1
|
Jaiklaew S, Tansriratanawong K. Influence of Hypoxic Condition on Cytotoxicity, Cellular Migration, and Osteogenic Differentiation Potential of Aged Periodontal Ligament Cells. Eur J Dent 2025; 19:70-79. [PMID: 38759996 PMCID: PMC11750308 DOI: 10.1055/s-0044-1786844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVE This study aimed to investigate and compare the influence of hypoxic conditions on cytotoxicity, cellular migration, and osteogenic differentiation of aged periodontal ligament (PDL) cells. MATERIALS AND METHODS Isolated human PDL cells from aged and young subjects were cultured under hypoxic conditions, which were treated with hydrogen peroxide (H2O2) (0, 25, 50, 100, 200, and 500 µM). To assess cytotoxicity, lactate dehydrogenase release was determined by the optical density at 490 nm, and the percentage of cell death was calculated. An in vitro wound healing assay was performed over 24 to 48 hours for cellular migration determination. Osteogenic differentiation was determined by alizarin red staining and osteogenic gene expression, including the expression of runt-related transcription factor 2 (RUNX2), alkaline phosphatase (ALP), and osteopontin (OPN). RESULTS There was a significant difference in the percentage of cell death with high hypoxic condition (200 and 500 µM) compared to low hypoxic conditions on both day 1 and 2. The highest cellular migration was depicted at 50 µM in both young and aged groups of the in vitro wound healing assay. Osteogenic gene expression of RUNX2 in the aged group was increased at 25 and 50 µM hypoxic condition at day 7, but the expression was gradually decreased after 14 days. On the contrary, the expression of ALP and OPN in the aged group was increased at day 14. Only OPN had been found to be statistically significantly different when compared with gene expression at day 7 and 14 (p < 0.05). The results showed no statistically significant differences when compared with the young and aged groups in all genes and all concentrations. CONCLUSION The concentration of low hypoxic condition (25-50 µM) was proposed to promote cell viability, cellular migration, and osteogenic differentiation in aged PDL cells. We suggested that the potential of aged PDL cells for use in cell therapy for periodontal regeneration might possibly be similar to that of young PDL cells.
Collapse
Affiliation(s)
- Sukrit Jaiklaew
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Kallapat Tansriratanawong
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
3
|
Sturm Á, Saskői É, Hotzi B, Tarnóci A, Barna J, Bodnár F, Sharma H, Kovács T, Ari E, Weinhardt N, Kerepesi C, Perczel A, Ivics Z, Vellai T. Downregulation of transposable elements extends lifespan in Caenorhabditis elegans. Nat Commun 2023; 14:5278. [PMID: 37644049 PMCID: PMC10465613 DOI: 10.1038/s41467-023-40957-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Mobility of transposable elements (TEs) frequently leads to insertional mutations in functional DNA regions. In the potentially immortal germline, TEs are effectively suppressed by the Piwi-piRNA pathway. However, in the genomes of ageing somatic cells lacking the effects of the pathway, TEs become increasingly mobile during the adult lifespan, and their activity is associated with genomic instability. Whether the progressively increasing mobilization of TEs is a cause or a consequence of ageing remains a fundamental problem in biology. Here we show that in the nematode Caenorhabditis elegans, the downregulation of active TE families extends lifespan. Ectopic activation of Piwi proteins in the soma also promotes longevity. Furthermore, DNA N6-adenine methylation at TE stretches gradually rises with age, and this epigenetic modification elevates their transcription as the animal ages. These results indicate that TEs represent a novel genetic determinant of ageing, and that N6-adenine methylation plays a pivotal role in ageing control.
Collapse
Affiliation(s)
- Ádám Sturm
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
- Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group, 1117, Budapest, Hungary
| | - Éva Saskői
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
| | - Bernadette Hotzi
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
| | - Anna Tarnóci
- Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group, 1117, Budapest, Hungary
| | - János Barna
- Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group, 1117, Budapest, Hungary
| | - Ferenc Bodnár
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
| | - Himani Sharma
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
| | - Tibor Kovács
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
| | - Eszter Ari
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
- HCEMM-BRC Metabolic Systems Biology Research Group, 6726, Szeged, Hungary
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Temesvári krt. 62, 6726, Szeged, Hungary
| | - Nóra Weinhardt
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary
| | - Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI), 1111, Budapest, Hungary
- Brigham and Women's Hospital & Harvard Medical School, Boston, MA, 02115, USA
| | - András Perczel
- Laboratory of Structural Chemistry and Biology & Hungarian Academy of Sciences (MTA)-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, 63225, Langen, Germany
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University (ELTE), 1117, Budapest, Hungary.
- Eötvös Loránd Research Network (ELKH)-ELTE Genetics Research Group, 1117, Budapest, Hungary.
- Vellab Biotech Ltd., 6722, Szeged, Hungary.
| |
Collapse
|
4
|
Surugiu R, Burdusel D, Ruscu MA, Cercel A, Hermann DM, Cadenas IF, Popa-Wagner A. Clinical Ageing. Subcell Biochem 2023; 103:437-458. [PMID: 37120476 DOI: 10.1007/978-3-031-26576-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Ageing is generally characterised by the declining ability to respond to stress, increasing homeostatic imbalance, and increased risk of ageing-associated diseases . Mechanistically, the lifelong accumulation of a wide range of molecular and cellular impairments leads to organismal senescence. The aging population poses a severe medical concern due to the burden it places on healthcare systems and the general public as well as the prevalence of diseases and impairments associated with old age. In this chapter, we discuss organ failure during ageing as well as ageing of the hypothalamic-pituitary-adrenal axis and drugs that can regulate it. A much-debated subject is about ageing and regeneration. With age, there is a gradual decline in the regenerative properties of most tissues. The goal of regenerative medicine is to restore cells, tissues, and structures that are lost or damaged after disease, injury, or ageing. The question arises as to whether this is due to the intrinsic ageing of stem cells or, rather, to the impairment of stem-cell function in the aged tissue environment. The risk of having a stroke event doubles each decade after the age of 55. Therefore, it is of great interest to develop neurorestorative therapies for stroke which occurs mostly in elderly people. Initial enthusiasm for stimulating restorative processes in the ischaemic brain with cell-based therapies has meanwhile converted into a more balanced view, recognising impediments related to survival, migration, differentiation, and integration of therapeutic cells in the hostile aged brain environment. Therefore, a current lack of understanding of the fate of transplanted cells means that the safety of cell therapy in stroke patients is still unproven. Another issue associated with ischaemic stroke is that patients at risk for these sequels of stroke are not duly diagnosed and treated due to the lack of reliable biomarkers. However, recently neurovascular unit-derived exosomes in response to Stroke and released into serum are new plasma genetic and proteomic biomarkers associated with ischaemic stroke. The second valid option, which is also more economical, is to invest in prevention.
Collapse
Affiliation(s)
- Roxana Surugiu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daiana Burdusel
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mihai-Andrei Ruscu
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Andreea Cercel
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Hospital Institute of Research, Barcelona, Spain
| | - Dirk M Hermann
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania
- University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Israel Fernandez Cadenas
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Hospital Institute of Research, Barcelona, Spain
| | - Aurel Popa-Wagner
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Craiova, Romania.
- University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Ragsdale A, Ortega-Recalde O, Dutoit L, Besson AA, Chia JHZ, King T, Nakagawa S, Hickey A, Gemmell NJ, Hore T, Johnson SL. Paternal hypoxia exposure primes offspring for increased hypoxia resistance. BMC Biol 2022; 20:185. [PMID: 36038899 PMCID: PMC9426223 DOI: 10.1186/s12915-022-01389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In a time of rapid environmental change, understanding how the challenges experienced by one generation can influence the fitness of future generations is critically needed. Using tolerance assays and transcriptomic and methylome approaches, we use zebrafish as a model to investigate cross-generational acclimation to hypoxia. RESULTS We show that short-term paternal exposure to hypoxia endows offspring with greater tolerance to acute hypoxia. We detected two hemoglobin genes that are significantly upregulated by more than 6-fold in the offspring of hypoxia exposed males. Moreover, the offspring which maintained equilibrium the longest showed greatest upregulation in hemoglobin expression. We did not detect differential methylation at any of the differentially expressed genes, suggesting that other epigenetic mechanisms are responsible for alterations in gene expression. CONCLUSIONS Overall, our findings suggest that an epigenetic memory of past hypoxia exposure is maintained and that this environmentally induced information is transferred to subsequent generations, pre-acclimating progeny to cope with hypoxic conditions.
Collapse
Affiliation(s)
| | | | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Anne A Besson
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Jolyn H Z Chia
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Tania King
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Anthony Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Lu B, Huang L, Cao J, Li L, Wu W, Chen X, Ding C. Adipose tissue macrophages in aging-associated adipose tissue function. J Physiol Sci 2021; 71:38. [PMID: 34863096 PMCID: PMC10717320 DOI: 10.1186/s12576-021-00820-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/04/2021] [Indexed: 12/29/2022]
Abstract
"Inflammaging" refers to the chronic, low-grade inflammation that characterizes aging. Aging, like obesity, is associated with visceral adiposity and insulin resistance. Adipose tissue macrophages (ATMs) have played a major role in obesity-associated inflammation and insulin resistance. Macrophages are elevated in adipose tissue in aging. However, the changes and also possibly functions of ATMs in aging and aging-related diseases are unclear. In this review, we will summarize recent advances in research on the role of adipose tissue macrophages with aging-associated insulin resistance and discuss their potential therapeutic targets for preventing and treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Bangchao Lu
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Liang Huang
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Juan Cao
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Lingling Li
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Wenhui Wu
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Xiaolin Chen
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China
| | - Congzhu Ding
- Department of Geriatrics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangshu, China.
| |
Collapse
|
7
|
Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep 2021; 11:23237. [PMID: 34853352 PMCID: PMC8636588 DOI: 10.1038/s41598-021-02544-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of adipose tissue with aging and the accumulation of senescent cells has been implicated in the pathophysiology of chronic diseases. Recently interventions capable of reducing the burden of senescent cells and in particular the identification of a new class of drugs termed senolytics have been object of extensive investigation. We used an in vitro model of induced senescence by treating both pre-adipocytes as well as mature adipocytes with hydrogen peroxide (H2O2) at a sub-lethal concentration for 3 h for three consecutive days, and hereafter with 20 uM quercetin at a dose that in preliminary experiments resulted to be senolytic without cytotoxicity. H2O2 treated pre-adipocytes and adipocytes showed typical senescence-associated features including increased beta-galactosidase activity (SA-ß-gal) and p21, activation of ROS and increased expression of pro-inflammatory cytokines. The treatment with quercetin in senescent pre-adipocytes and adipocytes was associated to a significant decrease in the number of the SA-β-gal positive cells along with the suppression of ROS and of inflammatory cytokines. Besides, quercetin treatment decreased miR-155-5p expression in both models, with down-regulation of p65 and a trend toward an up-regulation of SIRT-1 in complete cell extracts. The senolytic compound quercetin could affect AT ageing by reducing senescence, induced in our in vitro model by oxidative stress. The downregulation of miRNA-155-5p, possibly through the modulation of NF-κB and SIRT-1, could have a key role in the effects of quercetin on both pre-adipocytes and adipocytes.
Collapse
|
8
|
Age and Sex: Impact on adipose tissue metabolism and inflammation. Mech Ageing Dev 2021; 199:111563. [PMID: 34474078 DOI: 10.1016/j.mad.2021.111563] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Age associated chronic inflammation is a major contributor to diseases with advancing age. Adipose tissue function is at the nexus of processes contributing to age-related metabolic disease and mediating longevity. Hormonal fluctuations in aging potentially regulate age-associated visceral adiposity and metabolic dysfunction. Visceral adiposity in aging is linked to aberrant adipogenesis, insulin resistance, lipotoxicity and altered adipokine secretion. Age-related inflammatory phenomena depict sex differences in macrophage polarization, changes in T and B cell numbers, and types of dendritic cells. Sex differences are also observed in adipose tissue remodeling and cellular senescence suggesting a role for sex steroid hormones in the regulation of the adipose tissue microenvironment. It is crucial to investigate sex differences in aging clinical outcomes to identify and better understand physiology in at-risk individuals. Early interventions aimed at targets involved in adipose tissue adipogenesis, remodeling and inflammation in aging could facilitate a profound impact on health span and overcome age-related functional decline.
Collapse
|
9
|
Larrick JW, Larrick JW, Mendelsohn AR. Response to Hypoxia in Cognitive Decline. Rejuvenation Res 2021; 24:319-324. [PMID: 34314252 DOI: 10.1089/rej.2021.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammaging, the increase of proinflammatory processes with increasing age, has multiple mechanisms from increasing numbers of senescent cells secreting cytokines to changes in metabolic processes. Alterations of oxygen metabolism with aging, especially decreased levels of O2 with age resulting from endocrine and cardiovascular dysfunction as well as desensitization of cellular response to hypoxia, may exacerbate inflammaging, which in turn creates further oxygen metabolic dysfunction. During aging, decline in levels of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), BPG mutase, and adenosine A2B receptor, a key adenosine signaling receptor that can augment 2,3-BPG expression, may fail to protect sensitive brain tissue from subtly reduced O2 levels, in turn resulting in increased numbers of activated microglia and secretion of proinflammatory cytokines, ultimately promoting inflammaging and senescence of endothelial cells. Interventions to restore O2 levels directly or via increasing 2,3-BPG may help promote cognitive health in old age, but significant work to quantify the degree of reduced O2 during aging in mammals, and especially humans, needs to be pursued.
Collapse
Affiliation(s)
- James W Larrick
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California, USA
| | - Jasmine W Larrick
- Division of Pulmonary, Critical Care and Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Andrew R Mendelsohn
- Panorama Research Institute and Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
10
|
Qiang Q, Manalo JM, Sun H, Zhang Y, Song A, Wen AQ, Wen YE, Chen C, Liu H, Cui Y, Nemkov T, Reisz JA, Edwards III G, Perreira FA, Kellems RE, Soto C, D’Alessandro A, Xia Y. Erythrocyte adenosine A2B receptor prevents cognitive and auditory dysfunction by promoting hypoxic and metabolic reprogramming. PLoS Biol 2021; 19:e3001239. [PMID: 34138843 PMCID: PMC8211187 DOI: 10.1371/journal.pbio.3001239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte-specific ADORA2B (eAdora2b-/-) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b-/- mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B-BPGM axis is a key component for anti-aging and anti-age-related functional decline.
Collapse
Affiliation(s)
- Qingfen Qiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Jeanne M. Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Hong Sun
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujin Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Alexander Q. Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of California at San Diego, La Jolla, California, United States of America
| | - Y. Edward Wen
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas Southwestern Medical School, Dallas, Texas, United States of America
| | - Changhan Chen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Cui
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - George Edwards III
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Fred A. Perreira
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rodney E. Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| | - Claudio Soto
- Department of Neurology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School, Houston, Texas, United States of America
- University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, United States of America
| |
Collapse
|
11
|
Salekeen R, Barua J, Shaha PR, Islam KMD, Islam ME, Billah MM, Rahman SMM. Marine phycocompound screening reveals a potential source of novel senotherapeutics. J Biomol Struct Dyn 2021; 40:6071-6085. [PMID: 33533325 DOI: 10.1080/07391102.2021.1877822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cells undergo a controlled and systematic cycle of growth, replication and death. However, the integrity of this process gradually declines, leading to accumulation of senescent cells, a major hallmark of biological ageing. Dietary algae, particularly marine algae, have been long reported to exert anti-ageing benefits as cosmeceuticals and nutraceuticals with limited understanding of the molecular mechanisms underlying their activity. In this study, we have incorporated 1,202 previously reported bioactive small phycocompounds and subjected them to cheminformatic queries to assess these interactions. In-silico ADMET, 2-phase docking, metabolic pathway interaction and molecular dynamics simulations reveal multiple marine phycocompounds to have safe and effective senolytic potentials. We employed a novel deep convolutional neural network driven screening approach to identify (2R*, 3S*, 6R*, 7S*, 10R*, 13R*)-7,13-Dihydroxy-2,6-cyclo-1(9),14-xenicadiene-18,19-dial derived from Dilophus Fasciola, Laurendecumenyne A from Laurencia decumbens and 4-Bromo-3-ethyl-9-[(2E)-2-penten-4-yn-1-yl]-2,8-dioxabicyclo[5.2.1]decan-6-ol from Laurencia sp. to be potent inhibitors of multiple target senescent-cell anti-apoptotic pathway proteins. We simulated the best overall target inhibitors, specific protein inhibitors and molecular pathway regulators with each target protein and found stable interactions with minimum deviations (mean RMSD = 0.17 ± 0.01 nm) and gyrations (mean Rg = 1.64 ± 0.16 nm) of the simulated protein-compound complexes. Finally, molecular mechanics calculation suggests potent (mean ΔG = -69.56 ± 27.19 kCal/mol) and frequent hydrophobic interactions between the top performing marine phycocompounds and target proteins.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Joydip Barua
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Punam Rani Shaha
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - S M Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
12
|
Vacante M, Ciuni R, Basile F, Biondi A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020; 8:E489. [PMID: 33182693 PMCID: PMC7697438 DOI: 10.3390/biomedicines8110489] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022] Open
Abstract
There is wide evidence that CRC could be prevented by regular physical activity, keeping a healthy body weight, and following a healthy and balanced diet. Many sporadic CRCs develop via the traditional adenoma-carcinoma pathway, starting as premalignant lesions represented by conventional, tubular or tubulovillous adenomas. The gut bacteria play a crucial role in regulating the host metabolism and also contribute to preserve intestinal barrier function and an effective immune response against pathogen colonization. The microbiota composition is different among people, and is conditioned by many environmental factors, such as diet, chemical exposure, and the use of antibiotic or other medication. The gut microbiota could be directly involved in the development of colorectal adenomas and the subsequent progression to CRC. Specific gut bacteria, such as Fusobacterium nucleatum, Escherichia coli, and enterotoxigenic Bacteroides fragilis, could be involved in colorectal carcinogenesis. Potential mechanisms of CRC progression may include DNA damage, promotion of chronic inflammation, and release of bioactive carcinogenic metabolites. The aim of this review was to summarize the current knowledge on the role of the gut microbiota in the development of CRC, and discuss major mechanisms of microbiota-related progression of the adenoma-carcinoma sequence.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
13
|
Vacante M, Ciuni R, Basile F, Biondi A. The Liquid Biopsy in the Management of Colorectal Cancer: An Overview. Biomedicines 2020; 8:E308. [PMID: 32858879 PMCID: PMC7555636 DOI: 10.3390/biomedicines8090308] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, there is a crucial need for novel diagnostic and prognostic biomarkers with high specificity and sensitivity in patients with colorectal cancer. A "liquid biopsy" is characterized by the isolation of cancer-derived components, such as circulating tumor cells, circulating tumor DNA, microRNAs, long non-coding RNAs, and proteins, from peripheral blood or other body fluids and their genomic or proteomic assessment. The liquid biopsy is a minimally invasive and repeatable technique that could play a significant role in screening and diagnosis, and predict relapse and metastasis, as well as monitoring minimal residual disease and chemotherapy resistance in colorectal cancer patients. However, there are still some practical issues that need to be addressed before liquid biopsy can be widely used in clinical practice. Potential challenges may include low amounts of circulating tumor cells and circulating tumor DNA in samples, lack of pre-analytical and analytical consensus, clinical validation, and regulatory endorsement. The aim of this review was to summarize the current knowledge of the role of liquid biopsy in the management of colorectal cancer.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Via S. Sofia 78, 95123 Catania, Italy; (R.C.); (F.B.); (A.B.)
| | | | | | | |
Collapse
|
14
|
Abstract
Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
15
|
Lian M, Cao H, Baranova A, Kural KC, Hou L, He S, Shao Q, Fang J. Aging-associated genes TNFRSF12A and CHI3L1 contribute to thyroid cancer: An evidence for the involvement of hypoxia as a driver. Oncol Lett 2020; 19:3634-3642. [PMID: 32391089 PMCID: PMC7204633 DOI: 10.3892/ol.2020.11530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
The prevalence of thyroid cancer (TC) is high in the elderly. The present study was based on the hypothesis that genes, which have increased activity with aging, may play a role in the development of TC. A large-scale literature-based data analysis was conducted to explore the genes that are implicated in both TC and aging. Subsequently, a mega-analysis of 16 RNA expression datasets (1,222 samples: 439 healthy controls, and 783 patients with TC) was conducted to test a set of genes associated with aging but not TC. To uncover a possible link between these genes and TC, a functional pathway analysis was conducted, and the results were validated by analysis of gene co-expression. A multiple linear regression (MLR) model was employed to study the possible influence of sample size, population region and study age on the gene expression levels in TC. A total of 262 and 816 genes were identified to have increased activity with aging and TC, respectively; with a significant overlap of 63 genes (P<3.82×10−35). The mega-analysis revealed two aging-associated genes (CHI3L1 and TNFRSF12A) to be significantly associated with TC (P<2.05×10−8), and identified the association with multiple hypoxia-driven pathways through functional pathway analysis, also confirmed by the co-expression analysis. The MLR analysis identified population region as a significant factor contributing to the expression levels of CHI3L1 and TNFRSF12A in TC samples (P<3.24×10−4). The determination of genes that promote aging was warranted due to their possible involvement in TC. The present study suggests CHI3L1 and TNFRSF12A as novel common risk genes associated with both aging and TC.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongbao Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of Genomics Research, R&D Solutions, Elsevier Inc., Rockville, MD 20852, USA.,School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.,Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Kamil Can Kural
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qing Shao
- Department of Breast and Thyroid Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
16
|
Pardo PS, Boriek AM. SIRT1 Regulation in Ageing and Obesity. Mech Ageing Dev 2020; 188:111249. [PMID: 32320732 DOI: 10.1016/j.mad.2020.111249] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/12/2020] [Accepted: 04/05/2020] [Indexed: 12/29/2022]
Abstract
Ageing and obesity have common hallmarks: altered glucose and lipid metabolism, chronic inflammation and oxidative stress are some examples. The downstream effects of SIRT1 activity have been thoroughly explored, and their research is still in expanse. SIRT1 activation has been shown to regulate pathways with beneficiary effects on 1) ageing and obesity-associated metabolic disorders such as metabolic syndrome, insulin resistance and type-II diabetes with, 2) chronic inflammatory processes such as arthritis, atherosclerosis and emphysema, 3) DNA damage and oxidative stress with impact on neurodegenerative diseases, cardiovascular health and some cancers. This knowledge intensified the interest in uncovering the mechanisms regulating the expression and activity of SIRT1. This review focuses on the upstream regulatory mechanisms controlling SIRT1, and how this knowledge could potentially contribute to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Patricia S Pardo
- Pulmonary and Critical Care medicine, Department of Medicine, Baylor College of Medicine, Houston TX 77030, USA.
| | - Aladin M Boriek
- Pulmonary and Critical Care medicine, Department of Medicine, Baylor College of Medicine, Houston TX 77030, USA.
| |
Collapse
|
17
|
Lee BC, Yu KR. Impact of mesenchymal stem cell senescence on inflammaging. BMB Rep 2020; 53:65-73. [PMID: 31964472 PMCID: PMC7061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Indexed: 03/29/2024] Open
Abstract
Life expectancy has dramatically increased around the world over the last few decades, and staying healthier longer, without chronic disease, has become an important issue. Although understanding aging is a grand challenge, our understanding of the mechanisms underlying the degeneration of cell and tissue functions with age and its contribution to chronic disease has greatly advanced during the past decade. As our immune system alters with aging, abnormal activation of immune cells leads to imbalance of innate and adaptive immunity and develops a persistent and mild systemic inflammation, inflammaging. With their unique therapeutic properties, such as immunomodulation and tissue regeneration, mesenchymal stem cells (MSCs) have been considered to be a promising source for treating autoimmune disease or as anti-aging therapy. Although direct evidence of the role of MSCs in inflammaging has not been thoroughly studied, features reported in senescent MSCs or the aging process of MSCs are associated with inflammaging; MSC niche-driven skewing of hematopoiesis toward the myeloid lineage or oncogenesis, production of pro-inflammatory cytokines, and weakening their modulative property on macrophage polarization, which plays a central role on inflammaging development. This review explores the role of senescent MSCs as an important regulator for onset and progression of inflammaging and as an effective target for anti-aging strategies. [BMB Reports 2020; 53(2): 65-73].
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
18
|
Adipose Tissue Quality in Aging: How Structural and Functional Aspects of Adipose Tissue Impact Skeletal Muscle Quality. Nutrients 2019; 11:nu11112553. [PMID: 31652734 PMCID: PMC6893709 DOI: 10.3390/nu11112553] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
The interplay between adipose tissue and skeletal muscle and the impact on mobility and aging remain enigmatic. The progressive decline in mobility promoted by aging has been previously attributed to the loss of skeletal mass and function and more recently linked to changes in body fat composition and quantity. Regardless of body size, visceral and intermuscular adipose depots increase with aging and are associated with adverse health outcomes. However, the quality of adipose tissue, in particular abdominal subcutaneous as it is the largest depot, likely plays a significant role in aging outcomes, such as mobility decline, though its communication with other tissues such as skeletal muscle. In this review, we discuss the age-associated development of a pro-inflammatory profile, cellular senescence, and metabolic inflexibility in abdominal subcutaneous adipose tissue. Collectively, these facets of adipose tissue quality influence its secretory profile and crosstalk with skeletal muscle and likely contribute to the development of muscle atrophy and disability. Therefore, the identification of the key structural and functional components of adipose tissue quality—including necrosis, senescence, inflammation, self-renewal, metabolic flexibility—and adipose tissue-secreted proteins that influence mobility via direct effects on skeletal muscle are necessary to prevent morbidity/mortality in the aging population.
Collapse
|
19
|
Sackmann V, Sinha MS, Sackmann C, Civitelli L, Bergström J, Ansell-Schultz A, Hallbeck M. Inhibition of nSMase2 Reduces the Transfer of Oligomeric α-Synuclein Irrespective of Hypoxia. Front Mol Neurosci 2019; 12:200. [PMID: 31555088 PMCID: PMC6724746 DOI: 10.3389/fnmol.2019.00200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, extracellular vesicles (EVs), such as exosomes, have been proposed to play an influential role in the cell-to-cell spread of neurodegenerative diseases, including the intercellular transmission of α-synuclein (α-syn). However, the regulation of EV biogenesis and its relation to Parkinson’s disease (PD) is only partially understood. The generation of EVs through the ESCRT-independent pathway depends on the hydrolysis of sphingomyelin by neutral sphingomyelinase 2 (nSMase2) to produce ceramide, which causes the membrane of endosomal multivesicular bodies to bud inward. nSMase2 is sensitive to oxidative stress, a common process in PD brains; however, little is known about the role of sphingomyelin metabolism in the pathogenesis of PD. This is the first study to show that inhibiting nSMase2 decreases the transfer of oligomeric aggregates of α-syn between neuron-like cells. Furthermore, it reduced the accumulation and aggregation of high-molecular-weight α-syn. Hypoxia, as a model of oxidative stress, reduced the levels of nSMase2, but not its enzymatic activity, and significantly altered the lipid composition of cells without affecting EV abundance or the transfer of α-syn. These data show that altering sphingolipids can mitigate the spread of α-syn, even under hypoxic conditions, potentially suppressing PD progression.
Collapse
Affiliation(s)
- Valerie Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maitrayee Sardar Sinha
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Christopher Sackmann
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Livia Civitelli
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Joakim Bergström
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Ansell-Schultz
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Martin Hallbeck
- Department of Clinical Pathology, Linköping University, Linköping, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
In vitro model of chronological aging of adipocytes: Interrelationships with hypoxia and oxidation. Exp Gerontol 2019; 121:81-90. [DOI: 10.1016/j.exger.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
|
21
|
Shi R, Guberman M, Kirshenbaum LA. Mitochondrial quality control: The role of mitophagy in aging. Trends Cardiovasc Med 2018; 28:246-260. [DOI: 10.1016/j.tcm.2017.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
|
22
|
Trim W, Turner JE, Thompson D. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity. Front Immunol 2018; 9:169. [PMID: 29479350 PMCID: PMC5811473 DOI: 10.3389/fimmu.2018.00169] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed "inflammageing". In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity-including an accumulation of pro-inflammatory immune cell populations-plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence.
Collapse
Affiliation(s)
- William Trim
- Department for Health, University of Bath, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
23
|
Teramura T, Onodera Y. Stem cell depletion by inflammation-associated miR-155. Aging (Albany NY) 2018; 10:17-18. [PMID: 29362291 PMCID: PMC5811257 DOI: 10.18632/aging.101374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 04/19/2023]
Affiliation(s)
- Takeshi Teramura
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Osaka, Japan
| | - Yuta Onodera
- Division of Cell Biology for Regenerative Medicine, Institute of Advanced Clinical Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
24
|
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 2016; 155:10-21. [DOI: 10.1016/j.mad.2016.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
|
25
|
Jura M, Kozak LP. Obesity and related consequences to ageing. AGE (DORDRECHT, NETHERLANDS) 2016; 38:23. [PMID: 26846415 PMCID: PMC5005878 DOI: 10.1007/s11357-016-9884-3] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 04/17/2023]
Abstract
Obesity has become a major public health problem. Given the current increase in life expectancy, the prevalence of obesity also raises steadily among older age groups. The increase in life expectancy is often accompanied with additional years of susceptibility to chronic ill health associated with obesity in the elderly. Both obesity and ageing are conditions leading to serious health problems and increased risk for disease and death. Ageing is associated with an increase in abdominal obesity, a major contributor to insulin resistance and the metabolic syndrome. Obesity in the elderly is thus a serious concern and comprehension of the key mechanisms of ageing and age-related diseases has become a necessary matter. Here, we aimed to identify similarities underlying mechanisms related to both obesity and ageing. We bring together evidence that age-related changes in body fat distribution and metabolism might be key factors of a vicious cycle that can accelerate the ageing process and onset of age-related diseases.
Collapse
Affiliation(s)
- Magdalena Jura
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| | - Leslie P Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, ul. Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|