1
|
Kong X, Yu J, Zhu Z, Wang C, Zhang R, Qi J, Wang Y, Wang X, Pan S, Liu L, Feng R. Causal associations of histidine and 12 site-specific cancers: a bidirectional Mendelian randomization study. Mol Genet Genomics 2023; 298:1331-1341. [PMID: 37498357 DOI: 10.1007/s00438-023-02057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
An increasing number of studies indicate that cancer patients' histidine (HIS) circulating levels have changed. However, the causality between HIS and cancer is still not well established. Thus, to ascertain the causal link between HIS and cancers, we performed a bidirectional Mendelian randomization (MR) analysis. Summary-level data are derived from publicly available genome-wide association studies (GWAS). The causal effects were mainly estimated using the inverse-variance weighted method (IVW). The weighted-median (WM) method and MR-Egger regression were conducted as sensitivity analyses. In the forward-MR, we found malignant neoplasm of respiratory system and intrathoracic organs (OR: 1.020; 95% CI: 1.006-1.035; pIVW = 0.007) genetically associated with circulating HIS. And there was no significant genetic correlation between HIS and another 11 site-specific cancers using IVW method. In the reversed-MR, we did not observe the causal relationship between HIS and 12 site-specific cancers. Our findings help clarify that HIS, as a biomarker for malignant neoplasms of respiratory system and intrathoracic organs, is causal rather than a secondary biomarker of the cancerous progression. The mechanism between histidine and cancer progression deserves further investigation.
Collapse
Affiliation(s)
- Xiangju Kong
- Department of Gynaecology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Jiaying Yu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Zhuolin Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Cheng Wang
- Department of Environmental Hygiene, Public Health College, Harbin Medical University, Harbin, People's Republic of China
| | - Runan Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Jiayue Qi
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Yiran Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Xiaoxin Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Sijia Pan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China
| | - Liyan Liu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China.
| | - Rennan Feng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Nan Gang District, 157 Baojian Road, Harbin, 150086, People's Republic of China.
| |
Collapse
|
2
|
Holeček M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020; 12:nu12030848. [PMID: 32235743 PMCID: PMC7146355 DOI: 10.3390/nu12030848] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
L-histidine (HIS) is an essential amino acid with unique roles in proton buffering, metal ion chelation, scavenging of reactive oxygen and nitrogen species, erythropoiesis, and the histaminergic system. Several HIS-rich proteins (e.g., haemoproteins, HIS-rich glycoproteins, histatins, HIS-rich calcium-binding protein, and filaggrin), HIS-containing dipeptides (particularly carnosine), and methyl- and sulphur-containing derivatives of HIS (3-methylhistidine, 1-methylhistidine, and ergothioneine) have specific functions. The unique chemical properties and physiological functions are the basis of the theoretical rationale to suggest HIS supplementation in a wide range of conditions. Several decades of experience have confirmed the effectiveness of HIS as a component of solutions used for organ preservation and myocardial protection in cardiac surgery. Further studies are needed to elucidate the effects of HIS supplementation on neurological disorders, atopic dermatitis, metabolic syndrome, diabetes, uraemic anaemia, ulcers, inflammatory bowel diseases, malignancies, and muscle performance during strenuous exercise. Signs of toxicity, mutagenic activity, and allergic reactions or peptic ulcers have not been reported, although HIS is a histamine precursor. Of concern should be findings of hepatic enlargement and increases in ammonia and glutamine and of decrease in branched-chain amino acids (valine, leucine, and isoleucine) in blood plasma indicating that HIS supplementation is inappropriate in patients with liver disease.
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 38 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Oppermann H, Birkemeyer C, Meixensberger J, Gaunitz F. Non-enzymatic reaction of carnosine and glyceraldehyde-3-phosphate accompanies metabolic changes of the pentose phosphate pathway. Cell Prolif 2020; 53:e12702. [PMID: 31628715 PMCID: PMC7046307 DOI: 10.1111/cpr.12702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/14/2019] [Accepted: 09/09/2019] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES Carnosine (β-alanyl-l-histidine) is a naturally occurring dipeptide that selectively inhibits cancer cell growth, possibly by influencing glucose metabolism. As its precise mode of action and its primary targets are unknown, we analysed carnosine's effect on metabolites and pathways in glioblastoma cells. MATERIALS AND METHODS Glioblastoma cells, U87, T98G and LN229, were treated with carnosine, and metabolites were analysed by gas chromatography coupled with mass spectrometry. Furthermore, mitochondrial ATP production was determined by extracellular flux analysis and reaction products of carnosine were investigated using mass spectrometry. RESULTS Carnosine decreased the intracellular abundance of several metabolites indicating a reduced activity of the pentose phosphate pathway, the malate-aspartate shuttle and the glycerol phosphate shuttle. Mitochondrial respiration was reduced in U87 and T98G but not in LN229 cells, independent of whether glucose or pyruvate was used as substrate. Finally, we demonstrate non-enzymatic reaction of carnosine with dihydroxyacetone phosphate and glyceraldehyde-3-phosphate. However, glycolytic flux from glucose to l-lactate appeared not to be affected by the reaction of carnosine with the metabolites. CONCLUSIONS Carnosine reacts non-enzymatically with glycolytic intermediates reducing the activity of the pentose phosphate pathway which is required for cell proliferation. Although the activity of the malate-aspartate and the glycerol phosphate shuttle appear to be affected, reduced mitochondrial ATP production under the influence of the dipeptide is cell-specific and appears to be independent of the effect on the shuttles.
Collapse
Affiliation(s)
- Henry Oppermann
- Klinik und Poliklinik für NeurochirurgieUniversitätsklinikum Leipzig AöRLeipzigGermany
| | | | - Jürgen Meixensberger
- Klinik und Poliklinik für NeurochirurgieUniversitätsklinikum Leipzig AöRLeipzigGermany
| | - Frank Gaunitz
- Klinik und Poliklinik für NeurochirurgieUniversitätsklinikum Leipzig AöRLeipzigGermany
| |
Collapse
|
4
|
Ajmal M, Yunus U, Graham RM, Leblanc RM. Design, Synthesis, and Targeted Delivery of Fluorescent 1,2,4-Triazole-Peptide Conjugates to Pediatric Brain Tumor Cells. ACS OMEGA 2019; 4:22280-22291. [PMID: 31909311 PMCID: PMC6941177 DOI: 10.1021/acsomega.9b01903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Most of the chemotherapeutics and drug-delivery models pose serious health problems and several undesirable side effects due to nonspecificity, lack of proper targeting system, and their large sizes. The rational design and synthesis of target-specific chemotherapeutics are highly important. This research work is focused on the rational design, synthesis, and anticancer studies of fluorescent 1,2,4-triazole-peptide conjugates for the development of target-specific anticancer drugs. Three novel 1,2,4-triazole derivatives: 4-(4-fluorobenzylidenamino)-3-hydrazino-5-mercapto-1,2,4-triazole (4FBAHMT, 2a), 4-(3,4,5-trimethoxybenzylidenamino)-3-hydrazino-5-mercapto-1,2,4-triazole (TMOBAHMT, 2b), and 4-(4-benzyloxy-2-methyloxbenzylidenamino)-3-hydrazino-5-mercapto-1,2,4-triazole (4BO2MOBAHMT, 2c) were synthesized after screening through molecular docking procedures. The docking studies were performed between ligand molecules and αvβ6 integrin protein. Fluorescent carbon nanoparticles (CNPs, 3) were conjugated with 1,2,4-triazole derivatives (2a-c) and l-carnosine (LC) dipeptide to get their corresponding conjugates (4a-c). The title double conjugates were characterized by spectroscopic (UV/vis spectroscopy, fluorescence spectroscopy, and FTIR spectroscopy) and microscopic (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy) techniques. In vitro efficacy of fluorescent 1,2,4-triazole-peptide conjugates was investigated against two pediatric brain tumor cell lines (CHLA-200 & SJGBM2) and human embryonic kidney cell line (HEK293 as a control) by employing cell proliferation assay/MTS assay and fluorescence microscopy. 1,2,4-Triazole derivatives and their conjugates showed potent and selective anticancer activity against CHLA-200 and SJGBM2 cell lines. Cell proliferation assay and fluorescence microscopy results revealed that conjugates were more highly selective and cytotoxic than control drug temozolomide (TM) against both cell lines. CNPs are highly biocompatible and the quantum-sized conjugates were nontoxic for normal embryonic kidney cell line (HEK 293). The experimental results of MTS bioactivity assay and fluorescence microscopy were in close agreement with the theoretical results of molecular docking studies.
Collapse
Affiliation(s)
- Muhammad Ajmal
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Uzma Yunus
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
| | - Regina M. Graham
- Department
of Neurological Surgery, Miller School of
Medicine, University of Miami, Miami, Florida 33136, United States
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
5
|
Ybarra N, Seuntjens J. Radio-selective effects of a natural occurring muscle-derived dipeptide in A549 and normal cell lines. Sci Rep 2019; 9:11513. [PMID: 31395939 PMCID: PMC6687720 DOI: 10.1038/s41598-019-47944-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/25/2019] [Indexed: 01/08/2023] Open
Abstract
Radiotherapy (RT) causes morbidity and long-term side effects. A challenge in RT is to maximize cancer cells killing while minimizing damage to normal tissue. The ideal radio-protector selectively improves survival and limits damage to normal tissues while reducing survival of cancer cells. Muscle-derived dipeptide, L-carnosine (CAR) is a potent antioxidant, with radio-protective, but also anticancer properties, affecting the cell cycle of cancer cells. We tested CAR effects in lung cancer cells, differentiated and undifferentiated normal cells. We hypothesized that CAR antioxidant properties will confer protection to the two normal cell lines against RT, while preventing lung cancer cell proliferation, and that CAR may act as a radiosensitizer of lung cancer cells due to its effects on cell-cycle progression of cancer cells. Under the experimental conditions reported here, we found that CAR increased radio-sensitivity of lung (A549) cancer cells by increasing the percentage of cells in G2/M (radiosensitive) phase of cell cycle, it negatively affected their bioenergetics, therefore reduced their viability, and DNA-double strand break repair capacity. CAR had either no effect or reduced RT-induced damage in normal cells, depending on the cell type. CAR is a versatile natural occurring compound, that could improve RT-induced lung cancer cells killing, while reducing the damage to normal differentiated and undifferentiated cells.
Collapse
Affiliation(s)
- Norma Ybarra
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada.
| | - Jan Seuntjens
- Cancer Research Program, Research Institute McGill University Health Center, Medical Physics Unit, Gerald Bronfman Department of Oncology, Montreal, H4A 3J1, Canada
| |
Collapse
|
6
|
Ansari FA, Khan AA, Mahmood R. Protective effect of carnosine and N-acetylcysteine against sodium nitrite-induced oxidative stress and DNA damage in rat intestine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19380-19392. [PMID: 29728968 DOI: 10.1007/s11356-018-2133-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
The widespread use of sodium nitrite (NaNO2) as food preservative, rampant use of nitrogenous fertilizers for agricultural practices, and improper disposal of nitrogenous wastes have drastically increased human exposure to high nitrite levels causing various health disorders and death. In the present study, the protective effect of carnosine and N-acetylcysteine (NAC) against NaNO2-induced intestinal toxicity in rats was investigated. Animals were given a single acute oral dose of NaNO2 at 60 mg/kg body weight with or without prior administration of either carnosine at 100 mg/kg body weight/day for 7 days or NAC at 100 mg/kg body weight/day for 5 days. Rats were killed after 24 h, and intestinal preparations were used for the evaluation of biochemical alterations and histological abrasions. Administration of NaNO2 alone decreased the activities of intestinal brush border membrane and metabolic enzymes and significantly weakened the anti-oxidant defense system. DNA damage was also evident as observed by increased DNA-protein crosslinking and fragmentation. However, prior administration of carnosine or NAC significantly ameliorated NaNO2-induced damage in intestinal cells. Histological studies support these biochemical results, showing intestinal damage in NaNO2-treated animals and reduced tissue injury in the combination groups. The intrinsic anti-oxidant properties of carnosine and NAC must have contributed to the observed mitigation of nitrite-induced metabolic alterations and oxidative damage. Based on further validation from clinical trials, carnosine and NAC can potentially be used as chemo-preventive agents against NaNO2 toxicity.
Collapse
Affiliation(s)
- Fariheen Aisha Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Aijaz Ahmed Khan
- Department of Anatomy, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
7
|
Menon K, Mousa A, de Courten B. Effects of supplementation with carnosine and other histidine-containing dipeptides on chronic disease risk factors and outcomes: protocol for a systematic review of randomised controlled trials. BMJ Open 2018; 8:e020623. [PMID: 29567852 PMCID: PMC5875615 DOI: 10.1136/bmjopen-2017-020623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Ageing of populations globally, coupled with the obesity epidemic, has resulted in the rising prevalence of chronic diseases including diabetes, cardiovascular diseases, cancers and neurodegenerative disorders. Prevention of risk factors that contribute to these diseases is key in managing the global burden of chronic diseases. Recent studies suggest that carnosine, a dipeptide with anti-inflammatory, antioxidative and antiglycating properties may have a role in the prevention of chronic diseases; however, no previous reviews have examined the effects of carnosine and other histidine-containing peptides (HCDs) on chronic disease risk factors and outcomes. We aim to conduct a comprehensive systematic review to examine the effects of supplementation with carnosine and other HCDs on chronic disease risk factors and outcomes and to identify relevant knowledge gaps. METHODS AND ANALYSIS Electronic databases including Medline, Cumulative Index of Nursing and Allied Health, Embase and all Evidence-Based Medicine will be systematically searched to identify randomised controlled trials (RCTs) and systematic reviews of RCTs, comparing supplementation with carnosine and/or other HCDs versus placebo, usual care or other pharmacological or non-pharmacological interventions. One reviewer will screen titles and abstracts for eligibility according to prespecified inclusion criteria, after which two independent reviewers will perform data extraction and quality appraisal. Meta-analyses, metaregression and subgroup analyses will be conducted where appropriate. ETHICS AND DISSEMINATION Ethics approval is not required as this review does not involve primary data collection. This review will generate level-one evidence regarding the effects of carnosine supplementation on chronic disease risk factors and outcomes and will be disseminated through peer-reviewed publications and at conference meetings to inform future research on the efficacy of carnosine supplementation for the prevention of chronic diseases. PROSPERO REGISTRATION NUMBER CRD42017075354.
Collapse
Affiliation(s)
- Kirthi Menon
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Oppermann H, Schnabel L, Meixensberger J, Gaunitz F. Pyruvate attenuates the anti-neoplastic effect of carnosine independently from oxidative phosphorylation. Oncotarget 2018; 7:85848-85860. [PMID: 27811375 PMCID: PMC5349879 DOI: 10.18632/oncotarget.13039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
Here we analyzed whether the anti-neoplastic effect of carnosine, which inhibits glycolytic ATP production, can be antagonized by ATP production via oxidative phosphorylation fueled by pyruvate. Therefore, glioblastoma cells were cultivated in medium supplemented with glucose, galactose or pyruvate and in the presence or absence of carnosine. CPI-613 was employed to inhibit the entry of pyruvate into the tricarboxylic acid cycle and 2,4-dinitrophenol to inhibit oxidative phosphorylation. Energy metabolism and viability were assessed by cell based assays and histochemistry.ATP in cell lysates and dehydrogenase activity in living cells revealed a strong reduction of viability under the influence of carnosine when cells received glucose or galactose but not in the presence of pyruvate. CPI-613 and 2,4-dinitrophenol reduced viability of cells cultivated in pyruvate, but no effect was seen in the presence of glucose. No effect of carnosine on viability was observed in the presence of glucose and pyruvate even in the presence of 2,4-dinitrophenol or CPI-613.In conclusion, glioblastoma cells produce ATP from pyruvate via the tricarboxylic acid cycle and oxidative phosphorylation in the absence of a glycolytic substrate. In addition, pyruvate attenuates the anti-neoplastic effect of carnosine, even when ATP production via tricarboxylic acid cycle and oxidative phosphorylation is blocked. We also observed an inhibitory effect of carnosine on the tricarboxylic acid cycle and a stimulating effect of 2,4-dinitrophenol on glycolytic ATP production.
Collapse
Affiliation(s)
- Henry Oppermann
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, 04103 Leipzig, Germany
| | - Lutz Schnabel
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, 04103 Leipzig, Germany
| | - Jürgen Meixensberger
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, 04103 Leipzig, Germany
| | - Frank Gaunitz
- Klinik und Poliklinik für Neurochirurgie, Universitätsklinikum Leipzig AöR, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Ansari FA, Mahmood R. Carnosine and N-acetyl cysteine protect against sodium nitrite-induced oxidative stress in rat blood. Cell Biol Int 2017; 42:281-293. [DOI: 10.1002/cbin.10893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Fariheen Aisha Ansari
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh 202002 UP India
| | - Riaz Mahmood
- Faculty of Life Sciences, Department of Biochemistry; Aligarh Muslim University; Aligarh 202002 UP India
| |
Collapse
|
10
|
Accardo A, Del Zoppo L, Morelli G, Condorelli DF, Barresi V, Musso N, Spampinato G, Bellia F, Tabbì G, Rizzarelli E. Liposome antibody–ionophore conjugate antiproliferative activity increases by cellular metallostasis alteration. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00461j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carnosine derivative containing liposomes functionalized with the Fab' fragment of Trastuzumab were synthesized.
Collapse
|