1
|
Aydin Y, Yilmaz B, Dikbasan YU, Orta-Yilmaz B. Assessment of the oxidative damage and apoptotic pathway related to furan cytotoxicity in cultured mouse Leydig cells. Toxicol Res (Camb) 2023; 12:400-407. [PMID: 37397919 PMCID: PMC10311140 DOI: 10.1093/toxres/tfad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 07/04/2023] Open
Abstract
Research on heat-induced food contamination is being given more attention as a result of the health risks that have been publicly revealed in recent years. Furan is known as a colorless, combustible, heterocyclic aromatic organic molecule and is formed when food products are processed and stored. It has been established that furan, which is inevitably ingested, has a deleterious impact on human health and causes toxicity. Furan is known to have adverse effects on the immune system, neurological system, skin, liver, kidney, and fat tissue. Infertility caused by furan is a result of its damaging effects on several tissues and organs as well as the reproductive system. Although studies on the adverse effects of furan on the male reproductive system have been performed, there is no study revealing apoptosis in Leydig cells at the gene level. In this study, TM3 mouse Leydig cells were exposed to 250- and 2,500-μM concentrations of furan for 24 h. The findings demonstrated that furan decreased cell viability and antioxidant enzyme activity while increasing lipid peroxidation, reactive oxygen species, and apoptotic cell rates. Furan also increased the expression of the important apoptotic genes Casp3 and Trp53 while decreasing the expression of another pro-apoptotic gene, Bcl2, and antioxidant genes Sod1, Gpx1, and Cat. In conclusion, these results imply that furan may cause loss of cell function in mouse Leydig cells responsible for testosterone biosynthesis by impairing the efficiency of the antioxidant system, possibly by inducing cytotoxicity, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yasemin Aydin
- Corresponding author: Yasemin Aydin, Istanbul University, Science Faculty, Department of Biology, 34134 Vezneciler, Istanbul, Turkey, Tel: +905306425388; Fax: +902125190834;
| | - Buse Yilmaz
- Institute of Graduate Studies in Science and Engineering, Department of Biology, Istanbul University, Istanbul 34116, Turkey
| | - Yasemin U Dikbasan
- Institute of Graduate Studies in Science and Engineering, Department of Biology, Istanbul University, Istanbul 34116, Turkey
| | - Banu Orta-Yilmaz
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34116, Turkey
| |
Collapse
|
2
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
3
|
Sasson A, Kristoferson E, Batista R, McClung JA, Abraham NG, Peterson SJ. The pivotal role of heme Oxygenase-1 in reversing the pathophysiology and systemic complications of NAFLD. Arch Biochem Biophys 2020; 697:108679. [PMID: 33248947 DOI: 10.1016/j.abb.2020.108679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.
Collapse
Affiliation(s)
- Ariel Sasson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Eva Kristoferson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Rogerio Batista
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA.
| |
Collapse
|
4
|
Xie ZJ, Novograd J, Itzkowitz Y, Sher A, Buchen YD, Sodhi K, Abraham NG, Shapiro JI. The Pivotal Role of Adipocyte-Na K peptide in Reversing Systemic Inflammation in Obesity and COVID-19 in the Development of Heart Failure. Antioxidants (Basel) 2020; 9:E1129. [PMID: 33202598 PMCID: PMC7697697 DOI: 10.3390/antiox9111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023] Open
Abstract
This review summarizes data from several laboratories that have demonstrated a role of the Na/K-ATPase, specifically its α1 subunit, in the generation of reactive oxygen species (ROS) via the negative regulator of Src. Together with Src and other signaling proteins, the Na/K-ATPase forms an oxidant amplification loop (NKAL), amplifies ROS, and participates in cytokines storm in obesity. The development of a peptide fragment of the α1 subunit, NaKtide, has been shown to negatively regulate Src. Several groups showed that the systemic administration of the cell permeable modification of NaKtide (pNaKtide) or its selective delivery to fat tissue-adipocyte specific expression of NaKtide-ameliorate the systemic elevation of inflammatory cytokines seen in chronic obesity. Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2), the RNA Coronavirus responsible for the COVID-19 global pandemic, invades cells via the angiotensin converting enzyme 2 (ACE-2) receptor (ACE2R) that is appended in inflamed fat tissue and exacerbates the formation of the cytokines storm. Both obesity and heart and renal failure are well known risks for adverse outcomes in patients infected with COVID-19. White adipocytes express ACE-2 receptors in high concentration, especially in obese patients. Once the virus invades the white adipocyte cell, it creates a COVID19-porphyrin complex which degrades and produces free porphyrin and iron and increases ROS. The increased formation of ROS and activation of the NKAL results in a further potentiated formation of ROS production, and ultimately, adipocyte generation of more inflammatory mediators, leading to systemic cytokines storm and heart failure. Moreover, chronic obesity also results in the reduction of antioxidant genes such as heme oxygenase-1 (HO-1), increasing adipocyte susceptibility to ROS and cytokines. It is the systemic inflammation and cytokine storm which is responsible for many of the adverse outcomes seen with COVID-19 infections in obese subjects, leading to heart failure and death. This review will also describe the potential antioxidant drugs and role of NaKtide and their demonstrated antioxidant effect used as a major strategy for improving obesity and epicardial fat mediated heart failure in the context of the COVID pandemic.
Collapse
Affiliation(s)
- Zi-jian Xie
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Joel Novograd
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yaakov Itzkowitz
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Ariel Sher
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Yosef D. Buchen
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| | - Nader G. Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA; (J.N.); (Y.I.); (A.S.); (Y.D.B.)
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (Z.-j.X.); (K.S.)
| |
Collapse
|
5
|
Fakhouri EW, Peterson SJ, Kothari J, Alex R, Shapiro JI, Abraham NG. Genetic Polymorphisms Complicate COVID-19 Therapy: Pivotal Role of HO-1 in Cytokine Storm. Antioxidants (Basel) 2020; 9:E636. [PMID: 32708430 PMCID: PMC7402116 DOI: 10.3390/antiox9070636] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Coronaviruses are very large RNA viruses that originate in animal reservoirs and include severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS) and other inconsequential coronaviruses from human reservoirs like the common cold. SARS-CoV-2, the virus that causes COVID-19 and is believed to originate from bat, quickly spread into a global pandemic. This RNA virus has a special affinity for porphyrins. It invades the cell at the angiotensin converting enzyme-2 (ACE-2) receptor and binds to hemoproteins, resulting in a severe systemic inflammatory response, particularly in high ACE-2 organs like the lungs, heart, and kidney, resulting in systemic disease. The inflammatory response manifested by increased cytokine levels and reactive oxygen species results in inhibition of heme oxygenase (HO-1), with a subsequent loss of cytoprotection. This has been seen in other viral illness like human immunodeficiency virus (HIV), Ebola, and SARS/MERS. There are a number of medications that have been tried with some showing early clinical promise. This illness disproportionately affects patients with obesity, a chronic inflammatory disease with a baseline excess of cytokines. The majority of the medications used in the treatment of COVID-19 are metabolized by cytochrome P450 (CYP) enzymes, primarily CYP2D6. This is further complicated by genetic polymorphisms of CYP2D6, HO-1, ACE, and ACE-2. There is a potential role for HO-1 upregulation to treat/prevent cytokine storm. Current therapy must focus on antivirals and heme oxygenase upregulation. Vaccine development will be the only magic bullet.
Collapse
Affiliation(s)
- Eddie W. Fakhouri
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Stephen J. Peterson
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, USA; (E.W.F.); (J.K.)
| | - Ragin Alex
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
| | - Nader G. Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA;
- Department of Medicine, New York Medical College, Valhalla, New York, NY 10595, USA
| |
Collapse
|
6
|
Peterson SJ, Dave N, Kothari J. The Effects of Heme Oxygenase Upregulation on Obesity and the Metabolic Syndrome. Antioxid Redox Signal 2020; 32:1061-1070. [PMID: 31880952 DOI: 10.1089/ars.2019.7954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Obesity is a chronic condition that is characterized by inflammation and oxidative stress with consequent cardiovascular complications of hypertension, dyslipidemia, and vascular dysfunction. Obesity-induced metabolic syndrome remains an epidemic of global proportions. Recent Advances: Gene targeting of the endothelium with a retrovirus using an endothelium-specific promoter vascular endothelium cadherin (VECAD)-HO-1 offers a potential long-term solution to adiposity by targeting the endothelium. This has resulted in improvements of both vascular function and adiposity attenuation. Critical Issues: Heme oxygenase plays an ever-increasing role in the understanding of human biology in the complex conditions of obesity and the metabolic syndrome. The heme oxygenase 1 (HO-1) system creates biliverdin/bilirubin, which functions as an antioxidant, and carbon monoxide, which has antiapoptotic properties. Future Directions: Upregulation of HO-1 has been shown to improve adiposity as well as vascular function in both animal and human studies.
Collapse
Affiliation(s)
- Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, New York.,New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Niel Dave
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| | - Janish Kothari
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York
| |
Collapse
|
7
|
Peterson SJ, Shapiro JI, Thompson E, Singh S, Liu L, Weingarten JA, O’Hanlon K, Bialczak A, Bhesania SR, Abraham NG. Oxidized HDL, Adipokines, and Endothelial Dysfunction: A Potential Biomarker Profile for Cardiovascular Risk in Women with Obesity. Obesity (Silver Spring) 2019; 27:87-93. [PMID: 30569635 PMCID: PMC6309990 DOI: 10.1002/oby.22354] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE High BMI predicts adverse cardiovascular outcomes and positively correlates with increased levels of adipokines. The relationship among BMI, IL-6, TNFα, adiponectin, and oxidized high-density lipoprotein (Ox-HDL) with circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) has not been well studied. Elevated CEC levels have been described in both humans and mice with obesity and diabetes. Ox-HDL has been shown to be a potent driver of adipogenesis in vivo and in vitro. In this study, elevated BMI was examined in 2 groups of women studied in Brooklyn, New York, and Huntington, West Virginia, respectively. METHODS Twenty-six females with obesity and five lean controls without overt cardiovascular disease were enrolled, 13 from Huntington and 13 from Brooklyn. Cytokine levels, EPCs, and CECs were determined. RESULTS Females with obesity had elevated levels of leptin, IL-6, and Ox-HDL, increased CEC levels, and decreased EPC and adiponectin levels (all P < 0.01). The Ox-HDL levels were higher in women from Brooklyn versus Huntington (P < 0.01), possibly from higher TNFα levels in Brooklyn or higher adiponectin levels in Huntington. Seventy-five percent of the variance in Ox-HDL levels could be predicted in this population (P < 0.01). CONCLUSIONS This study reveals a unique inflammatory biomarker profile in females with obesity.
Collapse
Affiliation(s)
- Stephen J. Peterson
- Weill Cornell Medical College, NY, NY 10021
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215
- Correspondence: Stephen J. Peterson, MD, ()
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701
| | - Ellen Thompson
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701
| | - Shailendra Singh
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Lu Liu
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Jeremy A. Weingarten
- Weill Cornell Medical College, NY, NY 10021
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215
| | - Kathleen O’Hanlon
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701
| | - Angelica Bialczak
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215
| | | | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595
| |
Collapse
|