1
|
Salminen A. AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 2024; 25:83-106. [PMID: 37917219 PMCID: PMC10794430 DOI: 10.1007/s10522-023-10072-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Disruption of the extracellular matrix (ECM) and an accumulation of fibrotic lesions within tissues are two of the distinctive hallmarks of the aging process. Tissue fibroblasts are mesenchymal cells which display an impressive plasticity in the regulation of ECM integrity and thus on tissue homeostasis. Single-cell transcriptome studies have revealed that tissue fibroblasts exhibit a remarkable heterogeneity with aging and in age-related diseases. Excessive stress and inflammatory insults induce the differentiation of fibroblasts into myofibroblasts which are fusiform contractile cells and abundantly secrete the components of the ECM and proteolytic enzymes as well as many inflammatory mediators. Detrimental stresses can also induce the transdifferentiation of certain mesenchymal and myeloid cells into myofibroblasts. Interestingly, many age-related stresses, such as oxidative and endoplasmic reticulum stresses, ECM stiffness, inflammatory mediators, telomere shortening, and several alarmins from damaged cells are potent inducers of myofibroblast differentiation. Intriguingly, there is convincing evidence that the signaling pathways stimulated by the AMP-activated protein kinase (AMPK) are potent inhibitors of myofibroblast differentiation and accordingly AMPK signaling reduces fibrotic lesions within tissues, e.g., in age-related cardiac and pulmonary fibrosis. AMPK signaling is not only an important regulator of energy metabolism but it is also able to control cell fate determination and many functions of the immune system. It is known that AMPK signaling can delay the aging process via an integrated signaling network. AMPK signaling inhibits myofibroblast differentiation, e.g., by suppressing signaling through the TGF-β, NF-κB, STAT3, and YAP/TAZ pathways. It seems that AMPK signaling can alleviate age-related tissue fibrosis and degeneration by inhibiting the differentiation of myofibroblasts.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
2
|
Brown TL, Bainbridge MN, Zahn G, Nye KL, Porter BE. The growing research toolbox for SLC13A5 citrate transporter disorder: a rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241263972. [PMID: 39091896 PMCID: PMC11292725 DOI: 10.1177/26330040241263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate's role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder. TESS and its partners have developed multiple molecular tools, cellular and animal models, and taken the first steps toward drug discovery and development for this disease. However, much remains to be done to improve our understanding of the disorder associated with SLC13A5 variants and identify effective treatments for this devastating disease. Here, we describe the available SLC13A5 resources from the community of experts, to foundational tools, to in vivo and in vitro tools, and discuss unanswered research questions needed to move closer to a cure.
Collapse
Affiliation(s)
| | | | | | - Kim L. Nye
- TESS Research Foundation, Menlo Park, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Mladenova SG, Todorova MN, Savova MS, Georgiev MI, Mihaylova LV. Maackiain Mimics Caloric Restriction through aak-2-Mediated Lipid Reduction in Caenorhabditis elegans. Int J Mol Sci 2023; 24:17442. [PMID: 38139270 PMCID: PMC10744277 DOI: 10.3390/ijms242417442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity prevalence is becoming a serious global health and economic issue and is a major risk factor for concomitant diseases that worsen the quality and duration of life. Therefore, the urgency of the development of novel therapies is of a particular importance. A previous study of ours revealed that the natural pterocarpan, maackiain (MACK), significantly inhibits adipogenic differentiation in human adipocytes through a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent mechanism. Considering the observed anti-adipogenic potential of MACK, we aimed to further elucidate the molecular mechanisms that drive its biological activity in a Caenorhabditis elegans obesity model. Therefore, in the current study, the anti-obesogenic effect of MACK (25, 50, and 100 μM) was compared to orlistat (ORST, 12 μM) as a reference drug. Additionally, the hybrid combination between the ORST (12 μM) and MACK (100 μM) was assessed for suspected synergistic interaction. Mechanistically, the observed anti-obesogenic effect of MACK was mediated through the upregulation of the key metabolic regulators, namely, the nuclear hormone receptor 49 (nhr-49) that is a functional homologue of the mammalian PPARs and the AMP-activated protein kinase (aak-2/AMPK) in C. elegans. Collectively, our investigation indicates that MACK has the potential to limit lipid accumulation and control obesity that deserves future developments.
Collapse
Affiliation(s)
| | - Monika N. Todorova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
| | - Martina S. Savova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Milen I. Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria; (M.N.T.); (M.S.S.); (M.I.G.)
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Wang JX, Qiao F, Zhang ML, Chen LQ, Du ZY, Luo Y. Double-edged effect of sodium citrate in Nile tilapia ( Oreochromis niloticus): Promoting lipid and protein deposition vs. causing hyperglycemia and insulin resistance. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:303-314. [PMID: 37635932 PMCID: PMC10447919 DOI: 10.1016/j.aninu.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 08/29/2023]
Abstract
Citrate is an essential substrate for energy metabolism that plays critical roles in regulating glucose and lipid metabolic homeostasis. However, the action of citrate in regulating nutrient metabolism in fish remains poorly understood. Here, we investigated the effects of dietary sodium citrate on growth performance and systematic energy metabolism in juvenile Nile tilapia (Oreochromis niloticus). A total of 270 Nile tilapia (2.81 ± 0.01 g) were randomly divided into three groups (3 replicates per group, 30 fish per replicate) and fed with control diet (35% protein and 6% lipid), 2% and 4% sodium citrate diets, respectively, for 8 weeks. The results showed that sodium citrate exhibited no effect on growth performance (P > 0.05). The whole-body crude protein, serum triglyceride and hepatic glycogen contents were significantly increased in the 4% sodium citrate group (P < 0.05), but not in the 2% sodium citrate group (P > 0.05). The 4% sodium citrate treatment significantly increased the serum glucose and insulin levels at the end of feeding trial and also in the glucose tolerance test (P < 0.05). The 4% sodium citrate significantly enhanced the hepatic phosphofructokinase activity and inhibited the expression of pyruvate dehydrogenase kinase isozyme 2 and phosphor-pyruvate dehydrogenase E1 component subunit alpha proteins (P < 0.05). Additionally, the 4% sodium citrate significantly increased hepatic triglyceride and acetyl-CoA levels, while the expressions of carnitine palmitoyl transferase 1a protein were significantly down-regulated by the 4% sodium citrate (P < 0.05). Besides, the 4% sodium citrate induced crude protein deposition in muscle by activating mTOR signaling and inhibiting AMPK signaling (P < 0.05). Furthermore, the 4% sodium citrate significantly suppressed serum aspartate aminotransferase and alanine aminotransferase activities, along with the lowered expression of pro-inflammatory genes, such as nfκb, tnfα and il8 (P < 0.05). Although the 4% sodium citrate significantly increased phosphor-nuclear factor-kB p65 protein expression (P < 0.05), no significant tissue damage or inflammation occurred. Taken together, dietary supplementation of sodium citrate could exhibit a double-edged effect in Nile tilapia, with the positive aspect in promoting nutrient deposition and the negative aspect in causing hyperglycemia and insulin resistance.
Collapse
Affiliation(s)
- Jun-Xian Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Mei-Ling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li-Qiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen-Yu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
5
|
Mishra D, Kannan K, Meadows K, Macro J, Li M, Frankel S, Rogina B. INDY-From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. FRONTIERS IN AGING 2022; 2:782162. [PMID: 35822025 PMCID: PMC9261455 DOI: 10.3389/fragi.2021.782162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023]
Abstract
I’m Not Dead Yet (Indy) is a fly homologue of the mammalian SLC13A5 (mSLC13A5) plasma membrane citrate transporter, a key metabolic regulator and energy sensor involved in health, longevity, and disease. Reduction of Indy gene activity in flies, and its homologs in worms, modulates metabolism and extends longevity. The metabolic changes are similar to what is obtained with caloric restriction (dietary restriction). Similar effects on metabolism have been observed in mice and rats. As a citrate transporter, INDY regulates cytoplasmic citrate levels. Indy flies heterozygous for a P-element insertion have increased spontaneous physical activity, increased fecundity, reduced insulin signaling, increased mitochondrial biogenesis, preserved intestinal stem cell homeostasis, lower lipid levels, and increased stress resistance. Mammalian Indy knockout (mIndy-KO) mice have higher sensitivity to insulin signaling, lower blood pressure and heart rate, preserved memory and are protected from the negative effects of a high-fat diet and some of the negative effects of aging. Reducing mIndy expression in human hepatocarcinoma cells has recently been shown to inhibit cell proliferation. Reduced Indy expression in the fly intestine affects intestinal stem cell proliferation, and has recently been shown to also inhibit germ cell proliferation in males with delayed sperm maturation and decreased spermatocyte numbers. These results highlight a new connection between energy metabolism and cell proliferation. The overrall picture in a variety of species points to a conserved role of INDY for metabolism and health. This is illustrated by an association of high mIndy gene expression with non-alcoholic fatty liver disease in obese humans. mIndy (mSLC13A5) coding region mutations (e.g., loss-of-function) are also associated with adverse effects in humans, such as autosomal recessive early infantile epileptic encephalopathy and Kohlschütter−Tönz syndrome. The recent findings illustrate the importance of mIndy gene for human health and disease. Furthermore, recent work on small-molecule regulators of INDY highlights the promise of INDY-based treatments for ameliorating disease and promoting healthy aging.
Collapse
Affiliation(s)
- Dushyant Mishra
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kavitha Kannan
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kali Meadows
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Jacob Macro
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Michael Li
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
6
|
Surrer DB, Fromm MF, Maas R, König J. L-Arginine and Cardioactive Arginine Derivatives as Substrates and Inhibitors of Human and Mouse NaCT/Nact. Metabolites 2022; 12:metabo12040273. [PMID: 35448460 PMCID: PMC9026504 DOI: 10.3390/metabo12040273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 01/25/2023] Open
Abstract
The uptake transporter NaCT (gene symbol SLC13A5) is expressed in liver and brain and important for energy metabolism and brain development. Substrates include tricarboxylic acid cycle intermediates, e.g., citrate and succinate. To gain insights into the substrate spectrum of NaCT, we tested whether arginine and the cardioactive L-arginine metabolites asymmetric dimethylarginine (ADMA) and L-homoarginine are also transported by human and mouse NaCT/Nact. Using HEK293 cells overexpressing human or mouse NaCT/Nact we characterized these substances as substrates. Furthermore, inhibition studies were performed using the arginine derivative symmetric dimethylarginine (SDMA), the NaCT transport inhibitor BI01383298, and the prototypic substrate citrate. Arginine and the derivatives ADMA and L-homoarginine were identified as substrates of human and mouse NaCT. Transport of arginine and derivatives mediated by human and mouse NaCT were dose-dependently inhibited by SDMA. Whereas BI01383298 inhibited only human NaCT-mediated citrate uptake, it inhibits the uptake of arginine and derivatives mediated by both human NaCT and mouse Nact. In contrast, the prototypic substrate citrate inhibited the transport of arginine and derivatives mediated only by human NaCT. These results demonstrate a so far unknown link between NaCT/Nact and L-arginine and its cardiovascular important derivatives.
Collapse
Affiliation(s)
| | | | | | - Jörg König
- Correspondence: ; Tel.: +49-9131-8522077
| |
Collapse
|
7
|
Pesta D, Jordan J. INDY as a Therapeutic Target for Cardio-Metabolic Disease. Metabolites 2022; 12:metabo12030244. [PMID: 35323687 PMCID: PMC8949283 DOI: 10.3390/metabo12030244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Decreased expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) promotes longevity and protects from high-fat diet- and aging-induced metabolic derangements. Preventing citrate import into hepatocytes by different strategies can reduce hepatic triglyceride accumulation and improve hepatic insulin sensitivity, even in the absence of effects on body composition. These beneficial effects likely derive from decreased hepatic de novo fatty acid biosynthesis as a result of reduced cytoplasmic citrate levels. While in vivo and in vitro studies show that inhibition of INDY prevents intracellular lipid accumulation, body weight is not affected by organ-specific INDY inhibition. Besides these beneficial metabolic effects, INDY inhibition may also improve blood pressure control through sympathetic nervous system inhibition, partly via reduced peripheral catecholamine synthesis. These effects make INDY a promising candidate with bidirectional benefits for improving both metabolic disease and blood pressure control.
Collapse
Affiliation(s)
- Dominik Pesta
- German Aerospace Center (DLR), Institute of Aerospace Medicine, D-51147 Cologne, Germany;
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, D-50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, D-50931 Cologne, Germany
- Correspondence:
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, D-51147 Cologne, Germany;
| |
Collapse
|
8
|
Mendelsohn AR, Larrick JW. Stem Cell Rejuvenation by Restoration of Youthful Metabolic Compartmentalization. Rejuvenation Res 2021; 24:470-474. [PMID: 34846176 DOI: 10.1089/rej.2021.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Stem cell dysfunction is a hallmark of aging. Much recent study suggests that epigenetic changes play a critical role in the loss of stem cell function with age. However, the underlying mechanisms require elucidation. A recent report describes a process by which mild mitochondrial stress associated with aging causes lysosomal-mediated decreases in CiC, the mitochondrial citrate transporter, in bone marrow-derived mesenchymal stem cells (MSCs). This, in turn, results in a deficit of acetyl-CoA in the nucleus and hypoacetylation of histones. The altered epigenome results in skewered stem cell differentiation favoring adipogenesis and disfavoring osteogenesis, which is problematic given the role the MSCs play in maintaining the integrity of bone tissue. Restoration of nuclear acetyl-CoA by either ectopic expression of CiC or acetate supplementation of MSCs in culture rejuvenates the MSC, restoring the potential to efficiently differentiate along the osteogenic lineage. Citrate, which has recently been reported to extend lifespan in Drosophila, chemically incorporates acetyl-CoA and may prove useful to restore cytoplasmic and nuclear acetyl-CoA levels. The general applicability of the CiC defect in old cells, particularly stem cells, should be established.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Regenerative Sciences Institute, Sunnyvale, California, USA
| |
Collapse
|
9
|
Fan S, Lin C, Wei Y, Yeh S, Tsai Y, Lee AC, Lin W, Wang P. Dietary citrate supplementation enhances longevity, metabolic health, and memory performance through promoting ketogenesis. Aging Cell 2021; 20:e13510. [PMID: 34719871 PMCID: PMC8672782 DOI: 10.1111/acel.13510] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 01/28/2023] Open
Abstract
Citrate is an essential substrate for energy metabolism that plays critical roles in regulating cell growth and survival. However, the action of citrate in regulating metabolism, cognition, and aging at the organismal level remains poorly understood. Here, we report that dietary supplementation with citrate significantly reduces energy status and extends lifespan in Drosophila melanogaster. Our genetic studies in fruit flies implicate a molecular mechanism associated with AMP‐activated protein kinase (AMPK), target of rapamycin (TOR), and ketogenesis. Mice fed a high‐fat diet that supplemented with citrate or the ketone body β‐hydroxybutyrate (βOHB) also display improved metabolic health and memory. These results suggest that dietary citrate supplementation may prove to be a useful intervention in the future treatment of age‐related dysfunction.
Collapse
Affiliation(s)
- Shou‐Zen Fan
- Department of Anesthesiology National Taiwan University Hospital National Taiwan University Taipei Taiwan
| | - Cheng‐Sheng Lin
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Yu‐Wen Wei
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Sheng‐Rong Yeh
- Department of Anesthesiology National Taiwan University Hospital National Taiwan University Taipei Taiwan
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Yi‐Hsuan Tsai
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Andrew Chengyu Lee
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
| | - Wei‐Sheng Lin
- Department of Pediatrics Taipei Veterans General Hospital Taipei Taiwan
| | - Pei‐Yu Wang
- Graduate Institute of Brain and Mind Sciences College of Medicine National Taiwan University Taipei Taiwan
- Neurobiology and Cognitive Science Center National Taiwan University Taipei Taiwan
- Ph.D. Program in Translational Medicine National Taiwan University and Academia Sinica Taipei Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience National Taiwan University and Academia Sinica Taipei Taiwan
- Graduate Institute of Neural Regenerative Medicine College of Medical Science and Technology Taipei Medical University Taipei Taiwan
| |
Collapse
|
10
|
Jeong J, Lee J, Kim JH, Lim C. Metabolic flux from the Krebs cycle to glutamate transmission tunes a neural brake on seizure onset. PLoS Genet 2021; 17:e1009871. [PMID: 34714823 PMCID: PMC8555787 DOI: 10.1371/journal.pgen.1009871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5 homolog, I'm not dead yet (Indy), constitutes a neurometabolic pathway that suppresses seizure. Loss of Indy function in glutamatergic neurons caused "bang-induced" seizure-like behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-limiting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants and ameliorated their seizure-like behaviors. This metabolic control of the seizure susceptibility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to seizure, providing important clues to KTS-associated neurodevelopmental deficits.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jongbin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Ji-hyung Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Chunghun Lim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- * E-mail:
| |
Collapse
|
11
|
Brown TL, Nye KL, Porter BE. Growth and Overall Health of Patients with SLC13A5 Citrate Transporter Disorder. Metabolites 2021; 11:metabo11110746. [PMID: 34822404 PMCID: PMC8625967 DOI: 10.3390/metabo11110746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
We were interested in elucidating the non-neurologic health of patients with autosomal recessive SLC13A5 Citrate Transporter (NaCT) Disorder. Multiple variants have been reported that cause a loss of transporter activity, resulting in significant neurologic impairment, including seizures, as well as motor and cognitive dysfunction. Additionally, most patients lack tooth enamel (amelogenesis imperfecta). However, patients have not had their overall health and growth described in detail. Here we characterized the non-neurologic health of 15 patients with medical records uploaded to Ciitizen, a cloud-based patient medical records portal. Ciitizen used a query method for data extraction. Overall, the patients’ records suggested a moderate number of gastrointestinal issues related to feeding, reflux, vomiting and weight gain and a diverse number of respiratory complaints. Other organ systems had single or no abnormal diagnoses, including liver, renal and cardiac. Growth parameters were mostly in the normal range during early life, with a trend toward slower growth in the few adolescent patients with data available. The gastrointestinal and pulmonary issues may at least partially be explained by the severity of the neurologic disorder. More data are needed to clarify if growth is impacted during adolescence and if adult patients develop or are protected from non-neurologic disorders.
Collapse
Affiliation(s)
- Tanya L. Brown
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA 94026, USA;
- Correspondence:
| | - Kimberly L. Nye
- Treatments for Epilepsy and Symptoms of SLC13A5 Foundation, TESS Research Foundation, Menlo Park, CA 94026, USA;
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94070, USA;
| |
Collapse
|
12
|
Kannan K, Rogina B. The Role of Citrate Transporter INDY in Metabolism and Stem Cell Homeostasis. Metabolites 2021; 11:705. [PMID: 34677421 PMCID: PMC8540898 DOI: 10.3390/metabo11100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
I'm Not Dead Yet (Indy) is a fly gene that encodes a homologue of mammalian SLC13A5 plasma membrane citrate transporter. Reducing expression of Indy gene in flies, and its homologues in worms, extends longevity. Indy reduction in flies, worms, mice and rats affects metabolism by regulating the levels of cytoplasmic citrate, inducing a state similar to calorie restriction. Changes include lower lipid levels, increased insulin sensitivity, increased mitochondrial biogenesis, and prevention of weight gain, among others. The INDY protein is predominantly expressed in fly metabolic tissues: the midgut, fat body and oenocytes. Changes in fly midgut metabolism associated with reduced Indy gene activity lead to preserved mitochondrial function and reduced production of reactive oxygen species. All these changes lead to preserved intestinal stem cell homeostasis, which has a key role in maintaining intestinal epithelium function and enhancing fly healthspan and lifespan. Indy gene expression levels change in response to caloric content of the diet, inflammation and aging, suggesting that INDY regulates metabolic adaptation to nutrition or energetic requirements by controlling citrate levels.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
13
|
Willmes DM, Daniels M, Kurzbach A, Lieske S, Bechmann N, Schumann T, Henke C, El-Agroudy NN, Da Costa Goncalves AC, Peitzsch M, Hofmann A, Kanczkowski W, Kräker K, Müller DN, Morawietz H, Deussen A, Wagner M, El-Armouche A, Helfand SL, Bornstein SR, de Cabo R, Bernier M, Eisenhofer G, Tank J, Jordan J, Birkenfeld AL. The longevity gene mIndy (I'm Not Dead, Yet) affects blood pressure through sympathoadrenal mechanisms. JCI Insight 2021; 6:136083. [PMID: 33491666 PMCID: PMC7934862 DOI: 10.1172/jci.insight.136083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reduced expression of the plasma membrane citrate transporter INDY (acronym I’m Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target. Deletion of mIndy reduces blood pressure and heart rate by attenuating catecholamine biosynthesis and recapitulates beneficial cardiovascular and metabolic responses to caloric restriction.
Collapse
Affiliation(s)
- Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Daniels
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany
| | - Anica Kurzbach
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Stefanie Lieske
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Nermeen N El-Agroudy
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Waldemar Kanczkowski
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Kristin Kräker
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center, Max Delbruck Center for Molecular Medicine and Charité - University Hospital Berlin, Berlin, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Andreas Deussen
- Department of Physiology, Medical Faculty Carl Gustav Carus, and
| | - Michael Wagner
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA
| | - Stephan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, Maryland, USA
| | - Graeme Eisenhofer
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Institute of Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Jens Tank
- Aerospace Medicine, University of Cologne, Cologne, Germany
| | - Jens Jordan
- Aerospace Medicine, University of Cologne, Cologne, Germany.,Institute for Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, University Hospital and Medical Faculty Carl Gustav Carus and.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technical University Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, University of Tübingen, Tübingen, Germany.,Department of Internal Medicine IV, Endocrinology, Diabetology and Nephrology, University Hospital Tübingen, Tübingen, Germany.,Department of Diabetes, School of Life Course Science, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Hu T, Huang W, Li Z, Kane MA, Zhang L, Huang SM, Wang H. Comparative proteomic analysis of SLC13A5 knockdown reveals elevated ketogenesis and enhanced cellular toxic response to chemotherapeutic agents in HepG2 cells. Toxicol Appl Pharmacol 2020; 402:115117. [PMID: 32634519 DOI: 10.1016/j.taap.2020.115117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/29/2022]
Abstract
Solute carrier family 13 member 5 (SLC13A5) is an uptake transporter mainly expressed in the liver and transports citrate from blood circulation into hepatocytes. Accumulating evidence suggests that SLC13A5 is involved in hepatic lipogenesis, cell proliferation, epilepsy, and bone development in mammals. However, the molecular mechanisms behind SLC13A5-mediated physiological/pathophysiological changes are largely unknown. In this regard, we conducted a differential proteome analysis in HepG2 and SLC13A5-knockdown (KD) HepG2 cells. A total of 3826 proteins were quantified and 330 proteins showed significant alterations (fold change ≥1.5; p < .05) in the knockdown cells. Gene ontology enrichment analysis reveals that 38 biological processes were significantly changed, with ketone body biosynthetic process showing the most significant upregulation following SLC13A5-KD. Catalytic activity and binding activity were the top two molecular functions associated with differentially expressed proteins, while HMG-CoA lyase activity showed the highest fold enrichment. Further ingenuity pathway analysis predicted 40 canonical pathways and 28 upstream regulators (p < .01), of which most were associated with metabolism, cell proliferation, and stress response. In line with these findings, functional validation demonstrated increased levels of two key ketone bodies, acetoacetate and β-hydroxybutyrate, in the SLC13A5-KD cells. Additional experiments showed that SLC13A5-KD sensitizes HepG2 cells to cellular stress caused by a number of chemotherapeutic agents. Together, our findings demonstrate that knockdown of SLC13A5 promotes hepatic ketogenesis and enhances cellular stress response in HepG2 cells, suggesting a potential role of this transporter in metabolic disorders and liver cancer.
Collapse
Affiliation(s)
- Tao Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States of America
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, United States of America
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States of America.
| |
Collapse
|
15
|
Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. Pharmacol Rev 2020; 72:343-379. [PMID: 31882442 DOI: 10.1124/pr.118.015735] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The solute carrier (SLC) superfamily comprises more than 400 transport proteins mediating the influx and efflux of substances such as ions, nucleotides, and sugars across biological membranes. Over 80 SLC transporters have been linked to human diseases, including obesity and type 2 diabetes (T2D). This observation highlights the importance of SLCs for human (patho)physiology. Yet, only a small number of SLC proteins are validated drug targets. The most recent drug class approved for the treatment of T2D targets sodium-glucose cotransporter 2, product of the SLC5A2 gene. There is great interest in identifying other SLC transporters as potential targets for the treatment of metabolic diseases. Finding better treatments will prove essential in future years, given the enormous personal and socioeconomic burden posed by more than 500 million patients with T2D by 2040 worldwide. In this review, we summarize the evidence for SLC transporters as target structures in metabolic disease. To this end, we identified SLC13A5/sodium-coupled citrate transporter, and recent proof-of-concept studies confirm its therapeutic potential in T2D and nonalcoholic fatty liver disease. Further SLC transporters were linked in multiple genome-wide association studies to T2D or related metabolic disorders. In addition to presenting better-characterized potential therapeutic targets, we discuss the likely unnoticed link between other SLC transporters and metabolic disease. Recognition of their potential may promote research on these proteins for future medical management of human metabolic diseases such as obesity, fatty liver disease, and T2D. SIGNIFICANCE STATEMENT: Given the fact that the prevalence of human metabolic diseases such as obesity and type 2 diabetes has dramatically risen, pharmacological intervention will be a key future approach to managing their burden and reducing mortality. In this review, we present the evidence for solute carrier (SLC) genes associated with human metabolic diseases and discuss the potential of SLC transporters as therapeutic target structures.
Collapse
Affiliation(s)
- Tina Schumann
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jörg König
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Christine Henke
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Diana M Willmes
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Stefan R Bornstein
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Jens Jordan
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Martin F Fromm
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| | - Andreas L Birkenfeld
- Section of Metabolic and Vascular Medicine, Medical Clinic III, Dresden University School of Medicine (T.S., C.H., D.M.W., S.R.B.), and Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine (T.S., C.H., D.M.W.), Technische Universität Dresden, Dresden, Germany; Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany (T.S., C.H., D.M.W., A.L.B.); Clinical Pharmacology and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (J.K., M.F.F.); Institute for Aerospace Medicine, German Aerospace Center and Chair for Aerospace Medicine, University of Cologne, Cologne, Germany (J.J.); Diabetes and Nutritional Sciences, King's College London, London, United Kingdom (S.R.B., A.L.B.); Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany (A.L.B.); and Department of Internal Medicine, Division of Endocrinology, Diabetology and Nephrology, Eberhard Karls University Tübingen, Tübingen, Germany (A.L.B.)
| |
Collapse
|
16
|
Analysis of naturally occurring mutations in the human uptake transporter NaCT important for bone and brain development and energy metabolism. Sci Rep 2018; 8:11330. [PMID: 30054523 PMCID: PMC6063891 DOI: 10.1038/s41598-018-29547-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/13/2018] [Indexed: 11/30/2022] Open
Abstract
The human uptake transporter NaCT is important for human brain development, brain function and energy metabolism and mediates the uptake of citrate and other intermediates of the tricarboxylic acid cycle from blood into neurons and hepatocytes. Mutations in the SLC13A5 gene encoding NaCT are associated with epileptic encephalopathy. To gain more insights into the transport mechanisms we analyzed the functional consequences of mutations in the SLC13A5 gene on NaCT-mediated transport function. Using HEK293 cells expressing wild-type and eight mutated NaCT proteins, we investigated the mRNA and protein amount as well as the protein localization of all NaCT variants. Furthermore, the impact on NaCT-mediated citrate uptake was measured. In addition, a structural model of the transport pore was generated to rationalize the consequences of the mutations on a structural basis. We demonstrated that all proteins were synthesized with an identical molecular weight as the wild-type transporter but several mutations (NaCTp.G219R, −p.G219E, −p.T227M, −p.L420P and −p.L488P) lead to a complete loss of NaCT-mediated citrate transport. This loss of transport activity can be explained on the basis of the developed structural model. This model may help in the further elucidation of the transport mechanism of this important uptake transporter.
Collapse
|
17
|
Willmes DM, Kurzbach A, Henke C, Schumann T, Zahn G, Heifetz A, Jordan J, Helfand SL, Birkenfeld AL. The longevity gene INDY ( I 'm N ot D ead Y et) in metabolic control: Potential as pharmacological target. Pharmacol Ther 2018; 185:1-11. [DOI: 10.1016/j.pharmthera.2017.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
19
|
Poolsri WA, Phokrai P, Suwankulanan S, Phakdeeto N, Phunsomboon P, Pekthong D, Richert L, Pongcharoen S, Srisawang P. Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3683026. [PMID: 29546056 PMCID: PMC5818947 DOI: 10.1155/2018/3683026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/23/2017] [Accepted: 12/03/2017] [Indexed: 12/27/2022]
Abstract
Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising cancer therapy.
Collapse
Affiliation(s)
- Wan-angkan Poolsri
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Phornpun Phokrai
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Somrudee Suwankulanan
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Narinthorn Phakdeeto
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | | | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France
- Laboratoire de Toxicologie Cellulaire, Université de Bourgogne Franche-Comté, EA 4267, Besançon, France
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Petroleum, Petrochemicals and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
20
|
Bainbridge MN, Cooney E, Miller M, Kennedy AD, Wulff JE, Donti T, Jhangiani SN, Gibbs RA, Elsea SH, Porter BE, Graham BH. Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle. Mol Genet Metab 2017; 121:314-319. [PMID: 28673551 PMCID: PMC7539367 DOI: 10.1016/j.ymgme.2017.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To interrogate the metabolic profile of five subjects from three families with rare, nonsense and missense mutations in SLC13A5 and Early Infantile Epileptic Encephalopathies (EIEE) characterized by severe, neonatal onset seizures, psychomotor retardation and global developmental delay. METHODS Mass spectrometry of plasma, CSF and urine was used to identify consistently dysregulated analytes in our subjects. RESULTS Distinctive elevations of citrate and dysregulation of citric acid cycle intermediates, supporting the hypothesis that loss of SLC13A5 function alters tricarboxylic acid cycle (TCA) metabolism and may disrupt metabolic compartmentation in the brain. SIGNIFICANCE Our results indicate that analysis of plasma citrate and other TCA analytes in SLC13A5 deficient patients define a diagnostic metabolic signature that can aid in diagnosing children with this disease.
Collapse
Affiliation(s)
- Matthew N Bainbridge
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States; Codified Genomics LLC, Houston, TX, United States; Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, United States
| | - Erin Cooney
- Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Marcus Miller
- Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | | | | | - Taraka Donti
- Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, United States
| | - Sarah H Elsea
- Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Brenda E Porter
- Department of Neurology, Stanford University Medical School, Palo Alto, CA, United States
| | - Brett H Graham
- Dept. of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
21
|
von Loeffelholz C, Lieske S, Neuschäfer-Rube F, Willmes DM, Raschzok N, Sauer IM, König J, Fromm M, Horn P, Chatzigeorgiou A, Pathe-Neuschäfer-Rube A, Jordan J, Pfeiffer AFH, Mingrone G, Bornstein SR, Stroehle P, Harms C, Wunderlich FT, Helfand SL, Bernier M, de Cabo R, Shulman GI, Chavakis T, Püschel GP, Birkenfeld AL. The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism. Hepatology 2017; 66:616-630. [PMID: 28133767 PMCID: PMC5519435 DOI: 10.1002/hep.29089] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/15/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022]
Abstract
UNLABELLED Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. CONCLUSION Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450. (Hepatology 2017;66:616-630).
Collapse
Affiliation(s)
- Christian von Loeffelholz
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University, and Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, 01774, Germany
| | - Stefanie Lieske
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany
- Lehrstuhl für Biochemie der Ernährung, Universität Potsdam, Potsdam, 14558, Germany
| | | | - Diana M. Willmes
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany
| | - Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité – University School of Medicine, Berlin, 10117, Germany
| | - Igor M. Sauer
- General, Visceral, and Transplantation Surgery, Charité – University School of Medicine, Berlin, 10117, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91054, Germany
| | - Martin Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91054, Germany
| | - Paul Horn
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Friedrich Schiller University, and Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, 01774, Germany
| | - Antonis Chatzigeorgiou
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Dresden, TUD, Germany
| | | | - Jens Jordan
- Institute for Clinical Pharmacology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité – University School of Medicine, Berlin, 10117, Germany
- German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 8WA, UK
- Catholic University of Rome, Department of Internal Medicine, Rome, Italy
| | - Stefan R. Bornstein
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany
- Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 8WA, UK
- German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Peter Stroehle
- Max Planck Institute for Metabolism Research, Excellence cluster on cellular stress responses in aging associated diseases (CECAD), Cologne, 5093, Germany
| | - Christoph Harms
- Charité-Universitätsmedizin Berlin, Center for Stroke Research, Department of Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany
| | - F. Thomas Wunderlich
- Max Planck Institute for Metabolism Research, Excellence cluster on cellular stress responses in aging associated diseases (CECAD), Cologne, 5093, Germany
| | - Stephen. L. Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry and Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Dresden, TUD, Germany
| | - Gerhard. P. Püschel
- Lehrstuhl für Biochemie der Ernährung, Universität Potsdam, Potsdam, 14558, Germany
| | - Andreas. L. Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Paul Langerhans Institute Dresden (PLID), TU Dresden,01307 Germany
- Division of Diabetes & Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 8WA, UK
- German Centre for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Competence Center for Metabolic Vascular Medicine, GWT-TU Dresden, Germany
| |
Collapse
|
22
|
Rogina B. INDY-A New Link to Metabolic Regulation in Animals and Humans. Front Genet 2017; 8:66. [PMID: 28596784 PMCID: PMC5442177 DOI: 10.3389/fgene.2017.00066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/09/2017] [Indexed: 12/02/2022] Open
Abstract
The Indy (I’m Not Dead Yet) gene encodes the fly homolog of the mammalian SLC13A5 citrate transporter. Reduced expression of the Indy gene in flies and worms extends their longevity. INDY is expressed in the plasma membrane of metabolically active tissues. Decreased expression of Indy in worms, flies, mice, and rats alters metabolism in a manner similar to calorie restriction. Reducing INDY activity prevents weight gain in flies, worms, and mice, and counteracts the negative effects of age or a high fat diet on metabolism and insulin sensitivity. The metabolic effects of reducing INDY activity are the result of reduced cytoplasmic citrate. Citrate is a key metabolite and has a central role in energy status of the cell by effecting lipid and carbohydrate metabolism and energy production. Thereby newly described drugs that reduce INDY transporting activity increase insulin sensitivity and reduce hepatic lipid levels via its effect on hepatic citrate uptake. A recent report presented the first direct link between increased hepatic levels of human INDY, insulin resistance, and non-alcoholic fatty liver disease in obese humans. Similarly increased hepatic mIndy levels were observed in non-human primates fed on a high fat diet for 2 years. This effect is mediated via the stimulatory effect of the interleukin-6/Stat3 pathway on mINDY hepatic expression. These findings make INDY a potential and very promising target for the treatment of metabolic disorders in humans.
Collapse
Affiliation(s)
- Blanka Rogina
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, FarmingtonCT, United States
| |
Collapse
|
23
|
Willmes DM, Helfand SL, Birkenfeld AL. The longevity transporter mIndy (Slc13a5) as a target for treating hepatic steatosis and insulin resistance. Aging (Albany NY) 2016; 8:208-9. [PMID: 26928109 PMCID: PMC4789574 DOI: 10.18632/aging.100907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Diana M Willmes
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID), German Center for Diabetes Research (DZD), Dresden, Germany
| | - Stephen L Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III, Dresden University School of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden (PLID), German Center for Diabetes Research (DZD), Dresden, Germany
| |
Collapse
|
24
|
Pajor AM, de Oliveira CA, Song K, Huard K, Shanmugasundaram V, Erion DM. Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors. Mol Pharmacol 2016; 90:755-765. [PMID: 27683012 DOI: 10.1124/mol.116.105049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 02/14/2025] Open
Abstract
The Na+/citrate transporter, NaCT (SLC13A5), is a therapeutic target for metabolic diseases. Citrate is an important signaling molecule that regulates the activity of lipid- and glucose-metabolizing enzymes in cells. Previous studies identified two compounds, PF-06649298 (compound 2: ) and PF-06678419 (compound 4: ), that inhibit human NaCT with high affinity, and one of the compounds demonstrated specificity relative to other SLC13 family members. Here we use molecular modeling and site-directed mutagenesis of hNaCT followed by transport characterization and cell-surface biotinylation to examine the residues involved in inhibitor binding and transport. The results indicate that residues located near the putative citrate binding site, G228, V231, V232, and G409, affect both citrate transport and inhibition of citrate uptake by compounds 2: and 4: V231 appears to distinguish between compounds 2: and 4: as inhibitors. Furthermore, residues located outside of the putative citrate binding site, Q77 and T86, may also play a role in NaCT inhibition by compounds 2: and 4: Our results provide new insight into the mechanism of transport and inhibition in NaCT and the SLC13 family. These findings should provide a basis for future drug design of SLC13 inhibitors.
Collapse
Affiliation(s)
- Ana M Pajor
- University of California San Diego (A.M.P.), Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California; Cardiovascular, Metabolic and Endocrine Disease Research Unit (K.S., K.H., D.M.E.), Pfizer Worldwide Research and Development, Cambridge, Massachusetts; Center of Chemistry Innovation and Excellence (C.A.O., V.S.), Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Cesar A de Oliveira
- University of California San Diego (A.M.P.), Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California; Cardiovascular, Metabolic and Endocrine Disease Research Unit (K.S., K.H., D.M.E.), Pfizer Worldwide Research and Development, Cambridge, Massachusetts; Center of Chemistry Innovation and Excellence (C.A.O., V.S.), Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Kun Song
- University of California San Diego (A.M.P.), Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California; Cardiovascular, Metabolic and Endocrine Disease Research Unit (K.S., K.H., D.M.E.), Pfizer Worldwide Research and Development, Cambridge, Massachusetts; Center of Chemistry Innovation and Excellence (C.A.O., V.S.), Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Kim Huard
- University of California San Diego (A.M.P.), Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California; Cardiovascular, Metabolic and Endocrine Disease Research Unit (K.S., K.H., D.M.E.), Pfizer Worldwide Research and Development, Cambridge, Massachusetts; Center of Chemistry Innovation and Excellence (C.A.O., V.S.), Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Veerabahu Shanmugasundaram
- University of California San Diego (A.M.P.), Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California; Cardiovascular, Metabolic and Endocrine Disease Research Unit (K.S., K.H., D.M.E.), Pfizer Worldwide Research and Development, Cambridge, Massachusetts; Center of Chemistry Innovation and Excellence (C.A.O., V.S.), Pfizer Worldwide Research and Development, Groton, Connecticut
| | - Derek M Erion
- University of California San Diego (A.M.P.), Skaggs School of Pharmacy and Pharmaceutical Sciences, La Jolla, California; Cardiovascular, Metabolic and Endocrine Disease Research Unit (K.S., K.H., D.M.E.), Pfizer Worldwide Research and Development, Cambridge, Massachusetts; Center of Chemistry Innovation and Excellence (C.A.O., V.S.), Pfizer Worldwide Research and Development, Groton, Connecticut
| |
Collapse
|
25
|
Pesta DH, Perry RJ, Guebre-Egziabher F, Zhang D, Jurczak M, Fischer-Rosinsky A, Daniels MA, Willmes DM, Bhanot S, Bornstein SR, Knauf F, Samuel VT, Shulman GI, Birkenfeld AL. Prevention of diet-induced hepatic steatosis and hepatic insulin resistance by second generation antisense oligonucleotides targeted to the longevity gene mIndy (Slc13a5). Aging (Albany NY) 2016; 7:1086-93. [PMID: 26647160 PMCID: PMC4712334 DOI: 10.18632/aging.100854] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reducing the expression of the Indy (I'm Not Dead Yet) gene in lower organisms extends life span by mechanisms resembling caloric restriction. Similarly, deletion of the mammalian homolog, mIndy (Slc13a5), encoding for a plasma membrane tricarboxylate transporter, protects from aging- and diet-induced adiposity and insulin resistance in mice. The organ specific contribution to this phenotype is unknown. We examined the impact of selective inducible hepatic knockdown of mIndy on whole body lipid and glucose metabolism using 2′-O-methoxyethyl chimeric anti-sense oligonucleotides (ASOs) in high-fat fed rats. 4-week treatment with 2′-O-methoxyethyl chimeric ASO reduced mIndy mRNA expression by 91% (P<0.001) compared to control ASO. Besides similar body weights between both groups, mIndy-ASO treatment lead to a 74% reduction in fasting plasma insulin concentrations as well as a 35% reduction in plasma triglycerides. Moreover, hepatic triglyceride content was significantly reduced by the knockdown of mIndy, likely mediating a trend to decreased basal rates of endogenous glucose production as well as an increased suppression of hepatic glucose production by 25% during a hyperinsulinemic-euglycemic clamp. Together, these data suggest that inducible liver-selective reduction of mIndy in rats is able to ameliorate hepatic steatosis and insulin resistance, conditions occurring with high calorie diets and during aging.
Collapse
Affiliation(s)
- Dominik H Pesta
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,Department of Sport Science, Medical Section, University of Innsbruck, Innsbruck, Austria.,Department of Visceral, Transplant, and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Center for Diabetes Research, Partner Düsseldorf, Düsseldorf, Germany
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | | | - Dongyan Zhang
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Antje Fischer-Rosinsky
- Charité - University School of Medicine, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Martin A Daniels
- Charité - University School of Medicine, Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany.,Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), TU Dresden, Germany
| | - Diana M Willmes
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), TU Dresden, Germany.,German Center for Diabetes Research (DZD), Dresden, Germany
| | | | - Stefan R Bornstein
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), TU Dresden, Germany.,German Center for Diabetes Research (DZD), Dresden, Germany.,Section of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Felix Knauf
- University Clinic Erlangen, Erlangen, Germany
| | - Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Veterans Affairs Medical Center, West Haven, CT, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), TU Dresden, Germany.,German Center for Diabetes Research (DZD), Dresden, Germany.,Section of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| |
Collapse
|
26
|
Brachs S, Winkel AF, Tang H, Birkenfeld AL, Brunner B, Jahn-Hofmann K, Margerie D, Ruetten H, Schmoll D, Spranger J. Inhibition of citrate cotransporter Slc13a5/mINDY by RNAi improves hepatic insulin sensitivity and prevents diet-induced non-alcoholic fatty liver disease in mice. Mol Metab 2016; 5:1072-1082. [PMID: 27818933 PMCID: PMC5081411 DOI: 10.1016/j.molmet.2016.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022] Open
Abstract
Objective Non-alcoholic fatty liver disease is a world-wide health concern and risk factor for cardio-metabolic diseases. Citrate uptake modifies intracellular hepatic energy metabolism and is controlled by the conserved sodium-dicarboxylate cotransporter solute carrier family 13 member 5 (SLC13A5, mammalian homolog of INDY: mINDY). In Drosophila melanogaster and Caenorhabditis elegans INDY reduction decreased whole-body lipid accumulation. Genetic deletion of Slc13a5 in mice protected from diet-induced adiposity and insulin resistance. We hypothesized that inducible hepatic mINDY inhibition should prevent the development of fatty liver and hepatic insulin resistance. Methods Adult C57BL/6J mice were fed a Western diet (60% kcal from fat, 21% kcal from carbohydrate) ad libitum. Knockdown of mINDY was induced by weekly injection of a chemically modified, liver-selective siRNA for 8 weeks. Mice were metabolically characterized and the effect of mINDY suppression on glucose tolerance as well as insulin sensitivity was assessed with an ipGTT and a hyperinsulinemic-euglycemic clamp. Hepatic lipid accumulation was determined by biochemical measurements and histochemistry. Results Within the 8 week intervention, hepatic mINDY expression was suppressed by a liver-selective siRNA by over 60%. mINDY knockdown improved hepatic insulin sensitivity (i.e. insulin-induced suppression of endogenous glucose production) of C57BL/6J mice in the hyperinsulinemic-euglycemic clamp. Moreover, the siRNA-mediated mINDY inhibition prevented neutral lipid storage and triglyceride accumulation in the liver, while we found no effect on body weight. Conclusions We show that inducible mINDY inhibition improved hepatic insulin sensitivity and prevented diet-induced non-alcoholic fatty liver disease in adult C57BL6/J mice. These effects did not depend on changes of body weight or body composition. mINDY/Slc13a5 knockdown was induced by liver-selective siRNA in mice. Liver-selective knockdown of mINDY improved hepatic insulin sensitivity. Liver-selective knockdown of mINDY prevented steatosis hepatis.
Collapse
Key Words
- 2-DG, 2-Deoxy-d-glucose
- Citrate transport
- EE, energy expenditure
- EGP, endogenous glucose production
- FA, fatty acids
- FLD, fatty liver disease
- GIR, glucose infusion rate
- HE clamp, hyperinsulinemic-euglycemic clamp
- HFD, high-fat diet
- IEX, anion-exchange high-performance liquid chromatography
- INDY, ‘I'm not dead Yet’
- INDY/Slc13a5
- Insulin resistance
- KO, knockout
- Lipid accumulation
- ORO, oil red O
- RER, respiratory exchange ratio
- SCR, non-silencing scrambled control siRNA
- SKM, skeletal muscle
- Steatosis
- T2D, type-2 diabetes
- TCA, tricarboxylic acid
- WAT, white adipose tissue
- WD, western diet
- e, epididymal
- mINDY, Slc13a5/SLC13A5
- p, perirenal
- s, subcutaneous
- siINDY, mINDY-specific siRNA
- siRNA
- solute carrier family 13, member 5
Collapse
Affiliation(s)
- Sebastian Brachs
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, 10117, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany.
| | - Angelika F Winkel
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, 65926, Germany.
| | - Hui Tang
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, 10117, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany.
| | - Andreas L Birkenfeld
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, 10117, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany; Section of Metabolic Vascular Medicine, Medical Clinic III and Paul Langerhans Institute Dresden (PLID), a Member of the German Diabetes Center (DZD), Technische Universität, Dresden, 01307, Germany.
| | - Bodo Brunner
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, 65926, Germany.
| | - Kerstin Jahn-Hofmann
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, 65926, Germany.
| | - Daniel Margerie
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, 65926, Germany.
| | - Hartmut Ruetten
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, 65926, Germany.
| | - Dieter Schmoll
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, Frankfurt am Main, 65926, Germany.
| | - Joachim Spranger
- Department of Endocrinology, Diabetes and Nutrition, Center for Cardiovascular Research, Charité - University School of Medicine, Berlin, 10117, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Berlin, Germany.
| |
Collapse
|
27
|
Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 2016; 17:655-80. [PMID: 27259535 DOI: 10.1007/s10522-016-9655-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 02/08/2023]
Abstract
The AMP-activated protein kinase (AMPK) and hypoxia-inducible factor (HIF) signaling pathways are evolutionarily-conserved survival mechanisms responding to two fundamental stresses, energy deficiency and/or oxygen deprivation. The AMPK and HIF pathways regulate the function of a survival network with several transcription factors, e.g. FOXO, NF-κB, NRF2, and p53, as well as with protein kinases and other factors, such as mTOR, ULK1, HDAC5, and SIRT1. Given that AMPK and HIF activation can enhance not only healthspan and lifespan but also cancer growth in a context-dependent manner; it seems that cancer cells can hijack certain survival factors to maintain their growth in harsh conditions. AMPK activation improves energy metabolism, stimulates autophagy, and inhibits inflammation, whereas HIF-1α increases angiogenesis and helps cells to adapt to severe conditions. First we will review how AMPK and HIF signaling mechanisms control the function of an integrated survival network which is able not only to improve the regulation of longevity but also support the progression of tumorigenesis. We will also describe distinct crossroads between the regulation of longevity and cancer, e.g. specific regulation through the AMPKα and HIF-α isoforms, the Warburg effect, mitochondrial dynamics, and cellular senescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|