kidney fibroblast cell line (NRK-49F). KEY FINDINGS Tacrolimus administration increased predominant profibrotic cytokine transforming growth factor-β (TGF-β) and fibroblast activation marker α-smooth muscle actin (α-SMA) expression and promoted the infiltration of macrophages in the kidney cortex, resulting in renal interstitial fibrosis in rats. Tacrolimus increased serum creatinine, blood urea nitrogen, kidney injury molecule-1 (KIM-1), and kidney injuries, such as tubular dilation, vacuolization, and glomerular atrophy. Everolimus administration attenuated tacrolimus-induced kidney fibrosis and the associated abnormalities. Everolimus strongly suppressed TGF-β-induced kidney fibroblast activation and extracellular matrix protein expression by the mTOR signaling inhibition. SIGNIFICANCE We demonstrated that everolimus attenuates tacrolimus-induced renal interstitial fibrosis in rats. Owing to its protective effect against tacrolimus-induced kidney fibrosis, everolimus may be useful when used concomitantly with tacrolimus.
Collapse
Affiliation(s)
- Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan.
| | - Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuuka Itoyama
- Department of Clinical Pharmacology and Biopharmaceutics, School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Pharmacy, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
36
|
Ong CH, Tham CL, Harith HH, Firdaus N, Israf DA. TGF-β-induced fibrosis: A review on the underlying mechanism and potential therapeutic strategies. Eur J Pharmacol 2021; 911:174510. [PMID: 34560077 DOI: 10.1016/j.ejphar.2021.174510] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Transforming growth factor-beta (TGF-β) plays multiple homeostatic roles in the regulation of inflammation, proliferation, differentiation and would healing of various tissues. Many studies have demonstrated that TGF-β stimulates activation and proliferation of fibroblasts, which result in extracellular matrix deposition. Its increased expression can result in many fibrotic diseases, and the level of expression is often correlated with disease severity. On this basis, inhibition of TGF-β and its activity has great therapeutic potential for the treatment of various fibrotic diseases such as pulmonary fibrosis, renal fibrosis, systemic sclerosis and etc. By understanding the molecular mechanism of TGF-β signaling and activity, researchers were able to develop different strategies in order to modulate the activity of TGF-β. Antisense oligonucleotide was developed to target the mRNA of TGF-β to inhibit its expression. There are also neutralizing monoclonal antibodies that can target the TGF-β ligands or αvβ6 integrin to prevent binding to receptor or activation of latent TGF-β respectively. Soluble TGF-β receptors act as ligand traps that competitively bind to the TGF-β ligands. Many small molecule inhibitors have been developed to inhibit the TGF-β receptor at its cytoplasmic domain and also intracellular signaling molecules. Peptide aptamer technology has been used to target downstream TGF-β signaling. Here, we summarize the underlying mechanism of TGF-β-induced fibrosis and also review various strategies of inhibiting TGF-β in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Chun Hao Ong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Nazmi Firdaus
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, 43300, Malaysia.
| |
Collapse
|
37
|
Jiménez-Uribe AP, Gómez-Sierra T, Aparicio-Trejo OE, Orozco-Ibarra M, Pedraza-Chaverri J. Backstage players of fibrosis: NOX4, mTOR, HDAC, and S1P; companions of TGF-β. Cell Signal 2021; 87:110123. [PMID: 34438016 DOI: 10.1016/j.cellsig.2021.110123] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
The fibrotic process could be easily defined as a pathological excess of extracellular matrix deposition, leading to disruption of tissue architecture and eventually loss of function; however, this process involves a complex network of several signal transduction pathways. Virtually almost all organs could be affected by fibrosis, the most affected are the liver, lung, skin, kidney, heart, and eyes; in all of them, the transforming growth factor-beta (TGF-β) has a central role. The canonical and non-canonical signal pathways of TGF-β impact the fibrotic process at the cellular and molecular levels, inducing the epithelial-mesenchymal transition (EMT) and the induction of profibrotic gene expression with the consequent increase in proteins such as alpha-smooth actin (α-SMA), fibronectin, collagen, and other extracellular matrix proteins. Recently, it has been reported that some molecules that have not been typically associated with the fibrotic process, such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), mammalian target of rapamycin (mTOR), histone deacetylases (HDAC), and sphingosine-1 phosphate (S1P); are critical in its development. In this review, we describe and discuss the role of these new players of fibrosis and the convergence with TGF-β signaling pathways, unveiling new insights into the panorama of fibrosis that could be useful for future therapeutic targets.
Collapse
Affiliation(s)
| | - Tania Gómez-Sierra
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269 Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
38
|
Liu L, Liu F, Guan Y, Zou J, Zhang C, Xiong C, Zhao TC, Bayliss G, Li X, Zhuang S. Critical roles of SMYD2 lysine methyltransferase in mediating renal fibroblast activation and kidney fibrosis. FASEB J 2021; 35:e21715. [PMID: 34143514 DOI: 10.1096/fj.202000554rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
SET and MYND domain protein 2 (SMYD2) is a lysine methyltransferase that mediates histone H3 lysine 36 trimethylation (H3K36me3) and acts as a regulator of tumorgenesis and cystic growth. However, its role in renal fibrosis remains unknown. In this study, we found that SMYD2 was highly expressed in the murine kidney of renal fibrosis induced by unilateral ureteral obstruction, and primarily located in interstitial fibroblasts and renal tubular epithelial cells. Pharmacological inhibition of SMYD2 with AZ505, a highly selective inhibitor of SMYD2, protected against renal fibrosis and inhibited activation/proliferation of renal interstitial fibroblasts and conversion of epithelial cells to a profibrotic phenotype in this model. In cultured renal interstitial fibroblasts, treatment with AZ505 or silencing of SMYD2 by specific siRNA also inhibited serum- or TGF-β1-induced activation and proliferation of renal interstitial fibroblasts. Mechanistic studies showed that SMYD2 inhibition reduced phosphorylation of several profibrotic signaling molecules, including Smad3, extracellular signal-regulated kinase 1/2, AKT, signal transducer and activator of transcription-3 and nuclear factor-κB in both injured kidney and cultured renal fibroblasts. AZ505 was also effective in suppressing renal expression of Snail and Twist, two transcriptional factors that mediate renal partial epithelial-mesenchymal transition and fibrosis. Conversely, AZ505 treatment prevented downregulation of Smad7, a renoprotective factor in vivo and in vitro. These results indicate that SMYD2 plays a critical role in mediating conversion of epithelial cells to a profibrotic phenotype, renal fibroblast activation and renal fibrogenesis, and suggest that SMYD2 may be a potential target for the treatment of chronic fibrosis in kidney disease.
Collapse
Affiliation(s)
- Lirong Liu
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA.,Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, China.,School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, China
| | - Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingjie Guan
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Jianan Zou
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Chunyun Zhang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Chongxiang Xiong
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Ting C Zhao
- Department of Surgery, Rhode Island Hospital, Providence, RI, USA
| | - George Bayliss
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Xiaogang Li
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA.,Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Vasudevan S, Flashner-Abramson E, Alkhatib H, Roy Chowdhury S, Adejumobi IA, Vilenski D, Stefansky S, Rubinstein AM, Kravchenko-Balasha N. Overcoming resistance to BRAF V600E inhibition in melanoma by deciphering and targeting personalized protein network alterations. NPJ Precis Oncol 2021; 5:50. [PMID: 34112933 PMCID: PMC8192524 DOI: 10.1038/s41698-021-00190-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
BRAFV600E melanoma patients, despite initially responding to the clinically prescribed anti-BRAFV600E therapy, often relapse, and their tumors develop drug resistance. While it is widely accepted that these tumors are originally driven by the BRAFV600E mutation, they often eventually diverge and become supported by various signaling networks. Therefore, patient-specific altered signaling signatures should be deciphered and treated individually. In this study, we design individualized melanoma combination treatments based on personalized network alterations. Using an information-theoretic approach, we compute high-resolution patient-specific altered signaling signatures. These altered signaling signatures each consist of several co-expressed subnetworks, which should all be targeted to optimally inhibit the entire altered signaling flux. Based on these data, we design smart, personalized drug combinations, often consisting of FDA-approved drugs. We validate our approach in vitro and in vivo showing that individualized drug combinations that are rationally based on patient-specific altered signaling signatures are more efficient than the clinically used anti-BRAFV600E or BRAFV600E/MEK targeted therapy. Furthermore, these drug combinations are highly selective, as a drug combination efficient for one BRAFV600E tumor is significantly less efficient for another, and vice versa. The approach presented herein can be broadly applicable to aid clinicians to rationally design patient-specific anti-melanoma drug combinations.
Collapse
Affiliation(s)
- S Vasudevan
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - E Flashner-Abramson
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Heba Alkhatib
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - I A Adejumobi
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - D Vilenski
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Stefansky
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - A M Rubinstein
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - N Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
40
|
Dissecting the Involvement of Ras GTPases in Kidney Fibrosis. Genes (Basel) 2021; 12:genes12060800. [PMID: 34073961 PMCID: PMC8225075 DOI: 10.3390/genes12060800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Many different regulatory mechanisms of renal fibrosis are known to date, and those related to transforming growth factor-β1 (TGF-β1)-induced signaling have been studied in greater depth. However, in recent years, other signaling pathways have been identified, which contribute to the regulation of these pathological processes. Several studies by our team and others have revealed the involvement of small Ras GTPases in the regulation of the cellular processes that occur in renal fibrosis, such as the activation and proliferation of myofibroblasts or the accumulation of extracellular matrix (ECM) proteins. Intracellular signaling mediated by TGF-β1 and Ras GTPases are closely related, and this interaction also occurs during the development of renal fibrosis. In this review, we update the available in vitro and in vivo knowledge on the role of Ras and its main effectors, such as Erk and Akt, in the cellular mechanisms that occur during the regulation of kidney fibrosis (ECM synthesis, accumulation and activation of myofibroblasts, apoptosis and survival of tubular epithelial cells), as well as the therapeutic strategies for targeting the Ras pathway to intervene on the development of renal fibrosis.
Collapse
|
41
|
Small molecules against the origin and activation of myofibroblast for renal interstitial fibrosis therapy. Biomed Pharmacother 2021; 139:111386. [PMID: 34243594 DOI: 10.1016/j.biopha.2021.111386] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological response in a broad range of prevalent chronic kidney diseases and ultimately leads to renal failure and death. Although RIF causes a high morbi-mortality worldwide, effective therapeutic drugs are urgently needed. Myofibroblasts are identified as the main effector during the process of RIF. Multiple types of cells, including fibroblasts, epithelial cells, endothelial cells, macrophages and pericytes, contribute to renal myofibroblasts origin, and lots of mediators, including signaling pathways (Transforming growth factor-β1, mammalian target of rapamycin and reactive oxygen species) and epigenetic modifications (Histone acetylation, microRNA and long non-coding RNA) are participated in renal myofibroblasts activation during renal fibrogenesis, suggesting that these mediators may be the promising targets for treating RIF. In addition, many small molecules show profound therapeutic effects on RIF by suppressing the origin and activation of renal myofibroblasts. Taken together, the review focuses on the mechanisms of the origin and activation of renal myofibroblasts in RIF and the small molecules against them improving RIF, which will provide a new insight for RIF therapy.
Collapse
|
42
|
Yi L, Ai K, Li H, Qiu S, Li Y, Wang Y, Li X, Zheng P, Chen J, Wu D, Xiang X, Chai X, Yuan Y, Zhang D. CircRNA_30032 promotes renal fibrosis in UUO model mice via miRNA-96-5p/HBEGF/KRAS axis. Aging (Albany NY) 2021; 13:12780-12799. [PMID: 33973871 PMCID: PMC8148471 DOI: 10.18632/aging.202947] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the role of circular RNA_30032 (circRNA_30032) in renal fibrosis and the underlying mechanisms. The study was carried out using TGF-β1-induced BUMPT cells and unilateral ureteral obstruction (UUO)-induced mice, respectively, as in vitro and in vivo models. CircRNA_30032 expression was significantly increased by 9.15- and 16.6-fold on days 3 and 7, respectively, in the renal tissues of UUO model mice. In TGF-β1-treated BUMPT cells, circRNA_30032 expression was induced by activation of the p38 mitogen-activated protein kinase signaling pathway. Quantitative real-time PCR, western blotting and dual luciferase reporter assays showed that circRNA_30032 mediated TGF-β1-induced and UUO-induced renal fibrosis by sponging miR-96-5p and increasing the expression of profibrotic proteins, including HBEGF, KRAS, collagen I, collagen III and fibronectin. CircRNA_30032 silencing significantly reduced renal fibrosis in UUO model mice by increasing miR-96-5p levels and decreasing levels of HBEGF and KRAS. These results demonstrate that circRNA_30032 promotes renal fibrosis via the miR-96-5p/HBEGF/KRAS axis and suggest that circRNA_30032 is a potential therapeutic target for treatment of renal fibrosis.
Collapse
Affiliation(s)
- Lei Yi
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Kai Ai
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Huiling Li
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangfa Qiu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yijian Li
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiaozhou Li
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Peilin Zheng
- Department of Endocrinology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, People's Republic of China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Junxiang Chen
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dengke Wu
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xudong Xiang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yunchang Yuan
- Department of Chest Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Dongshan Zhang
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
43
|
Mechanosensitive Regulation of Fibrosis. Cells 2021; 10:cells10050994. [PMID: 33922651 PMCID: PMC8145148 DOI: 10.3390/cells10050994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in the human body experience and integrate a wide variety of environmental cues. A growing interest in tissue mechanics in the past four decades has shown that the mechanical properties of tissue drive key biological processes and facilitate disease development. However, tissue stiffness is not only a potent behavioral cue, but also a product of cellular signaling activity. This review explores both roles of tissue stiffness in the context of inflammation and fibrosis, and the important molecular players driving such processes. During inflammation, proinflammatory cytokines upregulate tissue stiffness by increasing hydrostatic pressure, ECM deposition, and ECM remodeling. As the ECM stiffens, cells involved in the immune response employ intricate molecular sensors to probe and alter their mechanical environment, thereby facilitating immune cell recruitment and potentiating the fibrotic phenotype. This powerful feedforward loop raises numerous possibilities for drug development and warrants further investigation into the mechanisms specific to different fibrotic diseases.
Collapse
|
44
|
The PAR-1 antagonist vorapaxar ameliorates kidney injury and tubulointerstitial fibrosis. Clin Sci (Lond) 2021; 134:2873-2891. [PMID: 33078834 DOI: 10.1042/cs20200923] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022]
Abstract
Protease-activated receptor (PAR)-1 has emerged as a key profibrotic player in various organs including kidney. PAR-1 activation leads to deposition of extracellular matrix (ECM) proteins in the tubulointerstitium and induction of epithelial-mesenchymal transition (EMT) during renal fibrosis. We tested the anti-fibrotic potential of vorapaxar, a clinically approved PAR-1 antagonist for cardiovascular protection, in an experimental kidney fibrosis model of unilateral ureteral obstruction (UUO) and an AKI-to-chronic kidney disease (CKD) transition model of unilateral ischemia-reperfusion injury (UIRI), and dissected the underlying renoprotective mechanisms using rat tubular epithelial cells. PAR-1 is activated mostly in the renal tubules in both the UUO and UIRI models of renal fibrosis. Vorapaxar significantly reduced kidney injury and ameliorated morphologic changes in both models. Amelioration of kidney fibrosis was evident from down-regulation of fibronectin (Fn), collagen and α-smooth muscle actin (αSMA) in the injured kidney. Mechanistically, inhibition of PAR-1 inhibited MAPK ERK1/2 and transforming growth factor-β (TGF-β)-mediated Smad signaling, and suppressed oxidative stress, overexpression of pro-inflammatory cytokines and macrophage infiltration into the kidney. These beneficial effects were recapitulated in cultured tubular epithelial cells in which vorapaxar ameliorated thrombin- and hypoxia-induced TGF-β expression and ECM accumulation. In addition, vorapaxar mitigated capillary loss and the expression of adhesion molecules on the vascular endothelium during AKI-to-CKD transition. The PAR-1 antagonist vorapaxar protects against kidney fibrosis during UUO and UIRI. Its efficacy in human CKD in addition to CV protection warrants further investigation.
Collapse
|
45
|
Song J, Gong YH, Yan X, Liu Y, Zhang M, Luo J, Jiang CM, Zhang M, Shi GP, Zhu W. Regulatory T Cells Accelerate the Repair Process of Renal Fibrosis by Regulating Mononuclear Macrophages. Am J Med Sci 2021; 361:776-785. [PMID: 33667434 DOI: 10.1016/j.amjms.2021.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/18/2020] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND We aimed to investigate the mechanisms of renal fibrosis and explore the effect of CD4+CD25+Foxp3+ regulatory T cells (Treg) on renal fibrosis after the obstruction was removed. METHODS Fifty-five C57BL/6 mice were randomly divided into three groups: the unilateral ureteral obstruction (UUO) group, the relief for unilateral ureteral obstruction (RUUO) group, and the RUUO+Treg group. Renal fibrosis indexes of RUUO mice were evaluated using hematoxylin and eosin (HE) and, Masson staining and immunohistochemistry after CD4+CD25+Treg cells were injected into the tail vein at the moment of recanalization. We detected the levels of Treg, M1, and M2 markers by flow cytometry, and the levels of transforming growth factor (TGF)-β1, interleukin (IL)-1β, IL-6 and IL-10 using ELISA. RESULTS The tubular necrosis score, AO value of α-SMA (smooth muscle actin), and collagen area on the 3rd and 14th days post RUUO were up-regulated compared with the 7th day post RUUO (P<0.05). After injection of Treg via tail vein, the tubular necrosis score, AO value of α-SMA, TGF-β1 level, and collagen area in the RUUO+Treg group on the 14th day were down-regulated compared with the RUUO group (P<0.05). Moreover, Treg could transform M1 macrophages into M2 macrophages, manifesting as up-regulated expression of CD206 compared with the RUUO group (P<0.05). Treg could also down-regulate the secretion of IL-6 and IL-1β while up-regulating the secretion of IL-10 in vitro compared with the M1 group (P<0.05). CONCLUSIONS The kidney could deteriorate into a state of injury and fibrosis after the obstruction was removed, and Treg could effectively protect the kidney function.
Collapse
Affiliation(s)
- Jie Song
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Hang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiang Yan
- Department of Urology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Ying Liu
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Mingzhuo Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Jia Luo
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Ming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Miao Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Wei Zhu
- Department of Nephrology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
46
|
Tang PCT, Chan ASW, Zhang CB, García Córdoba CA, Zhang YY, To KF, Leung KT, Lan HY, Tang PMK. TGF-β1 Signaling: Immune Dynamics of Chronic Kidney Diseases. Front Med (Lausanne) 2021; 8:628519. [PMID: 33718407 PMCID: PMC7948440 DOI: 10.3389/fmed.2021.628519] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a major cause of morbidity and mortality worldwide, imposing a great burden on the healthcare system. Regrettably, effective CKD therapeutic strategies are yet available due to their elusive pathogenic mechanisms. CKD is featured by progressive inflammation and fibrosis associated with immune cell dysfunction, leading to the formation of an inflammatory microenvironment, which ultimately exacerbating renal fibrosis. Transforming growth factor β1 (TGF-β1) is an indispensable immunoregulator promoting CKD progression by controlling the activation, proliferation, and apoptosis of immunocytes via both canonical and non-canonical pathways. More importantly, recent studies have uncovered a new mechanism of TGF-β1 for de novo generation of myofibroblast via macrophage-myofibroblast transition (MMT). This review will update the versatile roles of TGF-β signaling in the dynamics of renal immunity, a better understanding may facilitate the discovery of novel therapeutic strategies against CKD.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Cai-Bin Zhang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cristina Alexandra García Córdoba
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ka-Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
47
|
Tian G, Zhou J, Quan Y, Kong Q, Wu W, Liu X. P2Y1 Receptor Agonist Attenuates Cardiac Fibroblasts Activation Triggered by TGF-β1. Front Pharmacol 2021; 12:627773. [PMID: 33679406 PMCID: PMC7926204 DOI: 10.3389/fphar.2021.627773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiac fibroblasts (CFs) activation is a hallmark feature of cardiac fibrosis caused by cardiac remodeling. The purinergic signaling molecules have been proven to participate in the activation of CFs. In this study, we explored the expression pattern of P2Y receptor family in the cardiac fibrosis mice model induced by the transverse aortic constriction (TAC) operation and in the activation of CFs triggered by transforming growth factor β1 (TGF-β1) stimulation. We then investigated the role of P2Y1receptor (P2Y1R) in activated CFs. The results showed that among P2Y family members, only P2Y1R was downregulated in the heart tissues of TAC mice. Consistent with our in vivo results, the level of P2Y1R was decreased in the activated CFs, when CFs were treated with TGF-β1. Silencing P2Y1R expression with siP2Y1R accelerated the effects of TGF-β1 on CFs activation. Moreover, the P2Y1R selective antagonist BPTU increased the levels of mRNA and protein of profibrogenic markers, such as connective tissue growth factor (CTGF), periostin (POSTN). periostin (POSTN), and α-smooth muscle actin(α-SMA). Further, MRS2365, the agonist of P2Y1R, ameliorated the activation of CFs and activated the p38 MAPK and ERK signaling pathways. In conclusion , our findings revealed that upregulating of P2Y1R may attenuate the abnormal activation of CFs via the p38 MAPK and ERK signaling pathway.
Collapse
Affiliation(s)
- Geer Tian
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Quan
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Xie T, Xia Z, Wang W, Zhou X, Xu C. BMPER Ameliorates Renal Fibrosis by Inhibiting Tubular Dedifferentiation and Fibroblast Activation. Front Cell Dev Biol 2021; 9:608396. [PMID: 33644047 PMCID: PMC7905093 DOI: 10.3389/fcell.2021.608396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Tubulointerstitial fibrosis is both a pathological manifestation of chronic kidney disease and a driving force for the progression of kidney disease. A previous study has shown that bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) is involved in lung fibrogenesis. However, the role of BMPER in renal fibrosis remains unknown. In the present study, the expression of BMPER was examined by real-time PCR, Western blot and immunohistochemical staining. The in vitro effects of BMPER on tubular dedifferentiation and fibroblast activation were analyzed in cultured HK-2 and NRK-49F cells. The in vivo effects of BMPER were dissected in unilateral ureteral obstruction (UUO) mice by delivery of BMPER gene via systemic administration of plasmid vector. We reported that the expression of BMPER decreased in the kidneys of UUO mice and HK-2 cells. TGF-β1 increased inhibitor of differentiation-1 (Id-1) and induced epithelial mesenchymal transition in HK-2 cells, and knockdown of BMPER aggravated Id-1 up-regulation, E-cadherin loss, and tubular dedifferentiation. On the contrary, exogenous BMPER inhibited Id-1 up-regulation, prevented E-cadherin loss and tubular dedifferentiation after TGF-β1 exposure. In addition, exogenous BMPER suppressed fibroblast activation by hindering Erk1/2 phosphorylation. Knockdown of low-density lipoprotein receptor-related protein 1 abolished the inhibitory effect of BMPER on Erk1/2 phosphorylation and fibroblast activation. Moreover, delivery of BMPER gene improved renal tubular damage and interstitial fibrosis in UUO mice. Therefore, BMPER inhibits TGF-β1-induced tubular dedifferentiation and fibroblast activation and may hold therapeutic potential for tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Ting Xie
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Zunen Xia
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute of Urology, Anhui Medical University, Hefei, China
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changgeng Xu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
49
|
Ho YS, Lau CF, Lee K, Tan JY, Lee J, Yung S, Chang RCC. Impact of unilateral ureteral obstruction on cognition and neurodegeneration. Brain Res Bull 2021; 169:112-127. [PMID: 33422661 DOI: 10.1016/j.brainresbull.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/23/2020] [Accepted: 01/02/2021] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cognitive impairment is a common complication in chronic kidney disease (CKD) patients. Currently, limited types of animal models are available for studying cognitive impairment in CKD. We used unilateral ureteral obstruction (UUO) in mice as an animal model to study the cognitive changes and related pathology under prolonged renal impairment METHODS: UUO was performed in 8-week-old male C57BL/6 N mice with double-ligation of their left ureter. A sham group was subjected to the same experimental procedure without ureteral obstruction. Cognitive and behavioral tests were performed to examine potential changes in cognition and behavior at 2, 4 and 12 weeks after surgery. Sera were collected, and kidneys and brains were harvested for the detection of systemic inflammation markers and neurodegenerative changes. RESULTS These mice displayed weak performance in the novel object recognition test, Y-maze test, and puzzle box test compared to the sham group. Reductions in synaptic proteins such as synapsin-1, synaptophysin, synaptotagmin, PSD95, NMDAR2B and AMPAR were confirmed by western blot analysis. Histological examination revealed elevated levels of Nrf2 and 8-hydroxyguanosine, and hyperphosphorylation of tau in the hippocampus. UUO mice also had increased levels of C-reactive protein (CRP) and TNF-α. CONCLUSIONS We characterized the cognitive and neuropathological changes in UUO mice. The results show that this mouse model can be used to further study cognitive changes related to chronic renal impairment.
Collapse
Affiliation(s)
- Yuen-Shan Ho
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| | - Chi-Fai Lau
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Krit Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Jia-Yan Tan
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Joyce Lee
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Susan Yung
- Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
50
|
Wang Y, Wang Y, Yang M, Ma X. Implication of cellular senescence in the progression of chronic kidney disease and the treatment potencies. Biomed Pharmacother 2021; 135:111191. [PMID: 33418306 DOI: 10.1016/j.biopha.2020.111191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing major public health problem worldwide. And CKD shares numerous phenotypic similarities with kidney as well as systemic ageing. Cellular senescence is mainly characterized by a stable cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Herein, the regulations and the internal mechanisms of cellular senescence will be discussed. Meanwhile, efforts are made to give a comprehensive overview of the recent advances of the implication of cellular senescence in CKD. To date, numerous studies have focused on the effects of ageing risk factors in kidney and thereby trying to interrupt the kidney ageing processes with senolytics. Interestingly, some of them showed enormous clinical application potentials. Therefore, senotherapeutics can be applied as novel potential strategies for the treatment of CKD.
Collapse
Affiliation(s)
- Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Wang
- Department of Endocrinology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ming Yang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|