1
|
Tsuchida T, Kubota S, Kamiuezono S, Takasugi N, Ito A, Kumagai Y, Uehara T. Epigenetic Regulation of CXC Chemokine Expression by Environmental Electrophiles Through DNA Methyltransferase Inhibition. Int J Mol Sci 2024; 25:11592. [PMID: 39519144 PMCID: PMC11546359 DOI: 10.3390/ijms252111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitously distributed environmental electrophiles covalently modify DNA and proteins, potentially leading to adverse health effects. However, the impacts of specific electrophiles on target proteins and their physiological roles remain largely unknown. In the present study, we focused on DNA methylation, which regulates gene expression and physiological responses. A total of 45 environmental electrophiles were screened for inhibitory effects on the activity of DNA methyltransferase 3B (DNMT3B), a key enzyme in DNA methylation, and four compounds were identified. We focused on 1,2-naphthoquinone (1,2-NQ), an air pollutant whose toxicity has been reported previously. Interestingly, we found that 1,2-NQ modified multiple lysine and histidine residues in DNMT3B, one of which was near the active site in DNMT3B. It was found that 1,2-NQ altered gene expression and evoked inflammatory responses in lung adenocarcinoma cell lines. Furthermore, we found that 1,2-NQ upregulated CXCL8 expression through DNA demethylation of the distal enhancer and promoted cancer cell growth. Our study reveals novel mechanisms of epigenetic regulation by environmental electrophiles through the inhibition of DNMT3B activity and suggests their physiological impact.
Collapse
Affiliation(s)
- Tomoki Tsuchida
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; (T.T.); (S.K.); (N.T.)
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; (T.T.); (S.K.); (N.T.)
| | - Shizuki Kamiuezono
- Department of Medicinal Pharmacology, Faculty of Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan;
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; (T.T.); (S.K.); (N.T.)
| | - Akihiro Ito
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Yoshito Kumagai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan; (T.T.); (S.K.); (N.T.)
| |
Collapse
|
2
|
Oliveira Ferreira CKD, Campolim CM, Zordão OP, Simabuco FM, Anaruma CP, Pereira RM, Boico VF, Salvino LG, Costa MM, Ruiz NQ, de Moura LP, Saad MJA, Costa SKP, Kim YB, Prada PO. Subchronic exposure to 1,2-naphthoquinone induces adipose tissue inflammation and changes the energy homeostasis of mice, partially due to TNFR1 and TLR4. Toxicol Rep 2023; 11:10-22. [PMID: 37383489 PMCID: PMC10293596 DOI: 10.1016/j.toxrep.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.
Collapse
Affiliation(s)
| | - Clara Machado Campolim
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Olívia Pizetta Zordão
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | | | - Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | | | | | | | - Maíra Maftoum Costa
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | | | - Leandro Pereira de Moura
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Oliveira Prada
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
3
|
Presence of TRPA1 Modifies CD4+/CD8+ T Lymphocyte Ratio and Activation. Pharmaceuticals (Basel) 2022; 15:ph15010057. [PMID: 35056114 PMCID: PMC8781558 DOI: 10.3390/ph15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/10/2022] Open
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) has been reported to influence neuroinflammation and lymphocyte function. We analysed the immune phenotype and activation characteristics of TRPA1-deficient mice (knockout—KO) generated by targeted deletion of the pore-loop domain of the ion channel. We compared TRPA1 mRNA and protein expression in monocyte and lymphocyte subpopulations isolated from primary and secondary lymphatic organs of wild type (WT) and KO mice. qRT-PCR and flow cytometric studies indicated a higher level of TRPA1 in monocytes than in lymphocytes, but both were orders of magnitude lower than in sensory neurons. We found lower CD4+/CD8+ thymocyte ratios, diminished CD4/CD8 rates, and B cell numbers in the KO mice. Early activation marker CD69 was lower in CD4+ T cells of KO, while the level of CD8+/CD25+ cells was higher. In vitro TcR-mediated activation did not result in significant differences in CD69 level between WT and KO splenocytes, but lower cytokine (IL-1β, IL-6, TNF-α, IL-17A, IL-22, and RANTES) secretion was observed in KO splenocytes. Basal intracellular Ca2+ level and TcR-induced Ca2+ signal in T lymphocytes did not differ significantly, but interestingly, imiquimod-induced Ca2+ level in KO thymocytes was higher. Our results support the role of TRPA1 in the regulation of activation, cytokine production, and T and B lymphocytes composition in mice.
Collapse
|
4
|
Abstract
1,2-Naphthoquinone, a secondary metabolite of naphthalene, is an environmental pollutant found in diesel exhaust particles that displays cytotoxic and genotoxic properties. Because many quinones have been shown to act as topoisomerase II poisons, the effects of this compound on DNA cleavage mediated by human topoisomerase IIα and IIβ were examined. The compound increased the levels of double-stranded DNA breaks generated by both enzyme isoforms and did so better than a series of naphthoquinone derivatives. Furthermore, 1,2-naphthoquinone was a more efficacious poison against topoisomerase IIα than IIβ. Topoisomerase II poisons can be classified as interfacial (which interact noncovalently at the enzyme-DNA interface and increase DNA cleavage by blocking ligation) or covalent (which adduct the protein and increase DNA cleavage by closing the N-terminal gate of the enzyme). Therefore, experiments were performed to determine the mechanistic basis for the actions of 1,2-naphthoquinone. In contrast to results with etoposide (an interfacial poison), the activity of 1,2-naphthoquinone against topoisomerase IIα was abrogated in the presence of sulfhydryl and reducing agents. Moreover, the compound inhibited cleavage activity when incubated with the enzyme prior to the addition of DNA and induced virtually no cleavage with the catalytic core of the enzyme. It also induced stable covalent topoisomerase IIα-DNA cleavage complexes and was a partial inhibitor of DNA ligation. Findings were also consistent with 1,2-naphthoquinone acting as a covalent poison of topoisomerase IIβ; however, mechanistic studies with this isoform were less conclusive. Whereas the activity of 1,2-naphthoquinone was blocked in the presence of a sulfhydryl reagent, it was much less sensitive to the presence of a reducing agent. Furthermore, the reduced form of 1,2-naphthoquinone, 1,2-dihydroxynaphthalene, displayed high activity against the β isoform. Taken together, results suggest that 1,2-naphthoquinone increases topoisomerase II-mediated double-stranded DNA scission (at least in part) by acting as a covalent poison of the human type II enzymes.
Collapse
Affiliation(s)
- Jessica A. Collins
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| |
Collapse
|