1
|
Morton-Hayward A, Flannery S, Vendrell I, Fischer R. Deep palaeoproteomic profiling of archaeological human brains. PLoS One 2025; 20:e0324246. [PMID: 40435004 PMCID: PMC12118856 DOI: 10.1371/journal.pone.0324246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Palaeoproteomics leverages the persistence, diversity, and biological import of ancient proteins to explore the past, and answer fundamental questions about phylogeny, environment, diet, and disease. These insights are largely gleaned from hard tissues like bone and teeth, as well-established protocols exist for extracting ancient proteins from mineralised tissues. No such method, however, exists for the soft tissues, which are underexplored in palaeoproteomics given permission for destructive analysis routinely depends on a proven methodology. Considering less than one-tenth of all human proteins are expressed in bone, compared to three-quarters in the internal organs, the amount of biological information presently inaccessible is substantial. We address this omission with an optimised LC-FAIMS-MS/MS workflow yielding the largest, most diverse palaeoproteome yet described. Using archaeological human brains, we test ten protocols with varied chemistries and find that urea lysis effectively disrupts preserved membrane regions to expose low-abundant, intracellular analytes. Further, we show that ion mobility spectrometry improves unique protein identification by as much as 40%, and represents a means of "cleaning" dirty archaeological samples. Our methodology will be useful for improving protein recovery from a range of ancient tissues and depositional environments.
Collapse
Affiliation(s)
- Alexandra Morton-Hayward
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Flannery
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Iolanda Vendrell
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Fan W, Dai X, Ye Y, Yang H, Sun Y, Wu J, Fu Y, Shi K, Chen X, Liao L. Estimation of postmortem interval under different ambient temperatures based on multi-organ metabolomics and machine learning algorithm. Int J Legal Med 2025:10.1007/s00414-025-03523-0. [PMID: 40423808 DOI: 10.1007/s00414-025-03523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/11/2025] [Indexed: 05/28/2025]
Abstract
In forensic practice, the estimation of postmortem interval has been a persistent challenge. Recently, there has been an increasing utilization of metabolomics techniques combined with machine learning methods for postmortem interval estimation. When examining metabolite changes from a global perspective, rather than relying on specific substance changes, estimating postmortem interval through machine learning methods is more precise and entails fewer errors. Prior studies have investigated the use of metabolomics to estimate postmortem interval. Nevertheless, most of them focused on analyzing the metabolomic properties of a single organ or biofluid concerning a specific temperature. In this study, we employ the GC-MS platform to identify metabolites in the liver, kidney, and quadriceps femoris muscle of mechanically suffocated Sprague Dawley rats at various temperatures. Multivariable statistical analysis was used to determine differential compounds from the original data. The machine learning method was used to establish models for the estimation of postmortem interval under various ambient temperatures. As indicated by the results, liver, kidney, and quadriceps femoris muscle samples were screened for 24, 18, and 19 differential metabolites respectively, associated with postmortem interval under various ambient temperatures. Based on the metabolites listed above, the support vector regression models were established by utilizing single-organ and multi-organ metabolomics data for postmortem interval estimation. The multi-organ model showed a higher estimation accuracy. Also, a comprehensive generalization postmortem interval estimation model was established with multi-organ metabolomics data and temperature variables, which can be used for the postmortem interval estimation within the temperature range of 5-35℃. These results demonstrate that a multi-organ model utilizing metabolomics techniques can accurately estimate the postmortem interval under various ambient temperatures. Meanwhile, this research establishes a strong foundation for the practical application of metabolomics in postmortem interval estimation.
Collapse
Affiliation(s)
- Weihao Fan
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yi Ye
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hongkun Yang
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yiming Sun
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jingting Wu
- Department of Forensic Pathology and Forensic Clinical Science, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yingqiang Fu
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Kaiting Shi
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiaogang Chen
- Department of Forensic Pathology and Forensic Clinical Science, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Linchuan Liao
- Department of Analytical Toxicology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
3
|
de Miguel R, Vallejo R, Kegler K, Kreutzer R, Mayoral FJ, Okazaki Y, Ortega P, Polledo L, Razinger T, Richard OK, Sanchez R, Warfving N, Domènech A, Weber K. Onset and progression of postmortem histological changes in the kidneys of RccHan TM:WIST rats. Front Vet Sci 2025; 12:1578579. [PMID: 40417372 PMCID: PMC12100932 DOI: 10.3389/fvets.2025.1578579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Death initiates a cascade of physiological and biochemical alterations in organs and tissues, resulting in microscopic changes that challenge the histopathological evaluation. The aim of this study was to compile and illustrate the microscopic changes in the kidneys of rats subjected to delayed postmortem fixation. It also scrutinizes the influence of exsanguination, cooling methods and air circulation on the initiation and progression of these alterations. Methods Twenty-four Wistar Han outbred rats (RccHanTM:WIST) were sacrificed and stored either at room temperature (18-22°C; half of the carcasses were exsanguinated after sacrifice) or under refrigeration (2-4°C). Necropsies were conducted at different time points postmortem (i.e., 0.5, 1, 4, 8, 12, 24, 36, 48 h for carcasses stored at room temperature, and 7 and 14 days for carcasses stored under refrigeration). Kidney sections underwent simultaneous digital evaluation by 14 pathologists until a consensus was reached on the key findings, terminology, and intensity levels. Results When stored at room temperature, the first changes were seen after 4 h, and involved distal convoluted tubules and inner stripe of the outer medulla. After 8 h, all structures except glomeruli were affected. Alterations were similar in quality and intensity after 36 h as after 48 h. Exsanguination delayed the onset of postmortem changes and slightly decreased their overall severity at any given timepoint. The nature of the changes under refrigeration was like those alterations noted in animals stored at room temperature. The intensity of postmortem changes observed after 7 and 14 days under refrigeration was similar to those recorded after 48 h at room temperature. No clear differences were observed between animals stored in a closed plastic bag and animals stored in a perforated cardboard box to allow air circulation. Conclusion This work elucidates the onset and progression of postmortem changes in the kidneys of Wistar Han rats, offering insights to accurately differentiate them from real changes and enhance histopathological evaluation.
Collapse
|
4
|
Bolcato V, Poloni TE, Basile G, Davin A, Ferrari RR, Negro G, Ceretti A, Guaita A, Tronconi LP. Brain donation rules in Italy and worldwide: overview of a cutting-edge topic for human brain research. Neurol Sci 2025:10.1007/s10072-025-08214-7. [PMID: 40327175 DOI: 10.1007/s10072-025-08214-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Neuropathological examination of the brain and its biochemical analyses are fundamental to neuroscience studies and public health decisions, but are dependent on the effectiveness of regulations and operational protocols. The article discusses opportunities and limits of Italian regulation on body donation in relation to the specific requirements of neuropathology and brain sciences, in comparison with the regulations of other countries. Some crucial issues emerge, widely shared in the various regulatory contexts. The main aspect is the willingness to donate, consciously expressed by the subject by signing an informed consent or through the formulation of advanced directives. The donation of a single organ, the brain in particular, does not necessarily imply the donation of the entire body, which should be considered separately. In the specific case of the brain, particular attention is given to reducing the post-mortem interval, in order to obtain tissues suitable for research. Consequently, the centres that deal with the brain and brain banking must have experience and expertise in handling nervous tissue, and do not necessarily have to deal with the management of the entire body. These aspects, still little addressed in Italy, are the basis to develop an effective brain banking activity, which can only develop by integrating post-mortem body donation with specific rules for brain banking without which Italian neuroscience will be penalised in the coming years.
Collapse
Affiliation(s)
- Vittorio Bolcato
- Astolfi Associates Legal Firm, Milan & Maria Beatrice Hospital, GVM Care and Research, Florence, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Abbiategrasso, MI, Italy.
- Department of Rehabilitation, ASP Golgi Redaelli, Abbiategrasso, MI, Italy.
| | - Giuseppe Basile
- Department of Biomedical Sciences and Public Health, University "Politecnica Delle Marche" of Ancona, Ancona, AN, Italy
| | - Annalisa Davin
- Golgi Cenci Foundation, Laboratory of Neurobiology and Neurogenetics, Abbiategrasso, MI, Italy
| | - Riccardo Rocco Ferrari
- Golgi Cenci Foundation, Laboratory of Neurobiology and Neurogenetics, Abbiategrasso, MI, Italy
| | - Giulia Negro
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Abbiategrasso, MI, Italy
- Department of Rehabilitation, ASP Golgi Redaelli, Abbiategrasso, MI, Italy
| | - Arcangelo Ceretti
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Abbiategrasso, MI, Italy
- Department of Rehabilitation, ASP Golgi Redaelli, Abbiategrasso, MI, Italy
| | - Antonio Guaita
- Golgi Cenci Foundation, Laboratory of Neurobiology and Neurogenetics, Abbiategrasso, MI, Italy
| | - Livio Pietro Tronconi
- Department of Life and Human Sciences, European University of Rome, Rome, Italy
- Scientific Directorate, GVM Care and Research, Maria Cecilia Hospital, Cotignola, RA, Italy
| |
Collapse
|
5
|
Oost W, Meilof JF, Baron W. Multiple sclerosis: what have we learned and can we still learn from electron microscopy. Cell Mol Life Sci 2025; 82:172. [PMID: 40266347 PMCID: PMC12018678 DOI: 10.1007/s00018-025-05690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease marked by the formation of demyelinated lesions in the central nervous system. MS lesions can undergo remyelination, temporarily alleviating symptoms, but as the disease advances, remyelination becomes less effective. Beyond lesions, normal-appearing brain tissue exhibits subtle alterations, potentially indicating a broader, diffuse pathology and/or increased susceptibility to lesion formation. The pathology of MS varies between grey and white matter lesions and their normal-appearing regions, which most likely relates to their distinct cellular composition. Despite insights gained from MRI studies, serum and blood analyses, and post-mortem tissue examination, the molecular mechanisms driving MS lesion formation and persistent demyelination remain poorly understood. Exploring less conventional methods, such as electron microscopy (EM), may provide valuable new insights. EM offers detailed, nanometre-scale structural analysis that may enhance findings from immunohistochemistry and 'omics' approaches on MS brain tissue. Although earlier EM studies from before the 1990's provided some foundational data, advancements in EM technology now enable more comprehensive and detailed structural analysis. In this review we outline the pathogenesis of MS, summarize current knowledge of its ultrastructural features, and highlight how cutting-edge EM techniques could uncover new insights into pathological processes, including lesion formation, remyelination failure and diffuse pathology, which may aid therapeutic development.
Collapse
Affiliation(s)
- Wendy Oost
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- MS Center Noord Nederland, Groningen, The Netherlands
- Department of Neurology, Martini Hospital, Groningen, The Netherlands
| | - Wia Baron
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- MS Center Noord Nederland, Groningen, The Netherlands.
| |
Collapse
|
6
|
Chopra S, Worhunsky PD, Naganawa M, Zhang XH, Segal A, Orchard E, Cropley V, Wood S, Angarita GA, Cosgrove K, Matuskey D, Nabulsi NB, Huang Y, Carson RE, Esterlis I, Skosnik PD, D’Souza DC, Holmes AJ, Radhakrishnan R. Network-based Molecular Constraints on in vivo Synaptic Density Alterations in Schizophrenia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.22.25324465. [PMID: 40166544 PMCID: PMC11957185 DOI: 10.1101/2025.03.22.25324465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Converging neuroimaging, genetic, and post-mortem evidence show a fundamental role of synaptic deficits in schizophrenia pathogenesis. However, the underlying molecular and cellular mechanisms that drive the onset and progression of synaptic pathology remain to be established. Here, we used synaptic density positron emission tomography (PET) imaging using the [11C]UCB-J radiotracer to reveal a prominent widespread pattern (p FWE < 0.05) of lower synaptic density in individuals with schizophrenia (n=29), compared to a large sample of healthy controls (n=93). We found that the spatial pattern of lower synaptic density in schizophrenia is spatially aligned (r cca = 0.67; p < 0.001) with higher normative distributions of GABAA/BZ, 5HT1B, 5HT2A, and 5HT6, and lower levels of CB1 and 5HT1A. Competing neighborhood deformation network models revealed that regional synaptic pathology strongly correlated with estimates predicted using a model constrained by both interregional structural connectivity and molecular similarity (.42 < r < .61; p FWE < 0.05). These data suggest that synaptic pathology in schizophrenia is jointly constrained by both global axonal connectivity and local molecular vulnerability. Simulation-based network diffusion models were used to identify regions that may represent the initial sources of pathology, nominating left prefrontal areas (p FWE < 0.05) as potential foci from which synaptic pathology initiates and propagates to molecularly similar areas. Overall, our findings provide in vivo evidence for widespread deficit in synaptic density in schizophrenia that is jointly constrained by axonal connectivity and molecular similarity between regions, and that synaptic deficits spread from initial source regions to axonally connected and molecularly similar territories.
Collapse
Affiliation(s)
- Sidhant Chopra
- Department of Psychology, Yale University, New Haven, CT, USA
- Orygen, Parkville, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Ashlea Segal
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Edwina Orchard
- Department of Psychology, Yale University, New Haven, CT, USA
- Ann S. Bowers Women’s Brain Health Initiative, University of California Santa Barbara, CA, USA
| | - Vanessa Cropley
- Orygen, Parkville, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen Wood
- Orygen, Parkville, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- School of Psychology, University of Birmingham, UK
| | | | - Kelly Cosgrove
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - David Matuskey
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Nabeel B. Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | | | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Rajiv Radhakrishnan
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Schepanski S, Ngoumou GB, Buss C, Seifert G. Assessing in-vitro models for microglial development and fetal programming: a critical review. Front Immunol 2025; 16:1538920. [PMID: 39944696 PMCID: PMC11814449 DOI: 10.3389/fimmu.2025.1538920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/08/2025] [Indexed: 05/09/2025] Open
Abstract
This review evaluates in-vitro models for studying how maternal influences during pregnancy impact the development of offspring microglia, the immune cells of the central nervous system. The models examined include primary microglia cultures, microglia cell lines, iPSC-derived microglia, PBMC-induced microglia-like cells, 3D brain organoids derived from iPSCs, and Hofbauer cells. Each model is assessed for its ability to replicate the in-vivo environment of the developing brain, with a focus on their strengths, limitations, and practical challenges. Key factors such as scalability, genetic and epigenetic fidelity, and physiological relevance are highlighted. Microglia cell lines are highly scalable but lack genetic and epigenetic fidelity. iPSC-derived microglia provide moderate physiological relevance and patient-specific genetic insights but face operational and epigenetic challenges inherent to reprogramming. 3D brain organoids, derived from iPSCs, offer an advanced platform for studying complex neurodevelopmental processes but require extensive resources and technical expertise. Hofbauer cells, which are fetal macrophages located in the placenta and share a common developmental origin with microglia, are uniquely exposed to prenatal maternal factors and, depending on fetal barrier maturation, exhibit variable epigenetic fidelity. This makes them particularly useful for exploring the impact of maternal influences on fetal programming of microglial development. The review concludes that no single model comprehensively captures all aspects of maternal influences on microglial development, but it offers guidance on selecting the most appropriate model based on specific research objectives and experimental constraints.
Collapse
Affiliation(s)
- Steven Schepanski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| | - Gonza B. Ngoumou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Medical Psychology, Berlin, Germany
- University of California, Irvine, Development, Health and Disease Research Program, Irvine, CA, United States
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Seifert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Competence Center for Traditional and Integrative Medicine (CCCTIM), Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatrics, Division of Oncology and Hematology, Berlin, Germany
| |
Collapse
|
8
|
Garrood M, Thorn EL, Goldstein A, Sowa A, Janssen W, Wilson A, López CS, Shankar R, Stempinski ES, Farrell K, Crary JF, McKenzie AT. Preservation of cellular structure via immersion fixation in brain banking. FREE NEUROPATHOLOGY 2025; 6:4. [PMID: 39911954 PMCID: PMC11795511 DOI: 10.17879/freeneuropathology-2025-6104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 02/07/2025]
Abstract
Immersing the brain in a solution containing formaldehyde is a commonly used method for preserving the structure of human brain tissue in brain banking. However, there are questions about the quality of preservation using this method, as formaldehyde takes a relatively long period of time to penetrate a large organ such as the human brain. As a result, there is a critical need to determine whether immersion fixation is an adequate initial preservation method. To address this, we present exploratory histologic findings from our brain bank following the immersion fixation of hemi-sectioned brain specimens under refrigeration. Using light microscopy, we found that there was no significant change in the size of pericellular or perivascular rarefaction areas based on the postmortem interval (PMI) or on the progression from the outer (frontal cortex) to the inner (striatum) brain regions. Additionally, we did not identify any significant number of ghost cells - a state of late-stage cellular necrosis - in the light micrographs analyzed. Using transmission electron microscopy of tissue from the frontal cortex, we found that synapses could still be visualized, but there was vacuolization and variable degrees of myelin disbanding identified. Using serial section transmission electron microscopy, we found that identified synapses could be traced from one section to the next. Using serial block face scanning electron microscopy, we also found that myelinated axons on 2D images can be traced with high fidelity from one image to the next, even at PMIs of up to 27 hours. Collectively, our data corroborate previous findings that immersion fixation is effective for prevention of cellular necrosis and for visualizing many ultrastructural features in at least the surface areas of the brain. However, how structural preservation quality should best be assessed in brain banking is an open question that depends on the intended research applications.
Collapse
Affiliation(s)
| | - Emma L. Thorn
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, New York, USA
| | - Adam Goldstein
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, New York, USA
| | - Allison Sowa
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William Janssen
- Microscopy and Advanced Bioimaging Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alyssa Wilson
- Departments of Neurology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia S. López
- Multiscale Microscopy Core, Oregon Health and Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Raakhee Shankar
- Multiscale Microscopy Core, Oregon Health and Science University, Portland, Oregon, USA
| | - Erin S. Stempinski
- Multiscale Microscopy Core, Oregon Health and Science University, Portland, Oregon, USA
| | - Kurt Farrell
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, New York, USA
| | - John F. Crary
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, New York, USA
| | | |
Collapse
|
9
|
Parisi F, Degl’Innocenti S, Aytaş Ç, Pirone A, Cantile C. Morphological and Immunohistochemical Changes in Progressive Postmortem Autolysis of the Murine Brain. Animals (Basel) 2024; 14:3676. [PMID: 39765581 PMCID: PMC11672774 DOI: 10.3390/ani14243676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
In this time series study, the temporal sequences of postmortem changes in brains kept at different temperatures were investigated in different areas of mouse brains. Fixation of tissues kept at different storage temperatures (4 °C, 22 °C, 37 °C) was delayed for four time points (24, 120, 168, 336 h). Histological and immunohistochemical investigations were carried out to determine how postmortem autolysis may affect the cellular morphology and the expression of neural cell epitopes. Results showed that the autolytic changes started earlier in brains at 22 °C and 37 °C and in the grey matter compared to the white matter, with the cerebellum and hippocampus showing the earliest postmortem changes. The cellular antigens were differently affected by the autolytic process overtime: NeuN and Olig2 immunoreactivity was gradually lost at the nuclear site and diffused into the cytoplasm; increased background staining was observed with SMI-32; GFAP showed an increase in immunolabeling, whereas 2F11 immunoreactivity decreased. This study suggests that the morphological analysis and immunohistochemical investigation of the brain tissue could be satisfactorily applied to forensic cases, providing useful data for the estimation of the postmortem interval.
Collapse
Affiliation(s)
- Francesca Parisi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (Ç.A.); (A.P.)
| | - Sara Degl’Innocenti
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Çağla Aytaş
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (Ç.A.); (A.P.)
| | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (Ç.A.); (A.P.)
| | - Carlo Cantile
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.P.); (Ç.A.); (A.P.)
| |
Collapse
|
10
|
Ma W, Frigon EM, Maranzano J, Zeighami Y, Dadar M. Differential effects of prolonged post-fixation on immunohistochemical and histochemical staining for postmortem human brains. Front Neuroanat 2024; 18:1477973. [PMID: 39611118 PMCID: PMC11602276 DOI: 10.3389/fnana.2024.1477973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose Immunohistochemical (IHC) and histochemical (HC) staining techniques are widely used on human brains that are post-fixed in formalin and stored in brain banks worldwide for varying durations, from months to decades. Understanding the effects of prolonged post-fixation, postmortem interval (PMI), and age on these staining procedures is important for accurately interpreting their outcomes, thereby improving the diagnosis and research of brain disorders afflicting millions of people worldwide. Methods In this study, we conducted both IHC and HC staining on the prefrontal cortex of postmortem human brains post-fixed for 1, 5, 10, 15, and 20 years. For IHC staining, we used two antibodies for each marker: the neuron marker neuronal nuclear antigen (NeuN), the astrocyte marker glial fibrillary acidic protein (GFAP), and the microglia marker ionized calcium-binding adaptor molecule 1 (Iba1). For HC staining, we conducted hematoxylin and eosin Y (H&E), cresyl violet (CV), and Luxol fast blue (LFB) stains to examine neuropils, neurons, and myelin, respectively. Results We observed that the intensity of NeuN, Iba1, CV, or LFB staining was negatively correlated with post-fixation durations. Conversely, we detected a positive correlation between the intensity of GFAP and H&E staining and post-fixation durations. Moreover, there was no correlation between the intensity of NeuN, GFAP, Iba1, H&E, CV, and LFB staining and PMI. Additionally, no correlation was found between these staining intensities and age, except for the intensity of GFAP immunostained by one antiserum, which was negatively correlated with age. Conclusion Taken together, these findings suggest that prolonged post-fixation has both positive and negative effects, while age and PMI exert limited influence on these IHC and HC parameters. Therefore, it is essential to consider these differential changes when interpreting results derived from tissues with extended post-fixation durations. Furthermore, if feasible, we recommend conducting IHC and HC staining on human brains with the same post-fixation time spans and using the most optimal antibodies to mitigate the impact on subsequent analyses.
Collapse
Affiliation(s)
- Weiya Ma
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Eve-Marie Frigon
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
| | - Josefina Maranzano
- Department of Anatomy, University of Quebec in Trois-Rivieres, Trois-Rivieres, QC, Canada
- Department of Neurology and Neurosurgery, McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yashar Zeighami
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Mahsa Dadar
- Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
McKenzie AT, Zeleznikow-Johnston A, Sparks JS, Nnadi O, Smart J, Wiley K, Cerullo MA, de Wolf A, Minerva F, Risco R, Church GM, de Magalhães JP, Kendziorra EF. Structural brain preservation: a potential bridge to future medical technologies. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1400615. [PMID: 39315362 PMCID: PMC11416988 DOI: 10.3389/fmedt.2024.1400615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
When faced with the prospect of death, some people would prefer a form of long-term preservation that may allow them to be restored to healthy life in the future, if technology ever develops to the point that this is feasible and humane. Some believe that we may have the capacity to perform this type of experimental preservation today-although it has never been proven-using contemporary methods to preserve the structure of the brain. The idea is that the morphomolecular organization of the brain encodes the information required for psychological properties such as personality and long-term memories. If these structures in the brain can be maintained intact over time, this could theoretically provide a bridge to access restorative technologies in the future. To consider this hypothesis, we first describe possible metrics that can be used to assess structural brain preservation quality. We next explore several possible methods to preserve structural information in the brain, including the traditional cryonics method of cryopreservation, as well as aldehyde-stabilized cryopreservation and fluid preservation. We focus in-depth on fluid preservation, which relies on aldehyde fixation to induce chemical gel formation in a wide set of biomolecules and appears to be a cost-effective method. We describe two theoretical recovery technologies, alongside several of the ethical and legal complexities of brain preservation, all of which will require a prudent approach. We believe contemporary structural brain preservation methods have a non-negligible chance of allowing successful restoration in the future and that this deserves serious research efforts by the scientific community.
Collapse
Affiliation(s)
| | - Ariel Zeleznikow-Johnston
- School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | | | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, VA, United States
| | - John Smart
- Brain Preservation Foundation, Ashburn, VA, United States
| | - Keith Wiley
- Brain Preservation Foundation, Ashburn, VA, United States
| | | | | | | | - Ramón Risco
- Escuela Superior de Ingeniería, Universidad de Sevilla & National Accelerators Center, CNA-CSIC, Seville, Spain
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - João Pedro de Magalhães
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Oxford Uehiro Centre for Practical Ethics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
12
|
Weber K, Domènech A, Kegler K, Kreutzer R, Mayoral FJ, Okazaki Y, Ortega P, Polledo L, Razinger T, Richard OK, Sanchez R, Warfving N, Vallejo R, de Miguel R. Onset and progression of postmortem histological changes in the central nervous system of RccHan ™: WIST rats. Front Vet Sci 2024; 11:1378609. [PMID: 38835889 PMCID: PMC11149423 DOI: 10.3389/fvets.2024.1378609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 06/06/2024] Open
Abstract
Death initiates a cascade of physiological and biochemical alterations in organs and tissues, resulting in microscopic changes that challenge the histopathological evaluation. Moreover, the brain is particularly susceptible to artifacts owing to its unique composition and its location within the cranial vault. The aim of this study was to compile and illustrate the microscopic changes in the central nervous system (CNS) of rats subjected to delayed postmortem fixation. It also scrutinizes the influence of exsanguination and cooling methods on the initiation and progression of these alterations. Twenty-four Wistar Han outbred rats (RccHan™: WIST) were sacrificed and stored either at room temperature (18-22°C) or under refrigeration (2-4°C). Necropsies were conducted at different time points postmortem (i.e., 0.5 h, 1 h, 4 h, 8 h, 12 h, 24 h, 36 h, 48 h, 7 days and 14 days). Brain sections underwent simultaneous digital evaluation by 14 pathologists until a consensus was reached on terminology, key findings, and intensity levels. Microscopic observations varied among cell types. Glial cells were similarly affected throughout the CNS and showed pericellular halo, chromatin condensation and nuclear shrinkage. Neurons showed two types of postmortem changes as most of them showed progressive shrinkage, cytoplasmic dissolution and karyorrhexis whereas others acquired a dark-neuron-like appearance. Neuronal changes showed marked differences among neuroanatomical locations. Additional postmortem changes encompassed: granulation and microcavitation in neuropil and white matter; retraction spaces; detachment of ependyma, choroid plexus, and leptomeninges. Severity of findings after 48 h at room temperature was higher than after seven days under refrigeration and similar to or slightly lower than after 14 days under refrigeration. No clear differences were observed related to the sex or weight of the animals or their exsanguination status. This work elucidates the onset and progression of autolytic changes in the brains of Wistar Han rats, offering insights to accurately identify and enhance the histopathological evaluation.
Collapse
|
13
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
14
|
McKenzie AT, Thorn EL, Nnadi O, Wróbel B, Kendziorra E, Farrell K, Crary JF. Cryopreservation of brain cell structure: a review. FREE NEUROPATHOLOGY 2024; 5:35. [PMID: 39844781 PMCID: PMC11753176 DOI: 10.17879/freeneuropathology-2024-5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/19/2024] [Indexed: 01/24/2025]
Abstract
Cryopreservation, the preservation of tissues at subzero temperatures, is a mainstay of brain banking that allows for the storage of brain tissue without the use of chemical fixatives. This is particularly important for molecular studies that are incompatible with tissue fixation. However, brain tissue is vulnerable to various forms of damage during the cryopreservation process, in particular due to the phase transition of water from a liquid to a solid state with the formation of ice crystals, which can disrupt cellular morphology. There is a critical need to characterize the effects of cryopreservation on brain cell structure at the microscopic level. In this review, we conducted a comprehensive literature search, identifying 97 studies that yielded 146 distinct observations of the effects of cryopreservation on neurohistology. We classified the reviewed studies into three main categories: cryofixation, freezing, and cryopreservation with cryoprotectants. Cryofixation techniques enable vitrification and excellent ultrastructural preservation of thin tissue samples but are limited in terms of the depth of tissue that can be preserved without ice artifacts. Freezing methods, particularly when applied to brain slices, can achieve rapid cooling rates that result in minimal ice artifacts detectable by light microscopy. Cryoprotectant-based approaches have the potential to reduce ice damage and achieve vitrification. For thin tissue samples, immersion in cryoprotectants has been found to be effective for structural preservation. However, for larger samples or the entire brain, perfusion of cryoprotectants is necessary to perform rapid distribution, and this has a more limited evidence base. In conclusion, while current cryopreservation methods can provide sufficient quality for some downstream applications, there is a need for improved techniques that enable the cryopreservation of larger brain tissue samples while maintaining excellent structural preservation.
Collapse
Affiliation(s)
| | - Emma L. Thorn
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, Virginia, USA
| | - Borys Wróbel
- European Institute for Brain Research, Amstelveen, The Netherlands
- BioPreservation Institute, Vancouver, Washington, USA
| | - Emil Kendziorra
- European Biostasis Foundation, Riehen, Canton of Basel-Stadt, Switzerland
| | - Kurt Farrell
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F. Crary
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
McKenzie AT, Nnadi O, Slagell KD, Thorn EL, Farrell K, Crary JF. Fluid preservation in brain banking: a review. FREE NEUROPATHOLOGY 2024; 5:10. [PMID: 38690035 PMCID: PMC11058410 DOI: 10.17879/freeneuropathology-2024-5373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Fluid preservation is nearly universally used in brain banking to store fixed tissue specimens for future research applications. However, the effects of long-term immersion on neural circuitry and biomolecules are not well characterized. As a result, there is a need to synthesize studies investigating fluid preservation of brain tissue. We searched PubMed and other databases to identify studies measuring the effects of fluid preservation in nervous system tissue. We categorized studies based on the fluid preservative used: formaldehyde solutions, buffer solutions, alcohol solutions, storage after tissue clearing, and cryoprotectant solutions. We identified 91 studies containing 197 independent observations of the effects of long-term storage on cellular morphology. Most studies did not report any significant alterations due to long-term storage. When present, the most frequent alteration was decreased antigenicity, commonly attributed to progressive crosslinking by aldehydes that renders biomolecules increasingly inaccessible over time. To build a mechanistic understanding, we discuss biochemical aspects of long-term fluid preservation. A subset of lipids appears to be chemical altered or extracted over time due to incomplete retention in the crosslinked gel. Alternative storage fluids mitigate the problem of antigen masking but have not been extensively characterized and may have other downsides. We also compare fluid preservation to cryopreservation, paraffin embedding, and resin embedding. Overall, existing evidence suggests that fluid preservation provides maintenance of neural architecture for decades, including precise structural details. However, to avoid the well-established problem of overfixation caused by storage in high concentration formaldehyde solutions, fluid preservation procedures can use an initial fixation step followed by an alternative long-term storage fluid. Further research is warranted on optimizing protocols and characterizing the generalizability of the storage artifacts that have been identified.
Collapse
Affiliation(s)
| | - Oge Nnadi
- Brain Preservation Foundation, Ashburn, Virginia, USA
| | - Kat D. Slagell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma L. Thorn
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F. Crary
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research Core and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Dundar B, Agac B, Alzayadneh E, Tashjian R, Conway KS. The presence of shrunken neurons with pyknotic nuclei in the dentate nucleus is a common postmortem change associated with autolysis of the cerebellar granular cell layer. FREE NEUROPATHOLOGY 2024; 5:13. [PMID: 38803422 PMCID: PMC11129276 DOI: 10.17879/freeneuropathology-2024-5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Bilge Dundar
- Mayo Clinic, Department of Pathology, Rochester, MN, USA
| | - Busranur Agac
- Washington University in St. Louis, Department of Neurology, St. Louis, MO, USA
| | - Eyas Alzayadneh
- University of Iowa, Department of Pathology, Iowa City, IA, USA
| | - Randy Tashjian
- University of Michigan, Department of Pathology, Ann Arbor, MI, USA
| | - Kyle S. Conway
- University of Michigan, Department of Pathology, Ann Arbor, MI, USA
| |
Collapse
|