1
|
Hassan ZM, Akram HM. Salivary Biomarkers of Inflammasome Activation in Unstable Periodontitis: A Case-Control Study. Eur J Dent 2025. [PMID: 40267956 DOI: 10.1055/s-0045-1806931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
The objective of this study was to investigate the complex network of inflammasome-related biomarkers (NOD-like receptor thermal protein domain associated protein 3 [NLRP3], caspase-1, interleukin [IL]-1β, IL-18, and IL-37) in unstable periodontitis by examining the salivary concentrations of these specific biomarkers and correlating them with periodontal parameters.The design of this study was an observational case-control study. A salivary sample was collected from periodontally healthy patients (n = 40) and unstable periodontitis patients (n = 40). Full-mouth clinical periodontal parameters were recorded (plaque index, bleeding on probing, periodontal pocket depth, and clinical attachment loss). Enzyme-linked immunosorbent assay analyzed NLRP3, caspase-1, IL-1β, IL-18, and IL-37 salivary levels.The normality of the data was tested using the Shapiro-Wilk test. Mean, standard deviation, and percentages were used for data description. An independent sample t-test, Mann-Whitney U test, and chi-square test were used to compare the two groups with a p-value of < 0.05. Spearman's correlation analysis was conducted to examine the relationships between variables.In saliva samples, NLRP3, caspase-1, IL-1β, and IL-18 were the highest in the periodontitis group (p < 0.005), while IL-37 was highest in the healthy group (p < 0.005). There was significant (p < 0.012) negative weak correlation (-0.395) between IL-37 and IL-1β, and significant (p < 0.003) negative moderate correlation (-0.455) between IL-37 and IL-18 in the healthy group. A significant (0.031) positive weak correlation (0.342) was found between the salivary IL-37 and NLRP3, and a significant (p < 0.001) negative moderate correlation (-0.508) was found between salivary IL-37 and IL-1β, in the periodontitis group.The NLRP3 inflammasomes and their cytokines (caspase-1, IL-1β, and IL-18) significantly promote periodontal inflammation and tissue destruction. In contrast, IL-37 acts as an anti-inflammatory cytokine, inhibiting the activity of the NLRP3 inflammasome and reducing excessive inflammation. This interplay highlights the potential of targeting NLRP3 and enhancing IL-37 as a therapeutic approach for the treatment of periodontal disease.
Collapse
Affiliation(s)
- Zainab Mosa Hassan
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Hadeel Mazin Akram
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
2
|
Yadalam PK, Natarajan PM, Ardila CM. Variational graph autoencoder for reconstructed transcriptomic data associated with NLRP3 mediated pyroptosis in periodontitis. Sci Rep 2025; 15:1962. [PMID: 39809940 PMCID: PMC11733260 DOI: 10.1038/s41598-025-86455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The NLRP3 inflammasome, regulated by TLR4, plays a pivotal role in periodontitis by mediating inflammatory cytokine release and bone loss induced by Porphyromonas gingivalis. Periodontal disease creates a hypoxic environment, favoring anaerobic bacteria survival and exacerbating inflammation. The NLRP3 inflammasome triggers pyroptosis, a programmed cell death that amplifies inflammation and tissue damage. This study evaluates the efficacy of Variational Graph Autoencoders (VGAEs) in reconstructing gene data related to NLRP3-mediated pyroptosis in periodontitis. The NCBI GEO dataset GSE262663, containing three samples with and without hypoxia exposure, was analyzed using unsupervised K-means clustering. This method identifies natural groupings within biological data without prior labels. VGAE, a deep learning model, captures complex graph relationships for tasks like link prediction and edge detection. The VGAE model demonstrated exceptional performance with an accuracy of 99.42% and perfect precision. While it identified 5,820 false negatives, indicating a conservative approach, it accurately predicted 4,080 out of 9,900 positive samples. The model's latent space distribution differed significantly from the original data, suggesting a tightly clustered representation of the gene expression patterns. K-means clustering and VGAE show promise in gene expression analysis and graph structure reconstruction for periodontitis research.
Collapse
Affiliation(s)
- Pradeep K Yadalam
- Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technology Sciences, SIMATS, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, 346, United Arab Emirates.
| | - Carlos M Ardila
- Department of Basic Sciences, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, 050010, Colombia.
| |
Collapse
|
3
|
Kaur A, Singh S, Mujwar S, Singh TG. Molecular Mechanisms Underlying the Therapeutic Potential of Plant-Based α-Amylase Inhibitors for Hyperglycemic Control in Diabetes. Curr Diabetes Rev 2025; 21:e020724231486. [PMID: 38956911 DOI: 10.2174/0115733998304373240611110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Diabetes mellitus (DM), arising from pancreatic β-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alphaamylase like acarbose manage glucose but pose adverse effects, prompting interest in plantderived alternatives rich in antioxidants and anti-inflammatory properties. OBJECTIVE The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment. METHODS This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data. RESULTS Plant-derived inhibitors, including A. deliciosa, B. egyptiaca, and N. nucifera, exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects. CONCLUSION The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.
Collapse
Affiliation(s)
- Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
4
|
Venditti M, Romano MZ, Boccella S, Haddadi A, Biasi A, Maione S, Minucci S. Type 1 diabetes impairs the activity of rat testicular somatic and germ cells through NRF2/NLRP3 pathway-mediated oxidative stress. Front Endocrinol (Lausanne) 2024; 15:1399256. [PMID: 38818504 PMCID: PMC11137174 DOI: 10.3389/fendo.2024.1399256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
Background It is well known that metabolic disorders, including type 1 diabetes (T1D), are often associated with reduced male fertility, mainly increasing oxidative stress and impairing the hypothalamus-pituitary-testis (HPT) axis, with consequently altered spermatogenesis and reduced sperm parameters. Herein, using a rat model of T1D obtained by treatment with streptozotocin (STZ), we analyzed several parameters of testicular activity. Methods A total of 10 adult male Wistar rats were divided into two groups of five: control and T1D, obtained with a single intraperitoneal injection of STZ. After 3 months, the rats were anesthetized and sacrificed; one testis was stored at -80°C for biochemical analysis, and the other was fixed for histological and immunofluorescence analysis. Results The data confirmed that T1D induced oxidative stress and, consequently, alterations in both testicular somatic and germ cells. This aspect was highlighted by enhanced apoptosis, altered steroidogenesis and Leydig cell maturity, and impaired spermatogenesis. In addition, the blood-testis barrier integrity was compromised, as shown by the reduced levels of structural proteins (N-cadherin, ZO-1, occludin, connexin 43, and VANGL2) and the phosphorylation status of regulative kinases (Src and FAK). Mechanistically, the dysregulation of the SIRT1/NRF2/MAPKs signaling pathways was proven, particularly the reduced nuclear translocation of NRF2, affecting its ability to induce the transcription of genes encoding for antioxidant enzymes. Finally, the stimulation of testicular inflammation and pyroptosis was also confirmed, as highlighted by the increased levels of some markers, such as NF-κB and NLRP3. Conclusion The combined data allowed us to confirm that T1D has detrimental effects on rat testicular activity. Moreover, a better comprehension of the molecular mechanisms underlying the association between metabolic disorders and male fertility could help to identify novel targets to prevent and treat fertility disorders related to T1D.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Maria Zelinda Romano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Serena Boccella
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Asma Haddadi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Alessandra Biasi
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Sabatino Maione
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, Napoli, Italy
| |
Collapse
|
5
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Kargbo RB. Redefining Neurodegenerative Treatment: Synergy of KEAP1, PROTACs, and Inflammatory Modulators. ACS Med Chem Lett 2024; 15:167-168. [PMID: 38352846 PMCID: PMC10860189 DOI: 10.1021/acsmedchemlett.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 02/16/2024] Open
Abstract
The KEAP1-NRF2 axis is pivotal in the cellular mechanism against oxidative and electrophilic stress. NRF2, under standard conditions, undergoes proteasomal degradation mediated by the E3 ubiquitin ligase KEAP1. Stress conditions lead to KEAP1 inactivation, facilitating NRF2 stability and subsequent activation of defensive genes. NRF2 signaling anomalies are associated with cancer progression and neurodegenerative diseases. Continuous activation of the NRF2 pathway aids in the survival of cancer cells, while a deficiency in NRF2 functionality intensifies inflammation and oxidative injury in neurodegenerative disease models. Thus, the modulation of this pathway is being investigated for therapeutic applications in both cancer and neurodegenerative diseases.
Collapse
|
7
|
Zhang C, Wang Y, Zhang X, Zhang K, Chen F, Fan J, Wang X, Yang X. Maintaining the Mitochondrial Quality Control System Was a Key Event of Tanshinone IIA against Deoxynivalenol-Induced Intestinal Toxicity. Antioxidants (Basel) 2024; 13:121. [PMID: 38247545 PMCID: PMC10812604 DOI: 10.3390/antiox13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Deoxynivalenol (DON) is the one of the most common mycotoxins, widely detected in various original foods and processed foods. Tanshinone IIA (Tan IIA) is a fat-soluble diterpene quinone extracted from Salvia miltiorrhiza Bunge, which has multi-biological functions and pharmacological effects. However, whether Tan IIA has a protective effect against DON-induced intestinal toxicity is unknown. In this study, the results showed Tan IIA treatment could attenuate DON-induced IPEC-J2 cell death. DON increased oxidation product accumulation, decreased antioxidant ability and disrupted barrier function, while Tan IIA reversed DON-induced barrier function impairment and oxidative stress. Furthermore, Tan IIA dramatically improved mitochondrial function via mitochondrial quality control. Tan IIA could upregulate mitochondrial biogenesis and mitochondrial fusion as well as downregulate mitochondrial fission and mitochondrial unfolded protein response. In addition, Tan IIA significantly attenuated mitophagy caused by DON. Collectively, Tan IIA presented a potential protective effect against DON toxicity and the underlying mechanisms were involved in mitochondrial quality control-mediated mitophagy.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xinyu Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Jiayan Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (C.Z.); (Y.W.); (X.Z.); (K.Z.); (F.C.); (J.F.); (X.W.)
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| |
Collapse
|